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Abstract
We present a particle-based approach to generate unstructured distributions of elliptical samples. Size and shape
of the samples are determined by a local metric that is derived from a two-dimensional tensor field. In contrast to
previous methods, we propose the use of an anisotropic Delaunay triangulation of particle positions. It guarantees
exact neighbor computations and provides a good means for an explicit and automatic control of prominent holes
and overlaps, which otherwise would result in unpleasant visualizations. We use the final distribution to compute
a generalized Voronoi diagram, which represents a novel and flexible visualization technique for two-dimensional
tensor fields. Via texturing of Voronoi regions, many possibilities arise to design the final image.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

Since the 1980s, aperiodic point distributions with varying
density and blue-noise properties are a central research topic
in computer graphics [LKF∗08]. Methods range from sim-
ple dart throwing techniques [Coo86] to real-time tile-based
methods [KCODL06, LD08]; applications range from sam-
pling theory to mesh generation and illustrative rendering.
In general, these methods focus on isotropic samples and are
hard to extend to work with anisotropic samples. The latter is
particularly true for the very efficient tile-based approaches.

In this work, we present a particle-based approach to gen-
erate an unstructured distribution of elliptical samples whose
size and shape is determined by a local metric derived from
a given tensor field. A force function exerts attractive and re-
pelling forces depending on the particle distances. The sys-
tem has converged when all elliptical samples centered at
the particle positions are closely packed without intersect-
ing each other. We use an anisotropic Delaunay triangula-
tion of particle positions to guarantee meaningful and effec-
tive neighbor detections and to avoid long-distance particle
interactions. It further serves as basis for an explicit control
of holes and overlaps in the distribution.

On the basis of previous work in the context of mesh-
ing [SYI00], anisotropic sampling [FHHJ08] and glyph
placement [KW06, HSH07], we have developed a stable

and efficient method especially designed to handle ellipses
that exhibit varying size. We show that two-dimensional
tensor field visualization can profit in multiple ways from
anisotropic sample distributions. The most obvious example
is the placement of tensor glyphs. Previous work [KW06,
HSH07, FHHJ08] has impressively demonstrated that glyph
depictions become more informative and visually more
pleasing if they are not just placed at the underlying grid
positions. We further show that anisotropic sample distribu-
tions can be used as input for visualization techniques that
are similar to line integral convolution (LIC). Finally, we
present a novel tensor visualization method that is based on
generalized Voronoi diagrams. Being computed on the sta-
ble particle configuration, the diagram mimics a continuous
view of the tensor field having a painterly character. Further-
more, Voronoi regions can be texturized and, thus, provide a
variety of possibilities to design the final visualization.

2. Related Work

We focus on relevant previous work that is related to the cre-
ation of anisotropic samplings. In general, these approaches
start with an initial sampling distribution that is iteratively
refined. We distinguish geometry- and particle-based ap-
proaches. For more information about the generation of
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isotropic point distributions, we refer the reader to existing
reviews [LKF∗08, LD08, LLC∗10].

Geometry-based approaches oftentimes rely on Lloyd re-
laxation [Llo82, DFG99]. In the context of tensor field vi-
sualization, [FHHJ08] presented an approach that combines
ideas from sampling theory [DFG99] and mesh genera-
tion [LS03] for the creation of anisotropic Voronoi cells. As
this approach only depends on attractive forces, it provides
a stable solution. A limitation is the lack of an explicit con-
trol of overlaps and a low convergence behavior for bad ini-
tial sample distributions. A strength of geometry-based ap-
proaches, in general, is that they are mostly parameter-free.

Particle-based approaches rely on the definition of a force
function that controls the movement of particles: Repelling
forces avoid overlaps and attracting forces close holes be-
tween the samples. Closely related to our work are methods
from geometry processing for the generation of anisotropic
triangulations [BH96, SYI00]. In contrast to our approach,
which has the goal to visualize a given tensor field, these
methods explicitly define a tensor field that specifies an
anisotropic spacing between mesh vertices. The goal is to
create an efficient, adaptive mesh. In the work of [SYI00],
such a mesh is represented by an anisotropic Delaunay tri-
angulation. Therefore, the authors generalized the Delaunay
criterion by incorporating anisotropy in the circumcircle test.
For diffusion tensors, [KW06] adapted ideas from [SYI00].
In their work, the positive-definite tensor field is mapped
to a potential energy field that determines inter-particle
forces. Hlawitschka et al. [HSH07] extended the approach
of [KW06] focusing on improved initial sampling and inter-
activity through the use of an isotropic Delaunay triangula-
tion for fast neighbor-queries. A strength of particle-based
approaches is that they are easier to extend to work on im-
plicit surfaces. A limitation is that they are sensitive to pa-
rameter choices so that these need to be handled carefully.

3. Assumptions and Requirements

Input of our algorithm is a two-dimensional tensorfield
comprised of second-order symmetric tensors. To recon-
struct tensors at arbitrary particle positions p = (x,y) ∈ R2

over a domain D ⊂ R2 with boundary ∂D, we use bilinear
component-wise interpolation. The basis of the computation
of unstructured sampling positions is the definition of a met-
ric that reflects the tensor field [HFH∗04]. The local met-
ric m(x,y) defines the size and shape of an elliptical sample
centered at the particle position p = (x,y). It is given by a
two-by-two symmetric positive-definite matrix

m(x,y) =
(

m11(x,y) m12(x,y)
m12(x,y) m22(x,y)

)
. (1)

In the following, we will simply use the term sample instead
of elliptical sample.

We have designed our particle system such that it can

handle samples of varying size across D. However, to ob-
tain a reasonable visualization of the tensor field it is impor-
tant that the samples can be considered as representatives of
the area they cover. This is only the case if the variation of
the tensor field, compared to the size of the sample, is rela-
tively low. For previous work in the context of diffusion ten-
sors [KW06, HSH07], this requirement was less important
as the focus was on normalized glyphs of relatively uniform
size that mainly differ in anisotropy.

4. Isotropic vs. Anisotropic Space

In this paper, we map an arbitrary type of tensor to a metric
tensor (Equation (1)) that describes distances between par-
ticle positions p ∈ D. It can be considered as distortion of
a circle into an ellipse. Hence, we distinguish between the
undistorted Euclidean space and the distorted metric space.

A special case arises when the metric tensor field does
not vary across D, i.e., m = m(x,y) = const. For this case,
we can transform the distorted space into the undistorted
Euclidean space via linear transformation using the inverse
metric m−1. Common methods for isotropic point distribu-
tions could be used in this space.

In this work, we require our technique to handle spa-
tially varying anisotropies (Section 3). Therefore, a global
transformation of the complete space is not possible. For
some computations, however, it is advantageous to apply
a local transform (assuming that the field is locally con-
stant) into the undistorted Euclidean space via multiplica-
tion with m(q)−1. To approximate m, we use the metric at
the barycenter q of particles pi in a neighborhood n

m(q) = m(
1
n

n

∑
i=1

pi). (2)

To determine, e.g., the metric m at the barycenter q ∈ D of a
triangle, we use its n= 3 corners p1, p2, p3 (Figures 3 and 4).

5. Particle-Based Anisotropic Sampling

Starting point of our algorithm is an initial sample distri-
bution (Section 5.1) that is iteratively refined (Section 5.3)
until all forces are balanced or a maximum number of it-
erations is reached. An anisotropic Delaunay triangulation
(Section 5.4) enables fast and correct neighbor-queries and
serves as a basis for an automatic population control (Sec-
tion 5.5).

5.1. Initial Sample Distribution

We use generalized relaxation dart throwing to create an ini-
tial sample distribution that has the following properties: (1)
The distances between particles are well-balanced so that
significant holes and overlaps are minimized. (2) The sam-
ples cover the domain densely. (3) It is unstructured so that
periodic arrangements are reduced.
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pa pb

ra rb
yab

Figure 1: Approximated distance computation between the
neighboring samples pa and pb.

According to [SYI00], we sample the given domain D in
order of dimension: First, samples are placed at the corners
of D, which are kept fixed throughout the whole simula-
tion. Second, samples on the edges of D are distributed via
subdivision. To avoid a structured placement of edge sam-
ples, they are repositioned using a one-dimensional parti-
cle movement (Section 5.3). Now, these positions are kept
fixed throughout the whole simulation, which leads to a
closed boundary treatment that avoids particles leaving the
domain. Furthermore, we do not need to define an external
force [KW06, HSH07]. To distribute samples inside the do-
main, we use dart throwing [Coo86], i.e., samples are suc-
cessively thrown into D. They are rejected if they would
intersect with any previously accepted ellipse. To general-
ize this algorithm to work with anisotropic samples, we use
the same distance measure (Equation (4)) as for the force
function. The original dart throwing algorithm terminates if
the rejection-rate exceeds some threshold. In this work, we
apply relaxation dart throwing [ME92]. Starting with larger
samples, their size is successively reduced if the rejection-
rate becomes too large, i.e., if the ratio of the number of
accepted against the number of rejected samples falls be-
low a user-specified threshold value ε (to create the images
depicted in this paper, we used ε = 0.01). To determine el-
lipse sizes, we use the relative Poisson disk radius r given
as r = ρrmax, with ρ ∈ [0,1] [LD05]. In our case rmax is im-
plicitly given by the ellipses. For relaxation dart throwing
we start with a value of ρ = 0.9 which is reduced by 0.05
whenever the rejection rate becomes too large. We stop re-
ducing sample sizes when ρ = 0.75. As said in [LKF∗08],
ρ needs to be large but not too large to avoid regular con-
figurations (ρ = 1 corresponds to a hexagonal arrangement).
An advantage of this algorithm is that it terminates when
a desired number of samples has been accepted, which is
one of our requirements. In order to estimate this number
N, we compute an average value of the determinant detavg
of m, which gives us a hint of the average size of elliptical
samples. Given the area A of the domain D, an appropriate
number N of samples then is N = A/detavg.

5.2. Distance Measure

The force function is a function of particle distances exerting
attracting and repelling forces. Previous work approximate
geodesic distances [FHHJ08, LWSF10] via distance compu-
tation in the distorted space. These measures, however, are

not symmetric, which would require an additional conflict
check [LWSF10]. According to [SYI00], we define the opti-
mal distance dopt between sample positions pa and pb to be
the sum of the two lengths ra and rb to the ellipses’ surface in
the direction of the connecting line yab = pa− pb (Figure 1)

dopt =
‖m(pa) · yab‖
‖yab‖︸ ︷︷ ︸

ra

+
‖m(pb) · yab‖
‖yab‖︸ ︷︷ ︸

rb

. (3)

The force function (Section 5.3) then is defined over the re-
lation d of the inter-particle distance yab and dopt

d =
‖yab‖
dopt

. (4)

Thus, the optimal distance with respect to the force func-
tion is always 1 independent from the local metric. Figure 1
shows that this approximation does not avoid all kinds of
intersections. However, we find that this measure is a good
compromise with respect to the generation of holes and over-
laps. Preventing, e.g., the two samples shown in Figure 1
from intersection would result in a bigger hole at the top.

5.3. Force Function

The force function f , being defined over the distance d
(Equation (4)), controls the particle movement. The goal
is to compute stable particle distances that are character-
ized by elliptical samples that are closely packed and non-
intersecting. Therefore, we define a piecewise cubic spline
f (d) with the following properties: (1) It has a zero crossing
at d = 1 so that particles with optimal distance do not move.
(2) If ]0 < d < 1[, repelling forces are exerted pushing par-
ticles apart. (3) If ]1 < d < (1+ γ)[, attracting forces are ex-
erted pulling particles together. The parameter γ controls the
range of attracting forces. As we only consider particle in-
teractions of neighboring samples, excluding long-distance
interactions, our method is not very sensitive with respect to
γ. It can be set on a fixed value of γ = 0.5. The force Fa,
which acts on particle a, is determined from the sum of the
forces from the neighboring particles Fa = ∑b,b6=a fab. The
equations of motion [KW06, HSH07]

d2 p
dt2 = Fa +Cdrag

dp

dt
(5)

are solved numerically via Euler integration using a stepsize
of ∆t = 0.2. Since the force scales with sample size this leads
to small steps for small particles and larger steps for large
samples. The drag parameter Cdrag counteracts the particle
motion to avoid oscillations and to guarantee numerical sta-
bility [KW06].

5.4. Anisotropic Delaunay Triangulation

To guarantee a stable solution for samples of varying size,
interactions between particles that are no immediate neigh-
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bors have to be avoided. Space-subdivision into bins of con-
stant size [KW06], for example, does not fit this requirement.
Mainly for optimization purposes, [HSH07] use an isotropic
Delaunay triangulation of particle positions to overcome the
problem of choosing good bin sizes. Thus, fast neighbor-
searches are guaranteed by traversing the outgoing edges
of a particle. However, simple isotropic Delaunay triangu-
lations do not guarantee correct neighbor detections (Fig-
ure 2). Using the two-edge distance as proposed in [HSH07]
further would result in clutter for elliptical samples that
strongly vary in size.

For this reason, we compute an anisotropic Delaunay tri-
angulation of particle positions during simulation. For a con-
stant field, it would be possible to apply a global transform
into the isotropic space (Section 4) and use the common cir-
cumcircle test, which says that a triangle is valid if no points
lie in the circle that encloses the triangle. The generalized
Delaunay criterion, which we use in this work, applies a lo-
cal transform before the test is performed (Figure 3). For the
transformation of the tensors at the n = 4 particle positions,
we use the metric tensor at the barycenter of these four points
(Equation (2)).

5.5. Automatic Insert/Delete Operations

The estimation of the number of particles for the initial
placement (Section 5.1) can be challenging. Especially con-
sidering our requirement of a stable particle system that can
handle samples of varying size, N is only a rough estimate.
Therefore, we include automatic delete and insert opera-
tions that adjust the number of samples during simulation.
This further enables an explicit control of holes and over-
laps. According to [SG95], we identify over- and underpop-
ulated regions via analyzing inter-particle forces. As soon as
F (Section 5.3) exceeds (falls below) a given threshold, par-
ticles are removed (inserted). Contrary to geometry-based
approaches, which only depend on attractive forces, particle-
based methods are more sensitive to holes. Thus, overpopu-
lated regions appear only rarely.

To automatically insert samples in underpopulated re-
gions, we exploit the generalized Delaunay triangulation
(Section 5.4). Therefore, for each triangle, the fill-rate, being
the ratio of the covered area and the triangle’s area, is com-
puted. Assuming a hexagonal packing as gold standard, the
optimal fill-rate is given as δ f ill =

π

2
√

3
≈ 90.7% ≈ 0.9. To

compute the fill-rate δ f ill4 of a triangle covered by elliptical
samples, we need to determine the sum of all three triangle-
sample intersections and compare it to the triangular area
(Figure 4). For anisotropic samples, the intersection would
be hard to compute. Therefore, we transform the samples
at the triangle’s corners into the isotropic space using the
inverse tensor at the triangle’s barycenter q (Equation (2)).
If δ f ill4 is significantly below δ f ill , a new sample is in-
serted at q. In this work, we inserted a new sample whenever
δ f ill4 ≤ 0.6.

(a) Isotropic Neighbors (b) Anisotropic Neighbors

(c) Isotropic Delaunay Mesh (d) Anisotropic Delaunay Mesh

Figure 2: Top row: Neighbor-computation of the current
sample (green) for isotropic (a) and anisotropic (b) Delau-
nay triangulations of a constant field. In this example, the
isotropic Delaunay triangulation and the usage of a one-
edge distance (blue samples) can lead to wrong neighbor
detections and undesired particle interactions (a). Using a
two-edge distance (yellow samples) does not provide a valid
solution, either, and can lead to cluttering if the samples
vary in size (a). For anisotropic Delaunay triangulations,
a one-edge distance is sufficient (b). Bottom row. Figures
(c,d) demonstrate the superior quality of the anisotropic De-
launay triangulation, which aligns naturally with the ma-
jor eigenvector field. The differences are particularly pro-
nounced in the highlighted areas (c,d).

m(q)−1

−→
qp4

p1

p2
p3

p4

p1

p2

p3

Figure 3: The generalized Delaunay criterion applies a cir-
cumcircle test after transformation of the triangle corners
into the undistorted Euclidean space. The shown triangles
do not fulfill this criterion. Valid combinations are p2, p3, p4
and p1, p2, p4.
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6. Generalized Voronoi Textures

Based on the stable particle positions, we compute a gen-
eralized Voronoi diagram. Let {pi ∈ D, i ∈ I} be the set of
stable particle positions, the Voronoi sites, where I is the cor-
responding index set. A Voronoi region Vor(pi) of a point pi
then is defined as the set of all points P⊂ D that are at least
as close to pi than to any other point p j ∈ D with j ∈ I

Vor(pi) = {P ∈ D|d(pi,P)≤ d(p j,P), with i 6= j}. (6)

For the isotropic case, a Voronoi diagram can be simply
computed as dual graph of the Delaunay triangulation. For
the anisotropic case, this property is not trivially generaliz-
able. As mentioned in [FHHJ08], the most obvious way is to
use a geodesic distance measure, which, however, is com-
putationally expensive. Anisotropic Voronoi diagrams can
further require the handling of orphans [LS03, FHHJ08],
i.e., the part of a Voronoi region that does not contain its
barycenter. This can happen for anisotropic Voronoi dia-
grams which might consist of not connected components.
In our case, such orphans appear if the size of neighboring
samples vary significantly, which happens only rarely. As we
use the Voronoi diagram for visualization purposes only, an
approximation of Voronoi regions is sufficient and the rare
appearance of orphans is acceptable.

We perform the computation of the Voronoi regions in
a fragment shader to enable interactive rendering updates
and flexible texture mapping. The computation is initiated
by rasterizing the anisotropic Delaunay triangulation. Shader
input are the six vertex coordinates pi and indices of the cur-
rent triangle and its three adjacent ones. For each rasterized
fragment p f , we now determine its Voronoi cell by comput-

p1

p2

p3

q
m(q)−1

−→

p1

p2p3

p1

p2

p3

q
m(q)−1

−→

p1

p2p3

Figure 4: The fill-rate of a triangle, computed as ratio of the
covered area (green) and the triangle area in isotropic space
(right), determines if a new sample needs to be inserted. Top
row: Triangle that exhibits an optimal fill-rate. Bottom row:
A new sample (blue) is inserted due to the triangle’s poor
fill-rate.

N Initial Seeding 100 Iterations 1000 Iterations
1000 7s 0.3s 3s

10000 90s 4s 40s

Table 1: Timing statistics in seconds measured on an 2.6
GHz Intel Xeon Quad Core. The performance of our tech-
nique mainly depends on the desired sampling resolution N
and the initial seeding. Particle movement is very fast.

ing the minimum distance to its neighboring vertices using
the following distance measure [FHHJ08, BWY08]

d(pi, p f ) =
√
(p f − pi)>m(pi) · (p f − pi). (7)

Finally, the fragment is colored according to the cell index of
its nearest Voronoi site. Furthermore, Voronoi regions can be
texturized (Figure 5(f), (g)) which enables a high flexibility
to design the visualization. To determine the texture coordi-
nates (s, t) ∈ [0,1] for the current region, we transform the
fragment coordinates p f ∈ D into the local coordinate sys-
tem of the current Voronoi region and rotate the local coordi-
nates via linear transformation with the inverse eigenvector
matrix E of the tensor at the region’s Voronoi site.

7. Results and Applications

We have presented a particle-based approach to generate un-
structured distributions of non-intersecting elliptical sam-
ples. The time needed for generation mainly depends on
the desired sampling resolution and the number of itera-
tions needed until a stable placement has been reached (Ta-
ble 1). For our datasets an update of the Delaunay triangu-
lation every eighth iteration is sufficient to guarantee precise
neighbor detections and high-quality results. The frequency
of updates is independent from the number of samples. In-
stead it depends on the variation of sample size, i.e., more
frequent updates are required if the sample size across D
varies strongly. The most time-consuming process it the ini-
tial sampling. In our examples, we found a stable configu-
ration after 100 iterations. For comparison, Kindlmann and
Westin [KW06] computed 2000 iterations to create the 2D
results in their work, which took about 8 minutes. Usable
results appeared after 400 iterations. Unfortunately, they do
not say anything about the number of glyphs. Hlawitschka
et al. [HSH07] mention that their packing becomes stable
after several hundred steps. For N = 1000(10000) glyphs
and 100 iterations they need 2s(55s). As all of these mea-
sures were carried out on different PCs and in different years,
the times should be considered only as a rough comparison
value. In fact, more interesting are the number of iterations.
In the following, we show that the distribution is well suited
for several applications in two-dimensional tensor field visu-
alization: It can be used directly for the placement of tensor
glyphs (Section 7.1), as input noise texture for the creation of
fabric textures (Section 7.3), and to create Voronoi textures -
a novel tensor visualization technique (Section 7.2). To cre-
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(a) (b) Uniform Sampling (c) Initial Sampling (d) Anisotropic Sampling

(e) Voronoi Regions (f) Texturized Voronoi Regions (g) Texturized Voronoi Regions

Figure 5: In these images, size and shape of elliptical samples are determined from a metric based on the image gradient and
its orthogonal vector field. To compute the sampling distribution for these images, 1000 iterations were needed. Top row: The
images show the samples placed at the grid positions (b), before particle movement (c) and the result of our technique (d).
Bottom row: The images show visualizations that have been created on the basis of the Voronoi diagram. Drawing the borders
of the Voronoi regions results in mosaic-like images (e). For the texturized images (f,g), we have used two different textures as
input (depicted in the right-hand corner).

ate the images in this paper, we have used an anti-symmetric
mapping to create the metric tensor field [HFH∗04].

7.1. Glyph Positioning

For the placement of tensor glyphs a good distribution
should have the following properties: (1) Dense, to provide
all relevant details and the evolution of tensors across the
field. (2) Unstructured, as the human visual system is very
sensitive to the recognition of patterns. (3) Evenly, minimiz-
ing prominent holes and overlaps. Figures 5 (d) and 6 (b)
demonstrate the superior quality of glyph-based depictions
when the glyphs are centered at the particle positions of the
stable configuration. The images become more informative
and visually pleasant. Figure 5(c) further shows the good
quality of our initial sample distribution.

7.2. Voronoi Textures

Tensor glyphs can encode the full tensor information at dis-
crete positions. We have shown that glyph depictions pro-

vide a more continuous view when the glyphs are posi-
tioned w.r.t. an anisotropic sample distribution (Section 7.1).
However, still only local information is provided. We, there-
fore, present a novel tensor visualization technique that is
based on generalized Voronoi diagrams. Voronoi regions
are distorted with respect to the local metric encoding its
full information. Thus, a more continuous visualization of
the tensor field is achieved, which has a painterly charac-
ter (Figure 5(e)). The distribution that is used to compute
the Voronoi diagram should have the same properties as
for glyph positioning. Holes and overlaps, however, have
a lower impact on the final visualization. Main design pa-
rameters are the metric and textures that are mapped into
Voronoi regions. Through the use of textures, we have a vari-
ety of possibilities to design the final image. A hatch pattern,
for example, creates images that have a painterly character
(Figures 5(f), (g)). Using a single line as input texture (Fig-
ures 6(e), (f)) produces images that are similar to tensor LIC
(Figure 6(c)).
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(a) Uniform Sampling (b) Anisotropic Sampling (c) Tensor LIC

(d) Texturized Voronoi Regions (e) Texturized Voronoi Regions (f) Texturized Voronoi Regions

Figure 6: The images show various depictions of an analytic tensor field that has one degenerate point in the center. To compute
the sampling distribution for these images, 100 iterations were needed. Top row: If samples are placed at grid positions,
the grid’s pattern becomes visible (a) which disturbs the perception of the field’s continuous behavior (c). Being placed at
the particle positions computed with our technique, the glyph depiction becomes more informative and visually pleasing (b).
Bottom row: The images show texturized Voronoi regions using three different line textures (d,e,f). The color is more transparent
in isotropic regions where directions are not defined.

7.3. Fabric Textures

We have shown that the use of line textures in combina-
tion with Voronoi diagrams enables, for example, the de-
piction of a distinguished direction. A two-dimensional ten-
sor field, however, has two directions. Hotz et al. [HFH∗04]
have presented a global texture-based method that is espe-
cially designed to represent the central features of stress ten-
sors, namely compression and expansion. Therefore, a LIC-
like texture for every eigenvector field is created and then
both resulting textures are blended, which results in images
that resemble a fabric: thinner fibers indicate compression
and thicker fibers indicate expansion. For this method, sparse
noise textures are preferred (Figures 7(b), (d)). However, es-
pecially sparse noise textures can suffer from holes which
are visible in the final image (Figures 7(a), (b)). A good dis-
tribution that is used as input noise texture should have the
following properties: (1) Even, to ensure a uniform bright-
ness across the field. Otherwise, brighter regions would be
emphasized and, thus, might be perceived as more impor-
tant. (2) Unstructured, to avoid patterns to become visible
in the final visualization. Figures 7 (a-d) compare the re-

sults using a random noise texture as input (Figures 7(a,b))
and one computed with our technique (Figures 7(c,d)). It is
hard to say, which image is visually more pleasing. How-
ever, using a noise distribution computed with our technique
results in a cleaner visualization where contrasts are more
balanced. Furthermore, it has less the appearance of being
three-dimensional, which can lead to misinterpretations.

8. Discussion and Conclusion

Our main design goal was the handling of elliptical samples
of varying size, which are more sensitive to clutter due to
wrong neighbor detections. Therefore, we propose the use
of an anisotropic Delaunay triangulation, which guarantees
correct neighbors. We have presented an automatic insert op-
eration that detects over- and underpopulated regions during
simulation. Due to this automatic control, holes in the ini-
tial distribution can be filled during simulation. However, the
quality of the initial distribution influences the algorithm’s
convergence time. In general, 100 iterations are sufficient to
create a stable particle configuration. We never needed more
than 1000 iterations.
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(a) Input (random noise) (b) LIC texture (random noise) (c) Input (our method) (d) LIC texture (our method)

Figure 7: These images show a slice from a stress tensor dataset from a finite-element simulation that describes the elastic
behavior of a block on which a pushing and a pulling force have been applied. To compute the sampling distribution (c)
used as input to create a fabric texture (d), 100 iterations were needed. Holes/clutter in the random noise input (a) result in
darker/brighter regions in the final image (b), which gives the impression of a three-dimensional field. In (d) thinner fibers in
compressive regions can be distinguished clearly from thicker fibers in tensile regions.

We have shown three tensor visualization techniques that
can benefit from such a distribution. The most common ap-
plication is the placement of tensor glyphs. Moreover, it
can be used as input texture for the creation of fabric tex-
tures. Finally, we have presented a novel tensor visualization
technique that is based on an approximation of generalized
Voronoi diagrams. Combined with texture mapping it can
offer many possibilities to design the visualization.

A generalization of the approach to work with three-
dimensional tensor fields might be possible but we think that
this would not be very useful to create meaningful visual-
izations. Instead, we plan an extension of the particle-based
sampling to work on implicit surfaces extracted from three-
dimensional fields. Furthermore, as the creation of the initial
sample distribution is the most time-consuming process, we
will optimize it by using the Delaunay triangulation already
during relaxation dart throwing.
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