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Abstract
In recent years, Lagrangian Coherent Structures (LCS) have been characterized using the Finite-Time Lyapunov
Exponent, following the advection of a dense set of particles into a corresponding flow field. The large amount of
particles needed to sufficiently map a flow field has been a non-trivial computational burden in the application of
LCS. By seeding a minimal amount of particles into the flow field, Moving Least Squares, combined with FTLE,
will extrapolate the important feature locations at which further refinement is desired. Following the refinement
procedure, MLS produces a continuous function reconstruction allowing the characterization of Lagrangian Co-
herent Structures with a lower number of particles. Through multiple data sets, we show that given a sparse and
refined sampling, MLS will reproduce FTLE fields exhibiting a nominal error while maintaining a performance
increase when compared to the standard, dense finite difference approach.

Categories and Subject Descriptors (according to ACM CCS): Image Processing and Computer Vision [I.4.7]: Fea-
ture Measurement—Simulation And Modeling [I.6.6]: Simulation Output Analysis—Physical Sciences and Engi-
neering [J.2]: Engineering—.

1. Introduction

Within both the academic and professional communities, the
study of fluid flow remains essential in scientific, medical,
and engineering sectors. A core understanding of fluid flow
behavior is often required during post-process analysis and
final results. Examples include automotive design, turbo-
machinery, machine cooling, medical imaging, and aeronau-
tics. Investigation of fluid flow within such regions of study
yield large and numerically complex data sets that require
further analysis.

We will specifically target the ability to characterize, ex-
tract and visualize salient structures within a turbulent flow.
Various approaches, ranging from topological to feature-
based, have been applied to this problem with the same
goal, coherent structure identification. In this work, focus is
set on locating Lagrangian Coherent Structures (LCS) using
the Finite-Time Lyapunov Exponent (FTLE). The notion of
FTLE rests on a strong theoretical framework, characterizing
laminar and turbulent flow in terms of repelling and attract-
ing material surfaces. Unfortunately, this physically intuitive
and mathematically sound representation is hindered by the
computational cost associated with advecting a dense set
of particles across the spatio-temporal flow domain that are
needed to perform the quantitive assessment of FTLE. While
adaptive computation approaches have been presented in the

past, they are usually tied to specific refinement schemes and
require an auxiliary refinement structure.

The goal of this work is to visualize Lagrangian Coherent
Structures in flow data with less effort. To this purpose, we
make use of the power of the Moving Least Squares (MLS)
framework for interpolation and approximation. The MLS
framework allows us to do flexible local refinement with-
out the need for laborious mesh construction and mainte-
nance. Through its use, we are able to seed a strongly re-
duced number of particles to robustly and efficiently eval-
uate Finite-Time Lyapunov Exponents. The resulting fields
are easily kept smooth, which has beneficial numerical con-
sequences for the extraction of Lagrangian Coherent Struc-
tures. Overall, we show that Moving Least Squares has the
principle properties to serve as the foundation for mesh-free
LCS-based flow visualization.

The paper is structured as follows: Section 2 builds a
framework, delving deeper into the numerical foundation on
which FTLE is built, followed by an in-depth explanation of
MLS and its adaptive features. Section 3 examines previous
works on FTLE and applications benefiting from the use of
MLS. Next, in Section 4, we discuss incremental refinement
to provide a more robust approximation and in Section 5,
cover the full MLS reconstruction and LCS extraction. Fi-
nally, we present our results and experiments in Section 6
and conclude our work in Section 7.
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2. Background

In this paper, we propose using Moving Least Squares to cal-
culate the Finite-Time Lyapunov Exponent from scattered
flow map samples. Based on concepts from the theory of
dynamical systems, FTLE is a geometric tool used to de-
fine and extract Lagrangian Coherent Structures in transient
flows studied in a Lagrangian framework. The Finite-Time
Lyapunov Exponent is a measure of the separation rate be-
tween infinitesimally close trajectories, which when applied
in the context of finite flow fields, defines asymptotically sta-
ble and unstable Lagrangian Coherent Structures.

Previous works have completed FTLE calculations and
visualized the Lagrangian Coherent Structures on (nested)
regular grids, as we will discuss in Section 3. We propose us-
ing Moving Least Squares to minimize the number of seeded
particles used in the computation of the Finite-Time Lya-
punov Exponent. Our reasoning for choosing MLS to per-
form the sparse data reconstruction lies at the heart of the
FTLE calculation, described further in the next section. Be-
cause FTLE measures a separation rate, we require a differ-
entiable reconstruction and Moving Least Squares provides
a local and continuous reconstruction method, making for a
smooth image. Furthermore, MLS produces the two deriva-
tives needed when extracting LCS.

2.1. Finite Time Lyapunov Exponent

To provide an in-depth explanation of FTLE calculation dur-
ing the corresponding MLS reconstruction, we introduce
some useful notations. Even though our work extends to
three dimensions, for a concise elaboration, we consider a
time-dependent two-dimensional vector field v defined over
a finite Euclidean domain U ⊂ R2 and a finite temporal do-
main I ⊂ R. Starting at time t0, a particle x is advected to
time t, where t = t0 + τ , formulated as the map x(t; t0,x0).
For coherency, the mapping must satisfy x(t0; t0,x0) = x0
and ẋ(t; t0,x0) = v(t,x(t; t0,x0)), where the dot denotes the
derivative with respect to the first parameter. A linearization
of the local variation of the map x(t; t0, ·) around the seed
position x0 is obtained by considering its spatial gradient
Jx(t, t0,x0) := ∇x0 x(t; t0,x0) at x0. The maximal dispersion
after time τ of particles in a neighborhood of x0 can be calcu-
lated using this spatial gradient as a function of the direction
d0 along which we move away from x0 : dt = Jx(t, t0,x0)dt0 .
Maximizing the norm | dt | over all possible unit directions
dt0 corresponds to computing the maximum eigenvalue of
the spectral norm of Jx(t, t0,x0)

σ(t0,x0) =
√

λmax(Jx(t, t0,x0)T Jx(t, t0,x0)) (1)

The logarithm is then applied to obtain the average exponen-
tial separation rate λ (t, t0,x0) and the result is normalized by
the advection time τ

λ (t, t0,x0) =
1
| τ |

log
√

λmax(Jx(t, t0,x0)T Jx(t, t0,x0)) (2)

resulting in a rate commonly referred to as the Finite-Time
Lyapunov Exponent.

2.2. Moving Least Squares

To recreate accurate FTLE fields from a field of sparse par-
ticles, we desire continuity among FTLE value reconstruc-
tion. From a structured grid, finite differences can be used
to calculate the Jacobian matrix Jx necessary for the calcu-
lation of the largest eigenvalue, and finally the Finite-Time
Lyapunov Exponent. Unable to follow a similar procedure
for mesh-free data, we require continuous derivatives for a
suitable reconstruction. The Moving Least Squares method,
offers a robust approximation over scattered data which pre-
serves function continuity as well as smooth, well-defined
derivatives. With MLS, local continuity is maintained, al-
lowing us to retain the inherent flow of the particles dur-
ing least squares approximation. In the following section,
we provide an extensive explanation of the Moving Least
Squares method with a focus on numerical stability.

2.2.1. MLS Approximation

At the base of the problem lies a flow map with correspond-
ing vector values. It is within this turbulent flow that we wish
to extract salient structures through the use of the Finite-
Time Lyapunov Exponents. A set of particles is seeded into
the flow field and advected for a finite time step. Using the
final locations of the advected scattered particles and MLS,
we are able to form a continuous flow map of particles at
ti+1 as if we had advected a complete field of particles from
ti to ti+1.

When calculating FTLE, particles are advected from ti to
ti+1, where ti+1 = ti + τ . It is through this time period, that
we are able to formulate the divergence of particles through
FTLE. Based on these advections, MLS is used to obtain
an approximation function to f (x), where ultimately f (x)
refers to the spatial coordinates of any point at ti+1. The ap-
proximation is developed in the least squares sense, using
N points with coordinates xi to develop the local approxima-
tion of f at x. The solution poses the following minimization
problem:

min f∈∏
d
m ∑

i
w(ρ)‖ f (xi)− fi‖2 (3)

where m is the degree of the basis polynomial and d is
the spatial dimension with f minimized accordingly. w(ρ)
represents the weighting function taking as parameter ρ =
‖x−xi‖

γ
, the Euclidean distance between x and the position

of the data points xi with respect to the domain of influence
radius, γ . A more detailed discussion of the weight function
will be given in Section 2.2.2. The solution of f (x) can also
be represented as a linear combination of basis functions and
rewritten as the following:

f (x) = bT (x)c(x) (4)
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where bT (x) = [b1(x), · · · ,bk(x)] is a complete polynomial
basis of k terms and c(x) = [c1, · · · ,ck] is a vector of unknown
coefficients that are to be minimized, where k =

(m+d)!
m!d! . By

taking partial derivatives of (3) with respect to the coeffi-
cients of c(x) and solving least squares by use of the normal
equation, the calculation of c(x) can be reformulated as

BT W(ρ)Bc(x) = BT W(ρ)f (5)

where f is a vector of coordinate values at time ti+1 and
W(ρ) is the diagonal weight matrix of size N×N, storing
the numerical influence of points xi on fit point x. B is de-
fined to be a matrix of polynomial basis functions b(xi) for
the N points associated with the least squares fit

Substituting the solution of c(x) into Equation (4), the func-
tion solution f (x) is concluded with the explicit formulation,

f (x) = bT (x)(BT W(ρ)B)−1BT W(ρ)f (6)

For the calculation of the FTLE, the gradient of f (x) must be
extracted, thus we must calculate f ′(x) where the apostrophe
denotes the first derivative. Levin [Lev98] and others have
recommended using a simple, one term derivative:

f ′(x) =
∂ fx(x)

∂xs
≈ ∂b(x)T

∂xs
c(x) (7)

which requires only the differentiation of the basis function
bT (x). By taking the partial derivative of the function ba-
sis for the resampled coordinate in terms of xs, the Jacobian
matrix needed for the computation of the FTLE is formed.

2.2.2. Weight Function

The purpose of the weight function is to give points closer
to x more emphasis for the approximation than points fur-
ther away. The weight function is applied to the n nearest
neighbors of x, and the outcome stored in the W(ρ) diagonal
matrix of size n× n. After analyzing multiple weight func-
tions and the resulting reconstruction error, we have chosen
to use the following spline weight function [BMXK06] for
our MLS fit,

W(ρ) = 1−6ρ
2 +8ρ

3−3ρ
4 (8)

To ensure that all points are taken into consideration, υ is
added to r, the Euclidean distance between x and neighbor
xi, for the weight function, where υ � 1. Now, the weight
function assures that all points within the neighborhood will
contribute to the fit regardless of their proximity to x. Even
when interpolating over one of the scattered data points, con-
tinuity throughout the linear system is maintained, resulting
in a smoother, more accurate reconstruction.

3. Related Work

The use of the Finite-Time Lyapunov Exponents to char-
acterize Lagrangian Coherent Structures in transient flows
was first pioneered by Haller [Hal01a]. This work followed

previous papers by the same author, investigating the eigen-
vectors of the Jacobian of the flow velocity along pathlines
to determine the location of LCS in the two-dimensional
setting [Hal00, HY00]. Within his seminal paper [Hal01a],
Haller presented FTLE as a geometric approach while simul-
taneously contrasting it with an analytic criterion. Despite
the contrast, the notion of preservation of a certain stability
type of the velocity gradient along the path of a particle was
exhibited in both approaches. An increased level of interest
in the fluid dynamics community was sparked with this ini-
tial research, both from a theoretical and from a practical
viewpoint. Haller further proposed a study of the robustness
of the coherent structures characterized by FTLE under ap-
proximation errors in the velocity field [Hal02]. Within the
same paper, he suggests that LCS should show up as ridges
in the FTLE field. Shadden et al. [SLM05] provided a formal
discussion of the theory of FTLE and Lagrangian coherent
structure. One major contribution of their paper was to offer
an estimate of the flow across the ridge lines of FTLE and to
show that it is small and typically negligible. An extension
of FTLE to arbitrary dimensions is discussed in [LSM07].
These tools have been applied to the study of turbulent
flows [Hal01b, MHP∗07]. With respect to work done to ex-
tract height ridges in FTLE flow fields, a variety of methods
have been explored in literature. Sadlo et al. [SP09] extracted
LCS as height ridges and Peikert et al. [PS08] used raw fea-
ture detection, avoiding explicit eigenvalue calculation while
Schultz et al. [STS10] dealt directly with the degeneracies of
the Hessian. Building on FTLE and extracting LCS, analy-
sis has been done with flight data [TCH10] as well as the
splitting of the Antarctic polar vortex [LR10], exemplify-
ing the versatility of FTLE. Acceleration of FTLE computa-
tions for two-dimensional and three-dimensional flows was
previously achieved by Garth et al. [GLT∗07] by mapping
pathline integration to the GPU. Following this work, Garth
et al. [GGTH07] further accelerated FTLE computations by
reducing the number of particle paths using a refinement al-
gorithm limited to a regular grid. Sadlo et al. have also ac-
celerated the computation of FTLE by using adaptive mesh
refinement [SP07] during the extraction of LCS. LFTLE or
localized FTLE [KPH∗09] was introduced by Kasten et al.
and calculates FTLE by advecting particles which are in-
finitesimally close to the data point though may suffer from
aliasing issues and these particles have the tendency to move
around ridges instead of encompassing them.

Moving Least Squares was first introduced to the scien-
tific community by Shepard [She68] in 1968 and more re-
cently, applied in two dimensional contexts such as linear
elasticity [BMXK06]. Embraced by the visualization com-
munity, Moving Least Squares has been used as a means
of powerful graphic reconstruction as exemplified by Levin
[Lev98]. MLS has been used to calculate gradient val-
ues from unstructured meshes to support volume render-
ing [LGM∗08, CSO09]. Further gradient computation from
MLS has been used to assist in the extraction of sharp fea-
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Figure 1: A flowchart showing steps from initial sampling to full reconstruction, displaying the multi-step refinement procedure

tures during reconstruction [FCOS05] and the estimation of
curvature information of point-sampled surfaces [MFP05].
MLS has also been proven suitable for computing higher
order derivatives [CFCN∗07] and for the representation of
potential energy surfaces [TWMT07].

Aiming to reduce the number of particle paths as well, we
propose using MLS to also offer continuity within the FTLE
field reconstruction. In the context of works mentioned, par-
ticle placement using MLS is flexible, not being bound to
a grid, and the continuous property of MLS allows for a
smooth reconstruction regardless of sample size. In the pro-
cess of the reconstruction, we refine the sampling by advect-
ing points around LCS to obtain clearer LCS structures. In
short, we are able to perform LCS refinement without LCS
extraction while maintaining a low number of particle ad-
vections, the expensive portion of FTLE computation.

4. Approximation Algorithm

MLS will reconstruct the full data set from the sparse data
throughout the image. However, we are most interested in
accurately reconstructing Lagrangian Coherent Structures
within the flow field. These structures are defined by locally
maximal FTLE values. With the following refinement steps,
we aim to reconstruct these areas of interest with finer pre-
cision. These steps are shown in Figure 1 and detailed in the
following sections.

4.1. Initial Sampling

It is well known that the accuracy of a MLS reconstruc-
tion relies heavily on the neighborhood over which the fit is
made. A “good” neighborhood has sample points uniformly
distributed around x. If the neighborhood is skewed where
the majority of neighboring points lie on one side of x, the
approximation can be inaccurate. To try and eliminate the
possibility of a skewed neighborhood, we employ an ini-
tial staggered uniform sampling over the flow map, shown in
Figure 2. Sampling begins by taking a uniform distribution
of points along all coordinate axis, separated by the distance,
h. Alternate rows are then adjusted, shifting points by half
the distance of the uniform sampling, h

2 , creating a staggered
sampling. User-specified sampling is not a necessity for the
use of MLS and there are a variety of other samplings that
could be utilized, though we have found that the staggered

sampling maximizes the effectiveness of a single advected
particle on the points around it during the least squares fit.

4.2. Pre-MLS Refinement

Prior to the full MLS reconstruction, it would be useful to
know which regions of the data set would benefit most from
a finer sampling around the desired fit point x. The MLS al-
gorithm has a minimum restriction on the number of neigh-
bors needed for the fit; the number of neighbors must be
greater than the number of terms in the basis bT (x). There-
fore, a linear basis requires a minimum three neighbors, six
neighbors for a quadratic basis and ten neighbors for a cu-
bic basis. MLS then fits the desired function over the en-
tire neighborhood. If strong variations in values occur within
the neighborhood, the fit is then subject to over-smoothing,
where the function maintains continuity but loses accuracy.
The sections of the flow map that have a high tendency to
over-smooth are the sections where a more dense sampling
is desired. These are also the same sections that have high
fluctuations of FTLE values. Uniformly sampling the initial
FTLE field throughout the data set, we are able to determine
the desired locations in need of dense sampling.

The staggered uniform sampling from which the MLS re-
construction will be performed provides the uniform sam-
pling locations for the FTLE computation. In calculating the
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Figure 2: An illustration of the Pre-MLS refinement proce-
dure showing the addition of particles for each refinement
pass
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Figure 3: An illustration of the Pre-MLS refinement step of
the double gyre data set. The red dots show the points used
for MLS reconstruction, with areas of interest covered by
dense sampling

FTLE of a given point, we follow the same procedure as
the final MLS fit. The neighborhood size is equivalent, as is
the weight function. To achieve a speed-efficient refinement
step, the linear basis is used for the FTLE computation since
ideal continuity will be achieved during the full reconstruc-
tion.

When choosing the appropriate locations for finer sam-
pling, a quick second iteration is made through the original
scattered data points. Once more, a neighborhood sampling
is taken around each point, this time focusing on the FTLE
values of the neighbors. Again, n is kept constant to retain
the correspondence between the refinement and reconstruc-
tion stage. The locations requiring additional sample points
are those that exhibit the greatest change in FTLE. By se-
lecting neighborhoods based on the largest gradient of the
Finite-Time Lyapunov Exponent, we are able to determine
which neighborhoods would benefit most from a dense sam-
pling. Large changes in FTLE are exhibited near sharp ridges
and valleys of the reconstruction, i.e. close to salient LCS.
Because we are interested in exposing the latter, all sam-
pled points are first sorted according to FTLE value from
lowest to highest, isolating areas of the flow map with high
separation property. Looking at the top 50%, the number of
neighborhoods to be refined are quantified by our algorithm
which isolates the top quarter of the sorted fit points which
exhibit the largest changes in FTLE within their domain of
influence. Empirically, choosing 25% of the total fit points
subject to our refinement criteria has proven to locate the
main areas of interest in multiple data sets, as shown in Fig-
ure 3. Once regions of interest are located, additional sam-
ple points are added and advected through the flow field. To
assure that the added points will have the greatest chance
of increasing the accuracy of the MLS reconstruction, the
structure of the staggered sampling field is utilized. Points
are added around the center of the neighborhood, a distance
that is half the uniform sampling distance, h

2 , creating a finer
grid sampling. Four points are added in two dimensions, six
in three dimensions, allowing two points for refinement per
axis. If points selected for refinement are in close proximity
to one another, selection of new seed points may coincide

and a number of points may not need to be advected. Using
this allotted budget of extra seed points, a second refinement
pass is made on the top end of the sorted fit points, as ex-
emplified in Figure 2. This scheme forms a finer grid in the
domain of influence, optimally filling empty spaces closest
to the center. The algorithm supports any desired number of
refinement passes according to a user-defined threshold that
we set to 4

5 of the neighborhood size of the initial MLS pass.
We have also found that 3 passes are more than sufficient.

With the addition of points in the areas of interest, we
attempt to optimize the efficiency of scattered data recon-
struction. Following the guidelines of our work’s goal to pro-
duce an accurate FTLE field with a low number of particles,
our refinement steps allows a significant fraction of advected
points to reside in regions of importance. Thus, we are able
to achieve an accurate reconstruction with fewer particles.

5. Full Reconstruction and LCS

Post refinement, a full Moving Least Squares reconstruction
step is taken to complete the FTLE field. Out of the least
squares fit, flow map information can be recovered from
MLS basis coefficients. Recall that the first four terms of
any basis are b(xi) =[ 1, x, y, z, . . . ]. Because the calculation
of MLS was translated to the origin for local approximation,
the first term of the solution holds the flow field value, the
second coefficient holds the derivative with respect to x and
the third, the derivative with respect to y. After solving the
system of normal equations for both the x and y coordinate
of the flow field at the fit point, the Jacobian required for
FTLE computation simply drops out in the second and third
terms of the fit function, retaining the continuity provided by
MLS. Standard Finite-Time Lyapunov Exponent calculation
follows and an FTLE field is created.

By detecting local extrema within this field, Lagrangian
Coherent Structures may be obtained. LCS are extracted as
height ridges in the local sense, categorized as local max-
ima and more specifically, locations where the scalar field of
FTLE values has a local maximum in at least one direction.

The criteria for extracting local ridges are formed by us-
ing the gradient g and Hessian H of the FTLE values. Let
ei be the eigenvectors of the Hessian and λi be the eigen-
values. Height ridges are d-dimensional manifolds within n-
dimensional space where n > d ≥ 0. To be classified as a
height ridge, the derivatives in the orthogonal direction must
be zero and the associated eigenvalues must be negative.
This leads to the two conditions that ei · g = 0 and λi < 0
for i = d + 1, . . . ,n to constrain height ridge extraction over
orthogonal eigenvectors.

5.1. Height Ridge Filtering

While the two ridge criteria are guaranteed to extract height
ridges, because eigenvalues and eigenvectors are taken from

c© The Eurographics Association 2011.

157



Alexy Agranovsky, Christoph Garth, and Kenneth I. Joy / Extracting Flow Structures Using Sparse Particles

(a) Double Gyre (b) Seven Squares (c) Plume

Figure 4: Average relative error plots with FD1 and FD2 representing low-order and high-order finite-difference approximation
respectively

the Hessian, noise may appear while calculating the sec-
ond derivative. To attempt to reduce this noise, the very
same Moving Least Squares mechanism can be used to cre-
ate a least squares fit, taking advantage of the continuous
nature of MLS, producing both the Hessian and gradient
from the FTLE field. As previously discussed, the second
and third coefficients of the solution hold the gradient in-
formation. To extract Hessian information, MLS must use at
least a quadratic basis, b(xi) =[ 1, x, y, x2, xy, y2 ]. With the
quadratic basis, terms four through six of the solution hold
Hessian information. This is also true for higher order solu-
tions. False positives, or weak ridges, are filtered out by set-
ting a minimum cap on the FTLE field. A second technique
is to filter out flat ridges, or ridges that do not have sharp cur-
vature. This criterion is established upon the negative eigen-
value and states that λi ≤ λbound where λbound is chosen to
be a cut-off point for curvature via the second derivative.

6. Results

Within this section, we describe our findings using MLS to
reconstruct the divergence rates of particles seeded within
a transient flow. To demonstrate the effectiveness of our
method, we exemplify three time-dependent data sets of in-
creasing complexity. The first data set, named the double
gyre, is an analytic function representing two counter rotat-
ing gyres. Second, we use the seven square dataset, which
reveals a flow through seven square-shaped, immovable ob-
jects. The final test data set is a three-dimensional plume
with fairly complex behavior.

• Double Gyre: grid size of 800×600 with 150 advection
steps per particle with a stepsize of .1

• Seven Square: grid size of 1024×512 with 100 advection
steps per particle with a stepsize of .0001

• Plume: grid size of 128×256×128 with 100 advection
steps per particle with a stepsize of .001

Numerical Error Analysis To compare against our MLS
scheme, error analysis is performed against a ground truth
obtained by using finite differences for the Jacobian calcu-
lation needed for FTLE. The graphs in Figure 4 show the

relative error between our method and the finite-difference
approach, based on FTLE values. For the calculation of the
ground truth, each data set is sampled on a regular grid with a
user defined minimum allotted spacing between data points,
thereby setting a maximum number of advected particles.
The same user-defined resolution is kept when inserting new
particles during the adaptive stage of our method. By lim-
iting the spacing of the two methods to the same distance
between data points, we are able to use one as ground truth.

At first, we used a low-order finite-difference approxima-
tion to obtain the Jacobian required for FTLE.

f ′(x) =
f (x+h)− f (x−h)

2h
(9)

When calculating FTLE using (9), there is a horizontal
asymptote that begins at slightly over 50% of full particle ad-
vection and prevents the error from reaching zero, as seen by
the blue line in Figure 4. Our interpretation was that the low-
order FD approach was not accurate enough and we opted
for a higher order finite-difference approximation

f ′(x) =
− f (x+2h)+8 f (x+h)−8 f (x−h)+ f (x−2h)

12h
(10)

Where (10) provides a more precise approximation to the
derivative with the use of a 5-point stencil. The green line
in Figure 4 shows the average relative error of our method
compared against the ground truth using the higher order
finite-difference equation. Examining the use of (10), the
error begins to zero out as the number of particle advec-
tions reaches the fully sampled amount. Acknowledging
both runs, we show that obtaining the Jacobian matrix from
the least squares fit provides more accurate values than us-
ing (9) and values comparable to the use of (10). But higher-
order finite-difference approximation requires more particles
at specific locations while MLS can achieve comparable ap-
proximation accuracy from arbitrarily placed particles.

Visualization Results The error analysis graphs in figure
4 are able to give us a measure of the number of advec-
tions needed to produce a substantial image. In Figure 5,
we have a feature level comparison of LCS extracted from
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a fully sampled regular grid using finite differences, to our
method which uses 50% and 25% of the particles advected
for the FD approach. We conclude that slightly over half the
particles are needed, when using our method, to produce an
image comparable to a fully sampled image produced using
(9) with a finite differences calculation.

With no restriction on particle placement when using
MLS to find the FTLE, our seeding scheme is intended to
maximize the influence of every advected particle. There-
fore, MLS is able to give the intrinsic form of the FTLE
field with only a small fraction of particles. Figure 6 con-
tains MLS reconstructions at 1.5% and .2% of the particles
required for a full sampling using finite differences. Though
missing the finer details, these figures convey the rise of the
plume, covering the major areas of flow divergence and con-
vergence. Comparing the 1.5% resolution of MLS to FD,
MLS forms a smooth image while FD is subject to dis-
cretization artifacts. By lowering the number of initial sam-

(a) Low-Order Finite Differences

(b) High-Order Finite Differences

(c) MLS with 50% of particles needed for full FD sampling

(d) MLS with 25% of particles needed for full FD sampling

Figure 5: Ridge extraction and comparison of LCS in the
Seven Square data set extracted using finite differences and
MLS.

ple points, our method provides an overview of the FTLE
field while still using the refinement scheme to better con-
vey areas of interest.

7. Conclusion & Future Work

We have shown that the use of the Moving Least Squares
framework allowed us to extract FTLE ridges and visualize
Lagrangian Coherent Structures with less computational ef-
fort. The continuous properties of the framework provided
numerical advantages during LCS extraction and the flexi-
bility alloted by MLS enabled local refinement without mesh
restrictions. Moreover, MLS offers competitive results to
the standard FTLE calculation by finite difference, while
strongly reducing the number of particles required to effi-
ciently evaluate Finite-Time Lyapunov Exponents. In clos-
ing, we have shown how multiple areas of LCS-based flow
computation and visualization has benefited from the MLS
framework.

We conclude with a look at future extensions of our work.
There are many avenues for consideration,

• While we did not perform ridge extraction in 3d for this
paper, the corresponding technique appears straightfor-
ward and will be realized in future work.

• To achieve faster reconstruction, the refinement and fit of
the data can be implemented on the GPU.
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