
Vision, Modeling, and Visualization (2011)
Peter Eisert, Konrad Polthier, and Joachim Hornegger (Eds.)

Adaptive Sampling for
Geometry-aware Reconstruction Filters

Pablo Bauszat1 and Martin Eisemann1 and Marcus Magnor1

1Computer Graphics Lab, TU Braunschweig, Germany

Abstract
We present an adaptive sampling scheme for Monte-Carlo-based renderers with the aim to support geometry-
aware filtering techniques for interactive computation of global illumination. While sophisticated filtering tech-
niques for homogeneous areas can already produce high-quality results with as few as one sample per pixel, these
approaches lack the ability to filter sufficiently in the vicinity of complex geometric structures. The result are visible
artifacts in the final rendering result. Our sampling scheme distributes the samples for the indirect illumination in
the image plane according to the necessity of a geometry-aware filtering. We show how to implement our scheme
efficiently on current graphics hardware and how to combine it with a sophisticated filtering in order to achieve
high-quality interactive frame rates for global illumination simulations. The resulting computational overhead is
only in the range of a few milliseconds, making our approach suitable for real-time implementations.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.7]: Raytracing—
Computer Graphics [I.3.7]: Three-Dimensional Graphics and Realism—Computer Graphics [I.3.3]: Picture/Image
Generation—

1. Introduction

Physically-motivated renderers like path tracing solve the
integral of the rendering equation [Kaj86] by Monte-Carlo
techniques, i.e. the result of several samples is accumulated
to approximate the integral [Kel97]. Image fidelity can be
heavily affected by how many samples are used and the way
they are distributed. As the necessary amount of samples
per pixel can be in the range of hundreds or thousands, it
is not possible with current commodity hardware to com-
pute the final image in real-time. Adaptive sampling strate-
gies [Whi80,Mit87,BM98,HJW∗08] usually strive to focus
effort only in areas where it is likely to be needed, which
is often based on the convergence or variance. The bene-
fit of these techniques is the ability to rapidly decrease the
number of necessary samples and that they eventually con-
verge to the correct result. A current drawback is that even
the most sophisticated sampling schemes are still far away
from being efficient enough to allow for real-time render-
ing on commodity hardware. A different approach are filter-
ing techniques that increase image quality by averaging over
several neighbouring pixels [WKB∗02, SIMP06, LSK∗07,
DSHL10]. The weighted average of the samples is based

on the geometric similarity of neighbouring samples. Clas-
sic adaptive sampling strategies are not designed to sup-
port these filtering strategies as their main goal is the vari-
ance reduction in the approximation of the rendering equa-
tion without any knowledge of the later filtering. Some ap-
proaches exist, which do incorporate this knowledge, e.g.
in the field of virtual point lights (VPLs). By splitting the
VPLs into disjoint sets for neighbouring pixels and recom-
bining their contribution afterwards in a geometry-aware
manner the correct rendering integral can be reconstructed
in many cases [WKB∗02,LSK∗07,RGK∗08]. Unfortunately,
they are are limited to certain constraints, e.g. static scenes
[WKB∗02, LSK∗07] or precise parameter adjustment for
varying scenes [RGK∗08]. Bias compensation and redis-
tribution for VPLs also hinder their usage and increase
code complexity. In addition, current interactive approaches
working in image space still suffer from the inability to filter
correctly in regions of high geometric variance [DSHL10].
Visually disturbing outliers or ringing artifacts are the result.

In our approach, we design an adaptive sampling strat-
egy that directly supports image-based filtering techniques
to prevent these artifacts. Therefore, we evaluate scene com-
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plexity for each pixel before sampling. In contrast to other
approaches, we do not have the necessity to base the distri-
bution of samples or VPLs on the change of variance in the
image as it is commonly the case. Our approach computes
the distribution of the allowed ray budget, i.e. the number of
rays that can be traced per frame, before any shading ray is
cast which turns out to be extremely beneficial for GPU im-
plementation and provides simple means for different levels
of rendering quality based on the capabilities of the under-
lying hardware. By computing more samples in geometri-
cally complex areas, we show that this approach can directly
support state-of-the-art filtering techniques and fits well onto
current graphics hardware, allowing for high-quality interac-
tive path tracing of arbitrary, even dynamic, scenes.

The rest of the paper is organized as follows. After re-
viewing relevant previous work in Section 2, we give a short
introduction into geometry-aware filtering and specifically
into the edge-avoiding À-Trous wavelet transform for fast
global illumination filtering [DSHL10] which we use exem-
plarily to show the benefit of our approach, Section 3. In
Section 4, we describe our approach as an efficient way to
support geometry-aware filtering of the incident indirect il-
lumination for high-quality interactive path tracing. Experi-
mental evaluation results for a variety of different test scenes
are presented in Section 5, before we discuss limitations and
conclude with Section 6.

2. Related Work

Fast ray tracing In order to realize any interactive path
tracing, the basic necessity is a fast ray tracing kernel. Ex-
ploiting fine-grained parallelism and coherency in the rays,
the pioneering work of Wald et al. [Wal04] showed how
interactive ray tracing is possible on standard PCs. Unfor-
tunately, ray coherence is not given in global illumination
simulations which is needed for such approaches to work
efficiently. Recently Aila et al. [AL09] described how to
exploit the architecture of current GPUs for fast ray cast-
ing. To accelerate the general light transport, Boulos et al.
[BWB08] propose to reintroduce coherency by reordering
of the ray packets. Another approach is to introduce accel-
eration data structures specifically designed for incoherent
rays [DHK08, EG08, Tsa09]. Even with these sophisticated
rendering techniques, current hardware is not fast enough to
generate noise-free path traced images at interactive frame
rates, but they offer a good basis to build upon.

Adaptive Sampling There is a vast amount of literature
dealing with sampling and reconstruction and we will only
describe the most relevant work here. Excellent surveys can
also be found in [DBB06,PH10].

In his seminal work on recursive ray tracing, Whitted
[Whi80] proposed an adaptive sampling strategy which first
samples the image plane on a regular grid and then subdi-
vides the squares based on the difference between the sam-

pled values on the corners of the square. Unfortunately, such
regular subdivisions result in structured aliasing patterns vis-
ible in the rendered image. Adaptive stochastic approaches
create a higher density of samples in areas where it is most
needed, e.g. high variance or contrast [Mit87, BM98]. As
the samples are stochastically distributed, aliasing patterns
are less visible. Early on, Kajiya [Kaj86] proposed multi-
dimensional sampling but was unsatisfied with his results.
It took more than twenty years before a succesful approach
was finally presented by Hachisuka et al. [HJW∗08]. Un-
fortunately, these adaptive sampling patterns usually assume
that rendering time is not restricted in any way. For in-
teractive applications a limited sampling budget of only a
few million samples per frame is currently available. These
are too few to reconstruct noise-free results with these ap-
proaches for standard resolutions of one megapixel and
more.

Filtering Techniques for Global Illumination The unify-
ing idea behind edge-avoiding, or geometry-aware filtering,
in global illumination simulations is to take weighted av-
erages of nearby samples based on their geometric prop-
erties, such as normals or position in space. Wald et al.
[WKB∗02] made use of the discontinuity buffer [Kel97] to
prevent filtering across edges in the scene. Similarly, Laine
et al. [LSK∗07] use interleaved sampling and edge-aware
boxfiltering for a n×m pixel region to filter the image. Just
recently, Dammertz et al. [DSHL10] proposed the edge-
avoiding À-Trous wavelet transform for fast edge-aware
filtering of the incident illumination. The filter is fast to
compute, fits well to graphics hardware and produces very
good results, given the few milliseconds it takes to com-
pute the filter. One caveat to using this approximation tech-
nique is that it introduces bias in the final rendering result
[KA91]. Artifacts such as blurry patches, outliers or ring-
ing replace the noise seen in pure Monte Carlo ray trac-
ing based approaches. A theoretical generalization of these
approaches is the joint or cross-bilateral filter introduced
in [PSA∗04, ED04]. Unfortunately, to our best knowledge,
no technique exists, which can compute the exact cross-
bilateral filter for larger filter kernels in real-time. Just re-
cently, Bauszat et al. [BEM11] proposed to use a guided im-
age filter to estimate the incident indirect illumination.While
their results are even better than a full cross-bilateral filter, it
seems currently not possible to incorporate an adaptive sam-
pling scheme into this technique without loosing real time
capability.

3. Geometry-aware filtering

The idea behind geometry-aware filtering is the assumption
that samples of the incident lighting captured at neigbor-
ing pixels may contribute to the pixel under consideration
to virtually increase the number of samples. This assump-
tion holds in most cases as long as the surfaces show near-
lambertian properties and the geometric characteristics of
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neighboring pixels are similar. The similarity is computed
by a cost function based on at least the normal and depth
deviation [WKB∗02,LSK∗07,DSHL10] to prevent filtering
across edges or depth discontinuities.

The general concept behind this kind of filtering is de-
scribed by the so-called joint or cross bilateral filter [ED04,
PSA∗04]. In the classic bilateral filter algorithm [TM98,
SB97] similarity between neighbouring pixels is based on
two components, a spatial, i.e., pixel distance, and a per-
ceptional similarity, i.e., intensity value. The first weighting
function Gσs is the spatial weighting, equal to a standard
gaussian filter. The second weighting function Gσr is also
called range weight, where the coefficient at each position
q in the filter kernel is based on the difference between the
intensity values at the pixel under consideration p and the
offset pixel at position q respectively. Combining both re-
sults in an edge-aware filter kernel.

The cross bilateral filter extends this idea by decoupling
the weighting functions from the input image. Instead of bas-
ing the filter function on relations in the input image I, it
is based on arbitrary input images to compute the weight-
ing terms. E.g., the edge-avoiding geometry-aware filter pro-
posed by Dammertz et al. [DSHL10] uses the following for-
mulation to denoise a path traced image I at pixel position
p:

F(Ip) =
1
Wp

∑
q∈NHp

Iq ·h(q) ·G(p,q) , (1)

with
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In this filter kernel the spatial component h(q) is defined
by a B3 spline interpolation ( 1
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1
16 ). Gσr (p,q) is

the range kernel for the color similarity used to retain high-
frequency informations such as shadows that cannot be de-
tected by geometric information.Gσn(p,q), the normal simi-
larity andGσx(p,q), the similarity of the hitpoint in euclidian
space. The normalization factorWp is defined as the sum of
all weights in the neighbourhood

Wp = ∑
q∈NHp

h(q) ·Gσs(p,q) ·Gσr (p,q) ·Gσn(p,q) (6)

3.1. Edge-Avoiding À-Trous wavelet transform

The previously defined geometry-aware filter is computa-
tionally very intensive. If low sampling rates are used, a ra-
dius of up to 48 pixels might be necessary to remove noise
sufficiently from the path traced image. In order to speed up

Level 0

Level 1

Level 2

Figure 1: Visualization of the À-Trous wavelet transform for
three levels. Arrows indicate non-zero entries in the filter
kernel. Gray pixels are those not taken into account by the
À-Trous wavelet transform.

the computation Dammertz et al. [DSHL10] proposed to use
an iterative algorithme À-Trous (with holes) [HKMMT89].
The idea is to repeatedly convolve the image with a kernel
whose number of non-zero-coefficients stays constant but
the initial filter is spread in size by a factor of 2level and
filled with zeros. The computational complexity stays con-
stant for each level. An explanatory example is given in Fig-
ure 1. More details are given in [DSHL10].

This approximation works fast and produces good results
in general. In regions of complex geometry, however, the
weights for neighboring samples will be very low, lowering
the noise reduction capability of the filter and resulting in
visible outliers in the final rendering result.

4. Adaptive Sampling Scheme

To supplement the image-space filtering, we propose an
adaptive sampling scheme for the incoming, indirect illu-
mination that distributes more samples to pixels in variant
neighbourhoods, which cannot fully benefit from the filter-
ing. The proposed adaptive sampling scheme specifically
targets interactive applications and is designed for execution
on parallel architectures such as the GPU. While in our case
the algorithm is used for the indirect illumination only, it is
defined generally and, thus, can easily be adopted for other
applications e.g. adaptive sampling of pixel domains on the
image plane.

In contrary to common adaptive sampling schemes where
the sampling rate for each pixel is computed locally, we
compute the sampling rate for each pixel by distributing a
fixed sample budget over the complete image. This is prefer-
able for interactive applications which prefer constant frame
times, because using only the local importance information
for each pixel can lead to overall sample counts that vary
heavily depending on the scene view point.

We propose a 3-step algorithm: In the first step, an impor-
tance map is generated indicating for each pixel its sampling
importance. Second, the sampling rate for each pixel is com-
puted using the importance map as input and the results are
stored in a resolution-sized integer buffer. After computing
the number of samples per pixel, the samples for the whole
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(a) (b) (c)

Figure 2: Visualization of importance maps with a filter ra-
dius of 2x2. (a) Generated using only the normal weight, (b)
using only the position weight and (c) using the normal- and
position weight combined.

image are finally generated and processed using a batch sys-
tem.

4.1. Importance map generation

To compute the importance of each pixel, we consider the
geometry-aware filtering kernel given in Equation (1). The
factor Wp can be used as an indicator giving information
about how much a pixel is influenced by its neighbourhood
during the filtering process. The higher the value, the more
information is gathered from the neighbouring pixels. In
contrary, pixels with a lower factor benefit less from image-
spaced filtering. Therefore, we want to distribute more sam-
ples to pixels with a lower normalization factor. Because we
compute the importance map before any color samples are
taken, we do not have any color information and thus, we
compute the importance value for each pixel based on the
normal and position information only. To compute an im-
portance value in the range [0,1], we divide the factor Wp

(without the color weighting) by the maximum weight that
could be achieved in a filter kernel, which is simply the num-
ber of pixels in the neighbourhood. Figure 2 shows a visual-
ization of importance maps based on a) the normal only, b)
the position only and c) the combined information. Notice,
that in the images the normalized weighting sums are visu-
alized directly and thus, bright areas represent pixels with a
high Wp and can benefit more from filtering. For the final
sampling rate computation, we use 1−Wp to compute the
actual pixel importance value. The radius of the neighbour-
hood can be used to adjust the influence range of an edge
to its neighbourhood. The larger the radius, the more pixels
near an edge are assigned a higher priority. Because comput-
ing larger filter neighborhoods is very time consuming, we
usually use a filter radius of 2− 4 which is sufficient to de-
tect high variant areas and edges and works well in practice.

4.2. Sampling rate computation

After computing the importance map, the actual number of
samples for each pixel is computed. Interestingly, the prob-
lem of distributing a fixed integer number over multiple el-
ements using floating-point weights or quotas is similar to

the problem of apportionment of seats in political elections.
For computing the sampling rate n for each pixel, we use the
equation

n = minSamples+ ⌊
s ·q
t

⌋ (7)

s = sampleBudget− (minSamples ·numPixels) (8)

where s is the total number of distributable samples for
the image, q is the weight or quota of the pixel and t is the
total sum of all quotas in the importance map. minSamples
is the minimum number of samples computed per pixel.
The fixed sample budget is simply computed by multiply-
ing the uniform sampling rate by the resolution. Notice, that
the equation is equal to the first step of the largest remain-
der method (also known as the Hare-Niemeyer or Hamilton
method) [NN08]. Unfortunately, the actual number of dis-
tributed samples is not equal but smaller than the total num-
ber of distributable samples for the uniform sampling due to
rounding errors. To distribute the missing samples, it would
be necessary to compute the left fraction for each quota and
sort these fractions which is a costly operation on the GPU.
Therefore, we decided to avoid these computational over-
head and accept the fact that the adaptive sampling scheme
does not generate the same but a slightly lower overall sam-
ple count as the uniform sampling approach. The compu-
tation of the sampling rate for each pixel and the previous
computation of the total sum of all importance values can
both be performed in parallel. The sum of the importance
map is computed using a simple “Reduce” operation, which
can be implemented efficiently on the GPU [HSO07].

4.3. Sample generation, processing and storing

After the sampling rate for each pixel is computed, the sam-
ples are finally generated and processed using a batch sys-
tem. Starting at the first pixel, samples are generated until the
batch buffer, which contains the samples, is full. In our im-
plementation, we use a resolution-sized buffer which is also
used for the primary rays when sampling the image plane.
When the batch buffer is full, the samples are processed, the
results are stored and the generation process is resumed until
all samples have been processed.

To generate and store samples, a mapping is needed which
associates a sample in the batch to a specific pixel. There-
fore, we use a sample-to-pixel buffer, which contains the
index of the associated pixel for each sample in the batch.
To construct this buffer for each batch, a second buffer, the
sample-offset buffer, is used which stores the starting index
of the samples for each pixel. The sample-offset buffer is
constructed once, after computing the number of samples for
each pixel, using an exclusive scan on the buffer which con-
tains the sampling rates. This can be efficiently computed on
the GPU (see also [HSO07]). The sample-to-pixel buffer is
created for each batch before the samples of the batch are
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(a) (b)

(c) (d)

Figure 3: Adaptive sampling of the indirect illumination. Top
row: Uniform sampling using 4 samples (a) and 16 samples
(b). Bottom row: Adaptive sampling using a minimum sam-
ple count of 1 sample per pixel and an overall sample budget
of four times the resolution. The filter range is set to 4x4 (c)
and 10x10 (d). Here the cropped unnormalized values are
shown to emphasize the differences between the images.

generated. To fill the sample-to-pixel buffer in parallel, a
thread is started for each pixel and by using the sample-offset
buffer each thread can decide if its associated pixel has any
samples inside the current batch and fill in the information
if needed. The routine to store the samples must be imple-
mented carefully and thread-safe to handle the case where
multiple samples are stored for the same pixel in parallel.

Figure 3 shows a comparison between the uniform- and
the adaptive sampling scheme. Notice, that in the images the
adaptive sampling scheme successfully shifts samples from
the homogenous areas to the areas near edges, improving
the quality of these pixels. The homogenous areas may look
undersampled in the adaptive approach compared to the uni-
form sampling, however, these are exactly the areas which
will benefit greatly from filtering.

By modifying the routines that generate and process the
samples of a batch, the algorithm can easily be adjusted for
other sampling applications. E.g. the generation of hemi-
sphere samples can simply be replaced by pixel domain sam-
pling for adaptive sampling of the image plane.

5. Results and Discussion

In this section, we compare our adaptive scheme with a uni-
form sampling of the image plane with and without filtering.
For all approaches, we use approximately the same number
of samples. All measurements were done at a resolution of

(a) Ajaxbust (b) Dwarf (c) Grass

Figure 4: Reference images used for our comparisons.

Window size Time in ms
2x2 8.3
4x4 26.2
6x6 50.7
8x8 84.9
10x10 128.7

Table 1: The table shows the overhead in milliseconds for
computing the number of samples per pixel for the adaptive
scheme.

1024× 768 pixels. The reference images, showing the inci-
dent indirect illumination in Figure 4, were computed using
1024 samples per pixel. For the unfiltered images and the
approach of Dammertz et al. [DSHL10], we use one sam-
ple for sampling the pixel domain and four samples for the
indirect illumination. We compute two bounces for the indi-
rect lighting. Due to the different characteristics of the direct
and indirect lighting, we filter and compare only the inci-
dent indirect illumination. The whole rendering system was
implemented on an AMD 5600+ 2.8 GHz Dual core system
with 2 GB of RAM. The used GPU is an NVidia 285 GTX
supporting CUDA 3.2 and computing capability 1.3.

We first benchmarked the computational overhead in-
troduced by the different steps of our adaptive sampling
scheme. Table 1 shows the timings to compute the impor-
tance map and to redistribute the samples, i.e. computing the
number of samples to be traced in our adaptive scheme per
pixel. Though the timings increase quadratically with the
radius, a small window of size 2× 2 or 4× 4 is generally
enough to estimate a good distribution. We use a 4×4 win-
dow for all examples shown.

The required time for generating and storing samples in
our adaptive scheme is mainly dependent on the number of
samples that are generated and processed. Table 2 shows the
additional execution time for the batch generation and stor-
age of the samples for different sampling rates. The overhead
of the adaptive sampling scheme is moderate and feasible for
real-time applications, provided that a small window is used
for computing the importance map.

In Figure 6 to 8, a comparison between the unfiltered, the
classic À-Trous filter [DSHL10] and our approach is given
using the mean squared error (MSE) metric [WB09]. The
size of the filter was empirically set to the optimal value to

c© The Eurographics Association 2011.

187



P. Bauszat & M. Eisemann & M. Magnor / Adaptive Sampling for Geometry-aware Reconstruction Filters

Hemisphere samples Time in ms
4 2.3
16 3.6
64 8.5

Table 2: The table shows the overhead in milliseconds for
generating and storing samples in the adaptive scheme.

(a) Uniform 2×2 sampling (b) Our adaptive sampling

Figure 5: (a) Outliers are visually disturbing artifacts that
are hard to conceal but often appear if low sampling rates
are used. (b) Our adaptive sampling scheme redistributes the
samples to effectively mask these errors.

minimize the MSE, but is the same size for the classic À-
Trous and our adaptive scheme. Our minimum sampling rate
per pixel is set to two for the results in Figure 6 and 7 and
one for the Grass scene in Figure 8.

As expected the noisy, adaptively sampled image shows a
higher overall MSE, as we concentrate the samples on rel-
atively small regions in the image. But the positive effect
on the filtered image is substantial. For the Grass scene the
MSE is reduced to 67% compared to the original À-Trous
filter [DSHL10] with the same amount of samples. For the
Dwarf scene the overall error is only slightly reduced com-
pared to Dammertz et al., but the error is more equally dis-
tributed over the image and outliers are drastically reduced
as can be seen in the close-up views in Figure 7c and 7f.
This outlier reduction is critical for high-quality rendering,
as smaller errors might be masked by the direct illumination,
but fireflies will still be visible, see Figure 5.

6. Conclusion

In this paper, we presented a novel, adaptive sampling
scheme for interactive Monte Carlo global illumination sim-
ulations. In contrast to previous adaptive sampling schemes,
our approach aims at supporting geometry-aware filter-
ing methods, like the À-Trous wavelet transform filter by
Dammertz et al. [DSHL10]. To our best knowledge, this is
the first sampling scheme that supports the geometry-aware
filter directly instead of trying to reduce the overall variance
in the image. This is especially important for real-time ap-
plications where only a limited sample budget per frame is
given. By computing an importance map before sampling
the hemispheres for the indirect illumination, we are able to

redistribute the available samples into critical areas of com-
plex geometry while using less samples for more homoge-
neous areas which can be reconstructed faithfully by filter-
ing.

A current limitation is that ringing artifacts which are
caused by the À-Trous filter cannot be handled sufficiently
by the adaptive sampling. An interesting future research di-
rection would therefore be to find ways to combine the adap-
tive sampling scheme presented in this paper with the guided
image filtering of Bauszat et al. [BEM11]. Another draw-
back is that for very complex and variant scenes the adaptive
sampling will necessarily fail and boil down to a standard
uniform distribution, as all areas are considered as equally
important, e.g. in complex outdoor scenes.
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(a) Uniform sampling, MSE = 16219 (b) À-Trous filter, MSE = 329 (c) Close-Up of (b)

(d) Our adaptive sampling, MSE = 21565 (e) Our final result, MSE = 244 (f) Close-Up of (e)

Figure 6: (a) Noisy input image using a uniform 2× 2 sampling, (b) the filtered result of (a) using the approach in [DSHL10],
(c) Close-up of (b), (d) the noisy input image using our adaptive sampling scheme, (e) our the filtered result using the adaptively
sampled image (d) as input for the filtering, (f) Close-up of (e)

(a) Uniform sampling, MSE = 11356 (b) À-Trous filter, MSE = 275 (c) Close-Up of (b)

(d) Our adaptive sampling, MSE = 16090 (e) Our final result, MSE = 273 (f) Close-Up of (e)

Figure 7: (a) Noisy input image using a uniform 2× 2 sampling, (b) the filtered result of (a) using the approach in [DSHL10],
(c) Close-up of (b), (d) the noisy input image using our adaptive sampling scheme, (e) our the filtered result using the adaptively
sampled image (d) as input for the filtering, (f) Close-up of (e)
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(a) Uniform sampling, MSE = 3023 (b) À-Trous filter, MSE = 127 (c) Close-Up of (b)

(d) Our adaptive sampling, MSE = 4625 (e) Our final result, MSE = 86 (f) Close-Up of (e)

Figure 8: (a) Noisy input image using a uniform 2× 2 sampling, (b) the filtered result of (a) using the approach in [DSHL10],
(c) Close-up of (b), (d) the noisy input image using our adaptive sampling scheme, (e) our the filtered result using the adaptively
sampled image (d) as input for the filtering, (f) Close-up of (e)
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