
Vision, Modeling, and Visualization (2011)
Peter Eisert, Konrad Polthier, and Joachim Hornegger (Eds.)

A Cluster Hierarchy-based Volume Rendering Approach for
Interactive Visual Exploration of Multi-variate Volume Data

Petar Dobrev1, Tran Van Long2, and Lars Linsen1

1 Jacobs University, Bremen, Germany
2 University of Transport and Communication, Hanoi, Vietnam

Abstract
Interactive visual analysis of volumetric data relies on intuitive, yet powerful mechanisms to generate transfer
functions. For multi-variate data, traditional methods for interactive transfer functions generation are of limited
use. We propose a novel approach, where the user operates in a cluster space. It relies on hierarchical density-
based clustering of the high-dimensional feature space. The cluster tree visualization in form of a 2D radial layout
serves as an interaction widget for selecting clusters, assigning material properties, changing sizes, merging,
and splitting. This widget is complemented by a linked parallel coordinates widget. The interactive selections
are automatically mapped to a transfer function for a linked 3D texture-based direct volume rendering, where
brushing in parallel coordinates leads to the generation of a 3D binary opacity mask that is overlaid with the
opacity values obtained from cluster tree selections. In GPU memory, we only hold the density values from the
clustering approach and the cluster IDs. The derived density field allows us to interactively change the size of
clusters and to compute normals for lighting. We applied our methods to the visualization of multi-variate data
consisting of multiple scalar fields as well as derived scalar property fields from single scalar and vector fields.
Our approach scales well to arbitrarily high dimensionality as the complexity of the main user interactions do not
increase with the number of dimensions.

1. Introduction

When visualizing spatial data using volume rendering a
transfer function is employed to map the underlying data
properties to material properties such as color and opac-
ity. The quality of the visualization directly depends on the
choice of the transfer function. Hence, it is important that the
applied transfer function is able to extract salient features of
the dataset that provide the viewer with a good understand-
ing of the visualized data. Typically, in direct volume ren-
dering applications the user is provided with either a set of
pre-defined transfer functions with several controllable ar-
guments or a tool to generate transfer functions. Such tools
operate in the space of the properties of the visualized data
and allow the user to assign different colors and opacities to
regions in the space. This makes it very difficult to select re-
gions of interest in a multi-variate dataset, where the space
of properties is multi-dimensional.

In this paper, we propose a novel, intuitive, yet powerful
volume rendering approach for interactive visual exploration

of multi-variate volume data. Instead of interacting in the
multi-dimensional feature space (e.g., with histograms), our
approach builds on the idea of operating in cluster space. It
relies on a hierarchical density-based clustering of the un-
derlying data, see Section 3. The hierarchical cluster tree is
presented in a 2D radial layout, which serves as the main
widget of our interface to interact with the clusters, see Sec-
tion 4. Assigned material properties for clusters are directly
mapped to a transfer function, which is applied to render the
multi-variate volume data in a linked 3D texture-based vol-
ume rendering view. Moreover, since the clustering is den-
sity based, the size of the clusters can be regulated. As a
result, we obtain a smooth transition between clusters along
the paths of the hierarchical cluster tree. Furthermore, the
user can also split and merge clusters. The splitting of clus-
ters is facilitated by a linked parallel coordinates widget, see
Section 5. This widget shows a parallel coordinates repre-
sentation of the selected clusters in the tree. It also allows
for selection of data ranges in feature space. Selections in
the parallel coordinates widget also lead to an instantaneous

c⃝ The Eurographics Association 2011.

DOI: 10.2312/PE/VMV/VMV11/137-144

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/PE/VMV/VMV11/137-144


Dobrev et al. / Interactive Visual Exploration of Multi-variate Volume Data

update of the volume rendering. This is facilitated by a bin-
ning and indexing strategy of the parallel coordinates plot.

For the volume rendering part, we apply a 3D texture-
based volume rendering approach, which assures us highly
interactive frame rates, see Section 6. Storing the multi-
variate data set in the texture memory of the GPU is not pos-
sible for reasonably large data sets. Relying on density-based
clustering, we only store density values and cluster IDs in
the GPU memory. The density values allow for interpolation
and for interactively changing cluster sizes. Moreover, we
can use them to compute appropriate normals for a proper
lighting.

We show that our approach can be used to intuitively ex-
tract meaningful features from multi-variate volume data,
see Section 7. The linked coordinates validate the genera-
tion of the clusters and provide another component to the
comprehension of the data. Few intuitive operations suffice
to create the desired visualizations. Bad clustering results
can be fixed. Furthermore, the provided interaction mech-
anisms allow the user to bring in his/her domain expertise.
As we are operating in cluster space, the visual representa-
tion and interactions used for visual data exploration scale
well to higher number of dimensions.

2. Related Work

One way to visualize multi-variate data is to use direct vol-
ume rendering and apply a multi-dimensional transfer func-
tion. A lot of research has been put into transfer function de-
sign due to the integral role it plays in direct volume render-
ing. Overviews of the main approaches to design a transfer
function can be found in the works by Kindlmann [Kin02]
and Pfister et al. [PLB∗01] as well as in the survey paper by
Kniss et al. [KKH02].

The idea of using multi-dimensional transfer functions
to direct volume rendering goes back to Kindlmann and
Durkin [KD98]. They proposed using 2D histograms of the
value and the magnitudes of first- or second- order direc-
tional derivatives of a scalar field to define transfer functions.
Kniss et al. [KKH01] extend their work by introducing a set
of direct manipulation widgets for multi-dimensional trans-
fer functions. The usability of such approaches, however,
diminishes with the number of dimensions of the transfer
function, as it becomes more difficult to operate in higher-
dimensional histograms. Akiba et al. [AM07, AMCH07]
used a representation of the multi-variate data in parallel co-
ordinates to allow the user to generate a transfer function by
brushing regions of interest. Their approach works for data
with a feature space of dimensionality larger than three, but
the amount of necessary user interaction increases with in-
creasing dimensionality and may at some point get cumber-
some. Recently, Daniels II et al. [DANS10] presented an ap-
proach for interactive vector field exploration by brushing on
a scatterplot of derived scalar properties of the vector field.
This approach does not scale to more than two properties.

One way to approach visualization of multi-variate data
is to render each of the dimensions independently and
combine the results [RTF∗06, WLM02]. These approaches
are not suitable for data of high dimensionality and ig-
nore the correlation between the dimensions. Another ap-
proach is to perform dimension reduction. A survey paper
by König [Kön98] presents an overview of the main algo-
rithms in the field of multi-variate data reduction. Takanashi
et al. [TLMM02] applied Independent Component Analy-
sis (ICA) on a multi-dimensional histogram to classify the
volume domain. Classification becomes equivalent to inter-
active clipping in the ICA space. Tzeng and Ma [TM04] ap-
plied ISODATA clustering on the feature space and allowed
the user to interact directly with the extracted clusters. User
interactions include assigning material properties to clus-
ters and merging, splitting, growing, and shrinking of clus-
ters. Maciejewski et al. [MWCE09] proposed the addition of
non-parametric clustering of the feature space to the 2D his-
togram approach. Thus, the user does not have to rely on a
trial-and-error approach when selecting regions of interest.
Instead, user interaction is performed on clusters in the 2D
histogram. However, their approach is limited only to two-
dimensional datasets. Linsen et al. [LLRR08,LLR09,LL09]
used a hierarchical density-based clustering technique and
visualized the results in a cluster tree and linked parallel co-
ordinates views.

Our approach follows the ideas of using clustering to
provide intuitive operations in cluster space. We provide a
GPU-based volume rendering approach that automatically
maps selections made via an intuitive cluster hierarchy-
based user interface to a respective transfer function. It is
a novel approach that is most closely related to the work
by Akiba et al. [AM07, AMCH07], Tzeng and Ma [TM04],
and Linsen et al. [LLRR08, LLR09, LL09]. Like Akiba et
al. [AM07, AMCH07] we base our system on an intuitive
user interface, but in contrast to their approach we build on a
clustering with the benefit that our approach scales better to
high dimensionality. Like Tzeng and Ma [TM04] we allow
for interaction with clustering results, but in contrast to their
approach we use an explicit visualization of the clustering
result that operates as an intuitive widget for user interac-
tion. Moreover, we visualize the properties of the clusters
by linking them to a parallel coordinates view. Like Linsen
et al. [LLRR08, LLR09, LL09] we use a cluster tree visual-
ization, but in contrast to their approach we allow for an in-
teractive modification of the clusters and map the results to
a transfer function that is used in a direct volume renderer.
As such, we combine the advantages of the three approaches
in a novel user interface for intuitive multi-variate volume
visualization. The main contributions of this paper can be
summarized as follows:

• Coupling cluster analysis with 3D texture-based volume
rendering, which allows for truly interactive visual explo-
ration of all present features by using automatic transfer
function generation from cluster-space feature selections..

c⃝ The Eurographics Association 2011.

138



Dobrev et al. / Interactive Visual Exploration of Multi-variate Volume Data

• Using a density-based approach to volume rendering of
multi-variate data, which allows for the application of
GPU-based techniques (including illumination), as we
only need to hold the density values and cluster IDs in
GPU texture memory.

• Interactive modification of clustering results with the clus-
ter tree widget including merging, splitting, growing, and
shrinking of clusters, which includes brushing in a linked
parallel coordinates widget and mapping the respective
selections to the volume rendering output using 3D binary
masks.

3. Hierarchical Density-based Clustering

Our approach relies on a hierarchical density-based cluster-
ing approach of the given multi-dimensional feature space.
Hence, we have to use an automatic clustering technique that
generates hierarchies of nested clusters based on density es-
timates in feature space. The hierarchical approach allows
for the generation of the cluster tree widget, which is our
main interaction widget to explore the cluster space, see Sec-
tion 4. The computed density estimates can be associated to
any voxel of our volumetric domain, which allows for in-
terpolation and for lighting computations in the volume ren-
derer, see Section 6.

Any hierarchical density-based clustering approach, such
as the ones by Stuetzle and Nugent [SN07], by Ankerst et
al. [ABKS99], or by Linsen et al. [LLRR08, LLR09, LL09]
could be deployed. We use the latter, which works as fol-
lows: Let n be the number of dimensions. First, we com-
pute densities. To do so, an n-dimensional histogram is built
with a pre-defined cell (or bin) size. As all n-dimensional
cells of the histogram have same size, the density of a cell
is proportional to the number of n-dimensional points that
fall into it. This number is used as a density estimate that
is assigned to each point in that cell. Then, we generate
the hierarchy or density clusters. The root cluster (of den-
sity zero) contains all points. We generate the first clusters
(of density one) from the connected components in the his-
togram. We iteratively remove the cells with the lowest re-
maining density values from the histogram. If this causes
a connected component in the histogram to get split into
more than one connected component, the respective clus-
ter breaks into the respective sub-clusters. The process stops
when reaching the maximum density. For more details on
the algorithm, we refer the reader to the papers by Linsen et
al. [LLRR08, LLR09, LL09].

Once the clustering is complete, we assign to each clus-
ter a unique cluster ID. Clusters are traversed in the order of
extraction and the points they contain are marked with the
respective cluster index. This way, the points contained in
the children nodes overwrite the cluster ID of their parent.
Consequently, each inner node in our interface contains all
those points of the cluster that are not contained in any sub-
cluster. In particular, the root node contains all points that

are not part of any other cluster. As the output of the clus-
tering step, each voxel of our multi-dimensional volumetric
data set has an assigned cluster ID and an assigned density
value.

The clustering approach we used can extract clusters of
any dimension and shape. It is a parameter-free approach
that does not require any input such as number of clusters
or density levels. It can also deal with noise by defining
a minimum density threshold that avoids the generation of
tiny clusters. However, as with all density-based clustering
approaches, it is sensitive to the choice of the bin (or ker-
nel) size. It is not trivial to choose good values for bin size
and noise threshold. In Section 7, we show that in case the
values have been chosen too conservatively, using the inter-
action mechanisms provided by our visual exploration ap-
proach one can quickly and intuitively transform the given
clustering result to a hierarchy of meaningful clusters.

4. Hierarchical Cluster Tree Widget

The hierarchical cluster tree widget (Figure 2a) contains a
representation of the cluster hierarchy as a node-link dia-
gram in a radial 2D layout. A node-link diagram was cho-
sen, as the hierarchy is represented explicitly, properties of
the nodes can intuitively be mapped to color and shape, and
edges can be used as an interaction item. A radial layout
was chosen because of its efficient use of screen space. Each
node of the tree is assigned a sector of a disc. The node and
its children can only be positioned inside this sector. The
opening angle of the sector is proportional to the number of
descendants a node has. This way we assure that the space is
used optimally. One restriction for the opening angle is that
it should not be greater than π. This restriction is imposed, so
that the sliders that adjust the size of the clusters (described
below) can be properly visualized.

Nodes are drawn as small circles in the node-link diagram.
The radius of the circle is proportional to the size of the clus-
ter, i.e., the number of voxels it contains. Moreover, initial
color and opacity are assigned to each cluster. The opacity is
set to an initial value of 0.3 for each node. The initial color
is assigned using the color wheel of the HSV color model.
Since leaf nodes contain clusters of high density and prob-
ably represent interesting features of the dataset, we would
like to assign to them discernible colors. For that, we first
count the number of leaf nodes n and choose n equally
spaced values from the hue spectrum. Then, depending on
where each leaf node lies in the radial layout, the closest
hue value from the color wheel that has not yet been taken
is assigned to the node. This way we assure that we use the
whole hue spectrum. For a consistent coloring of the entire
node-link diagram, the hue of each inner node is computed
as average of the hues of its children. Saturation is deter-
mined by the distance from the center of the tree. The value
V of the HSV model is always 1. Once a node is assigned
a color, it does not change until the user explicitly selects

c⃝ The Eurographics Association 2011.

139



Dobrev et al. / Interactive Visual Exploration of Multi-variate Volume Data

a new color. The circles representing the nodes are drawn
with the assigned color. The areas that these circles enclose
are drawn in the same color, but with an opacity equal to the
opacity assigned to the corresponding cluster.

The interactions that the hierarchical cluster tree allows
the user to do are the following: showing/hiding clusters (se-
lected clusters are marked with a red dot), assigning color
to clusters (same color is used in all three visualizations),
changing opacity of clusters (mouse wheel event), adjusting
size of clusters, merging clusters and splitting clusters. The
result of any user interaction is immediately mapped to the
transfer function and can be observed in the volume renderer
window.

Adjusting size of clusters. The sizes of the clusters can be
adjusted by changing their density limits. Any voxel that
belongs to a cluster, but has a density value that does not
fall into the selected density limits is not taken into account
during visualization. The density limits of the clusters are
adjusted by means of unobtrusive sliders in the hierarchi-
cal tree (Figure 2a). When not interacting with the tree the
sliders are not visible. They become visible only when the
mouse cursor gets close to the respective node. We differen-
tiate between three types of sliders - belonging to nodes of
the tree with two or more children, to nodes with one child,
and to leaf nodes.

The first type is represented by an arc that intersects the
edges connecting the respective inner node to its children.
It can be slid between the node and its children in the ra-
dial layout. The position of the sliders defines how the den-
sity limits of the cluster are adjusted. Linear interpolation
on the density range [dmin,dmax] is used to determine the
density dslider the slider corresponds to. The default behav-
ior of the sliders is to take the density limits of the cluster
as [dmin,dslider], but a simple click changes the behavior to
[dslider,dmax]. The active part of the original density inter-
val of the cluster is shown with bold lines along the edges
connecting parent and children nodes. This can be seen in
Figure 2a, where the segments of the edges from the parent
node to the intersection points with the slider are shown with
bold orange lines. Hence, the density interval [dmin,dslider] is
selected. Only voxels to which densities within this density
interval are assigned are shown in the direct volume renderer.
The size of the rendered cluster decreases accordingly.

Sliders for inner nodes with one child and leaf nodes have
a similar behavior. Since there are less than two children
nodes, the sliders are not arcs anymore, but conventional
sliders. In the case of inner nodes, the slider is slid along
the line that connects it to its child. If the node is a leaf node,
the sliding is performed along an axis normal to the outer
circle. A density value corresponding to the slider position
is determined using linear interpolation and the limits of the
cluster are adjusted appropriately.

Merging of clusters. To merge nodes, the user enters the
merging mode and selects the nodes to be merged. To ensure

that the resulting tree after the merging is still consistent, the
interface only allows for merging of nodes that are siblings
or in parent-child relationships. All selected nodes merge to
the node with lowest depth from the selection. The children
of all the selected nodes are assigned to that node. Then, the
nodes are removed from the tree and their cluster IDs are
overwritten in the spatial distribution of the clusters.

Splitting of clusters / creating a new cluster. For splitting
only one node can be selected at a time. The properties of
the selected node in feature space is shown in the parallel co-
ordinates widget (described below). The user specifies what
part of the cluster should belong to the new node by select-
ing (brushing) ranges of values for individal dimensions of
the feature space in the parallel coordinates. Alternatively
or additionally, the density slider of the cluster can be used
to set the range of density values of voxels that are to be
included in the new node. Immediate feedback is given to
the user in the visualization window after each interaction,
i.e., each selection is directly reflected in the direct volume
renderer. When the user confirms the splitting, whatever is
visible in the volume rendering is extracted in a new node.
The new cluster is a child of the cluster from which it was
created. The voxels of the new cluster are no longer part of
the parent cluster.

5. Linked Parallel Coordinates Widget

Plotting the data points of a cluster in parallel coordinates
gives the user an understanding of the underlying data prop-
erties it corresponds to (Figure 1). Since typically clusters
contain a lot of data points, drawing every single one as a
polyline in the parallel coordinates plot would cause clutter.
To mitigate the problem of over-plotting, we apply a bin-
ning technique. Each axis of the parallel coordinates is dis-
cretized into a number of equally sized intervals. Then, each
data point can be described as a sequence of indices, cor-
responding to the respective intervals for each dimension.
The sequence of interval indices defines a bin. We count the
number of data points in each bin and store it in a hash table.

When drawing the parallel coordinates representation of a
cluster, only the paths corresponding to non-empty bins are
rendered. Furthermore, their opacity is proportional to the
number of data points in the bin. When visualizing more than
one cluster in parallel coordinates it often happens that the
clusters occlude each other. To minimize these effects, we
sort them according to the number of bins (or paths) in the
discretized parallel coordinates. The ones containing most
bins, hence, covering larger area in the plot, are rendered first
and the ones with the least number of paths are rendered last.
This way a cluster covering a large portion of the parallel
coordinates plot will not occlude a very dense cluster.

In addition to visualizing what the clusters correspond to
in feature space, the parallel coordinates widget also allows
the user to create filters for the volume rendering. The filters

c⃝ The Eurographics Association 2011.

140



Dobrev et al. / Interactive Visual Exploration of Multi-variate Volume Data

Figure 1: Brushing in parallel coordinates. Selections (grey
vertical bars) along the axes specify what part of the selected
clusters is visible. When selections in more than one axis
are made, a logical AND operation is performed. The not-
selected part of the clusters is rendered in semi-transparent
gray for context. Selections can be adjusted using handles
(red) that pop up when the cursor is near to the axis.

are based on selections along the axes of the parallel coor-
dinates (Figure 1). The user can brush what part of the se-
lected clusters should be visible by clicking and dragging the
mouse directly on the axes of the parallel coordinates. Selec-
tions are depicted by vertical bars. They can subsequently
be edited by dragging one of the bar’s ends with the mouse,
where the handles appear only when the cursor is close to the
respective axis. When selections on more than one axis are
made, their intersection is computed. The part of the clus-
ters that is not brushed is rendered in semi-transparent gray
to provide context, see Figure 1. Feedback is provided to the
user in the volume rendering window whenever the selection
is changed.

6. Volume Renderer

For visualization of the results of the clustering we employ a
3D texture-based direct volume renderer (Figure 2b). View-
aligned slices of the volume are rendered and composited us-
ing alpha blending. The renderer supports local illumination.
The input to the volume renderer is a 3D grid that only stores
a cluster ID and a density value assigned to each voxel. Since
these values should not be interpolated between voxels, they
are loaded in a 3D texture with nearest neighbor interpola-
tion filters. Using nearest neighbor interpolations, each point
in the volume has an assigned cluster ID.

To automatically map the cluster selections to a transfer
function, the parameters for each cluster are passed from the
user interface to the volume renderer. To each cluster ID the
parameters color, opacity, and density limits are assigned.
When clusters are merged or split during a session, the re-
spective cluster IDs and density limits are updated. Then,
each point gets assigned the respective color of the cluster
and the cluster’s opacity, if the density value at that point
lies inside the density limits. Otherwise, opacity is set to
zero. Given the density values, we can interpolate smoothly
within the density limits to grow and shrink clusters between
zero and full size. Finally, the volume can be rendered with
the composited transfer function.

Given the density values, we can also estimate surface
normals from their gradients. We pre-compute them and load
them in a separate 3D texture with linear interpolation en-
abled. When lighting is turned on, the loaded surface nor-
mals are used in Phong’s model.

If the user has made selections in the parallel coordinate
widget, a 3D mask is created that stores for each voxel a
boolean value. Voxels, whose values fall in the selected in-
tervals in the parallel coordinates, are marked with one. The
others are marked with zero. The mask is passed along with
the spatial distribution of the clusters to the direct volume
renderer. Voxels with mask value of zero are rendered fully
transparently, i.e., are hidden. This mask can be combined
with the transfer function composited above, e.g., for ren-
dering only those voxels that belong to a cluster selected in
the cluster tree widget and whose values fall in the intervals
selected in the parallel coordinates widget.

7. Results and Discussion

Figure 2a-b shows a visualization of the Bonsai tree dataset
(Courtesy of S. Roettger, VIS, University of Stuttgart, Ger-
many). using our interface. The scalar field was enhanced
to a multi-variate dataset using the magnitudes of first- and
second-order derivatives. The cluster hierarchy depicted in
the cluster tree widget was obtained by the automatic clus-
tering algorithm. Each cluster is rendered with its default
color and opacity, assigned by our algorithm. The red clus-
ter only contains background information and is not visual-
ized. Figure 2c-d shows how the sliders are used to change
the size of clusters. The orange-yellow node represents a
cluster that mainly includes noise but also part of the Bon-
sai tree’s leaves. By moving the slider of the orange-yellow
node, one can reduce the cluster to include only the Bonsai
tree’s leaves. The accompanying video shows an interactive
visual exploration of the dataset without changing the clus-
tering.

Next, we applied our methods to the multi-variate
simulation-based dataset provided in the 2008 IEEE Visu-
alization Design Contest [WN08]. We picked a time slice
of this ionization front instability simulation. We considered
the ten scalar fields (mass density, temperature, and mass
fractions of various chemical elements). What is of inter-
est in this dataset are the different regions of the transition
phases between atoms and ions of hydrogen (H) and he-
lium (He). The results of the automatic clustering for this
dataset are presented in Figure 3a-c. The cluster hierarchy
is rather complicated with many small nodes. This is typi-
cally a sign that the bin size for the clustering algorithm have
been chosen too conservatively. Instead of starting a tedious
trial-and-error process to choose proper bin size, we apply
a few fast and intuitive merging steps until the cluster tree
exhibits a concise structure (Figure 3d). Using the parallel
coordinates representation one can determine which phase
belongs to which cluster. The nodes of low depth, which are

c⃝ The Eurographics Association 2011.

141



Dobrev et al. / Interactive Visual Exploration of Multi-variate Volume Data

a) b) c) d)

Figure 2: Application of the density sliders in the visualization of the Bonsai tree. Moving the slider of the orange-yellow
node changes the respective cluster’s size. The cluster contains mainly noise (a,b). However, the low-density part of the cluster
contains part of the Bonsai tree’s leaves that are revealed when moving the slider (c,d).

a) b)

c)

d) e)

f)

Figure 3: Applying our visual exploration approach to a physical simulation dataset with a ten-dimensional feature space
(ionization front instability simulation). Hierarchical cluster tree, parallel coordinates representation, and volume rendering of
the results of the automatic clustering with default material properties (a-c) and after user interactions to modify the cluster
hierarchy and the rendering parameters (d-f).

placed close to the center of the radial layout, correspond to
regions of transition between atoms and ions, i.e., the mass
fractions of atoms and ions are comparable. The nodes with
high depth, which are placed far from center of the radial lay-
out, correspond to ionized and unionized gas, respectively.
To visualize this trend, we applied a color mapping that as-
signs blue to the cluster of fully ionized gas, red to the cluster
of fully unionized gas, and colors in between for the transi-
tion clusters. The transition can clearly be observed in the
visualization of the clusters’ properties using parallel coor-
dinates, see Figure 3e. The direct volume rendering of the

selected clusters exhibits the spatial distribution of the tran-
sition phases, see Figure 3f. The size of the unionized gas
cluster was reduced to lessen occlusion using the density
sliders.

In the accompanying video, we also applied our ap-
proach to the multi-variate medical datasets provided by the
IEEE Visualization Contest 2010 (Courtesy of B. Terwey,
Klinikum Mitte, Bremen, Germany). We use MRI images
T1, T1 + contrast agent, and T2, plus fractional anisotropy
(FA) computed from the DTI dataset on a downsampled ver-

c⃝ The Eurographics Association 2011.

142



Dobrev et al. / Interactive Visual Exploration of Multi-variate Volume Data

Figure 4: Using our system to explore a multi-variate field
derived from a flow field using vector calculus characteris-
tics. The dataset used is that of a tornado.

sion of size 256× 256× 176 to show how interactions via
cluster tree widget and parallel coordinates widget can be
used to intuitively modify clustering. In particular, the tu-
mor cluster was automatically detected, but could be further
improved by brushing in the parallel coordinates widget af-
ter investigating its spatial distribution and its properties in
parallel coordinates. Other extracted clusters represent the
main vessels (red) as well as white matter (orange) and gray
matter (green)

Following the ideas by Daniels II et al. [DANS10] and
Park et al. [PBL∗04], we applied our approach to a multi-
variate field of derived properties from a flow field. We de-
rived the five scalar dimensions flow magnitude, divergence,
gradient magnitude, curl magnitude, and helicity, as sug-
gested by Park et al. and applied our methods to visually
explore respective clusters. Figure 4 shows the result when
applied to the tornado data set [CM93] of resolution 2563.

Although the user interface relies on a hierarchical clus-
tering of the multi-variate data, it can also be used when no
clustering is available. In such cases, all data points are put in
a single cluster and the parallel coordinates widget is used to
create new clusters. We used a time slice of a dataset that
comes from an astrophysical simulation of a white dwarf
star being torn apart by a black hole. The feature space is
11-dimensional and contains information about mass den-
sity, temperature, mass fractions of various elements, and the
proton and neutron number at each sample position. We just
brushed on the density and temperature dimensions to create
meaningful clusters with a few clicks. The accompanying
video shows all the user interactions that were performed to
retrieve the desired visualization from the not pre-clustered
data set. Figure 5 shows the results. The red cluster repre-
sents the inner core, the cyan cluster represents the outer
core, and the green cluster represents the dense jet. The root
node represents lower-density non-background regions.

Although the last example of the preceding section shows
that a meaningful clustering can be obtained interactively,

Figure 5: Using our system to explore a multi-variate
dataset without pre-clustering. The feature space is 11-
dimensional and comes from a physical simulation of a white
dwarf star being torn apart by a black hole. Creating clus-
ters by brushing on two dimensions led to meaningful results
after a few interactions.

this was only true, since brushing on two dimensions suf-
ficed. In general, this would be tedious. Thus, the automatic
clustering is extremely helpful to extract features from the
high-dimensional feature space. Still, we have seen that in-
teractive cluster modification is desirable. Also, for this ex-
ample we could not apply illumination, as no density values
were available.

Our approach was implemented in C++ using QT,
OpenGL, and GLSL. The performance of the direct volume
renderer depends on the dataset’s resolution, the zoom level
and the chosen sampling rate. For the datasets we applied
our approach to, we achieved frame rates between 20 and
30 frames per second for a screen resolution of 1680x1050
on an nVIDIA GTX260 graphics card. Assigning material
properties to clusters and changing their sizes using the den-
sity sliders is instantaneous and takes place in the GPU. Re-
clustering operations, such as creating a new node by split-
ting or merging nodes, are performed on the CPU, but rarely
take more than half a second on modern hardware. This al-
lows for a smooth user experience when interacting with the
multi-variate data.

Our approach uses post-classification with nearest-
neighbor interpolation, which may lead to some aliasing ar-
tifacts at the cluster boundaries. However, pre-classification
would require us to do classification on the CPU and trans-
mit colors and opacities of all voxels to the GPU. Pre-
classification did inhibit true interactive frame rates and the
gain in terms of rendering quality was marginal. We also
tested the possibility to compute surface normals from the
density field on the fly. Again, it slowed down the rendering
process significantly such that we decided to always precom-
pute the surface normals. In future work, we plan on testing

c⃝ The Eurographics Association 2011.

143



Dobrev et al. / Interactive Visual Exploration of Multi-variate Volume Data

whether the compression of normal information will enable
us load larger volumes into the GPU texture memory without
major quality losses.

8. Conclusion

We have presented an intuitive, yet powerful approach for
visualization of multi-variate spatial data. It relies on a hi-
erarchical clustering of the multi-variate data. The interface
uses two widgets for interaction: a cluster tree widget and a
parallel coordinates widget. They allow for interactively ex-
ploring the clusters and also for their modification. The re-
sult of the user interaction is immediately mapped to a trans-
fer function and the data are visualized using a 3D texture-
based direct volume renderer. The derived density field al-
lowed for interpolation when changing cluster size and for
normal computations used for illumination. We applied our
methods to the visualization of multi-variate data in form of
multiple given or derived scalar fields. Since the user oper-
ates in cluster space, the proposed approach is suitable for
data with a feature space of arbitrarily high dimensionality.

Acknowledgments

The work was supported by the German Research Foun-
dation (DFG, LI 1530/6-1) and the Vietnam National
Foundation for Science and Technology Development
(NAFOSTED,102.01-2010.09).

References

[ABKS99] ANKERST M., BREUNIG M. M., KRIEGEL H.-P.,
SANDER J.: OPTICS: ordering points to identify the clustering
structure. SIGMOD Rec. 28, 2 (1999), 49–60. 3

[AM07] AKIBA H., MA K.-L.: A tri-space visualization inter-
face for analyzing time-varying multivariate volume data. In Eu-
roVis07 - Eurographics / IEEE VGTC Symposium on Visualiza-
tion (May 2007), pp. 115–122. 2

[AMCH07] AKIBA H., MA K.-L., CHEN J. H., HAWKES E. R.:
Visualizing multivariate volume data from turbulent combustion
simulations. Computing in Science and Engg. 9, 2 (2007), 76–83.
2

[CM93] CRAWFIS R. A., MAX N.: Texture splats for 3d vector
and scalar field visualization. In IEEE Conference on Visualiza-
tion (1993), Nielson G. M., Bergeron D., (Eds.), IEEE Computer
Society Press, pp. 261–266. 7

[DANS10] DANIELS II J., ANDERSON E. W., NONATO L. G.,
SILVA C. T.: Interactive vector field feature identification. IEEE
Transactions on Visualization and Computer Graphics 16 (2010),
1560–1568. 2, 7

[KD98] KINDLMANN G., DURKIN J. W.: Semi-automatic gen-
eration of transfer functions for direct volume rendering. In IEEE
Symposium on Volume Visualization (1998), pp. 79–86. 2

[Kin02] KINDLMANN G.: Transfer functions in direct volume
rendering: Design, interface, interaction. In SIGGRAPH Course
Notes (2002), pp. 1–6. 2

[KKH01] KNISS J., KINDLMANN G., HANSEN C.: Interactive
volume rendering using multi-dimensional transfer functions and

direct manipulation widgets. In VIS ’01: Proceedings of the
conference on Visualization ’01 (Washington, DC, USA, 2001),
IEEE Computer Society, pp. 255–262. 2

[KKH02] KNISS J., KINDLMANN G., HANSEN C.: Multidimen-
sional transfer functions for interactive volume rendering. Vi-
sualization and Computer Graphics, IEEE Transactions on 8, 3
(Jul-Sep 2002), 270–285. 2

[Kön98] KÖNIG A.: A survey of methods for multivariate data
projection, visualisation and interactive analysis. In 5th Interna-
tional Conference on Soft Computing and Information/Intelligent
Systems (Iizuka, Japan, October16–20 1998), Yamakawa T.,
(Ed.), pp. 55–59. 2

[LL09] LONG T. V., LINSEN L.: MultiClusterTree: Interactive
visual exploration of hierarchical clusters in multidimensional
multivariate data. Comput. Graph. Forum 28, 3 (2009), 823–830.
2, 3

[LLR09] LINSEN L., LONG T. V., ROSENTHAL P.: Linking
multi-dimensional feature space cluster visualization to surface
extraction from multi-field volume data. IEEE Computer Graph-
ics and Applications 29, 3 (2009), 85–89. 2, 3

[LLRR08] LINSEN L., LONG T. V., ROSENTHAL P., ROSSWOG
S.: Surface extraction from multi-field particle volume data using
multi-dimensional cluster visualization. IEEE Transactions on
Visualization and Computer Graphics 14, 6 (2008), 1483–1490.
2, 3

[MWCE09] MACIEJEWSKI R., WOO I., CHEN W., EBERT D.:
Structuring feature space: A non-parametric method for volumet-
ric transfer function generation. IEEE Transactions on Visualiza-
tion and Computer Graphics 15, 6 (2009), 1473–1480. 2

[PBL∗04] PARK S. W., BUDGE B., LINSEN L., HAMANN B.,
JOY K. I.: Multi-dimensional transfer functions for interactive
3d flow visualization. In Proceedings of the Computer Graphics
and Applications, 12th Pacific Conference (2004), PG ’04, IEEE
Computer Society, pp. 177–185. 7

[PLB∗01] PFISTER H., LORENSEN B., BAJAJ C., KINDLMANN
G., SCHROEDER W., AVILA L. S., MARTIN K., MACHIRAJU
R., LEE J.: The transfer function bake-off. IEEE Comput. Graph.
Appl. 21, 3 (2001), 16–22. 2

[RTF∗06] RÖSSLER F., TEJADA E., FANGMEIER T., ERTL T.,
KNAUFF M.: GPU-based multi-volume rendering for the visu-
alization of functional brain images. In SimVis (2006), pp. 305–
318. 2

[SN07] STUETZLE W., NUGENT R.: A generalized single linkage
method for estimating the cluster tree of a density. Tech. Rep.
514, University of Washington, Department of Statistics, 2007. 3

[TLMM02] TAKANASHI I., LUM E. B., MA K.-L., MURAKI S.:
Ispace: Interactive volume data classification techniques using in-
dependent component analysis. Computer Graphics and Appli-
cations, Pacific Conference on 0 (2002), 366. 2

[TM04] TZENG F.-Y., MA K.-L.: A cluster-space visual inter-
face for arbitrary dimensional classification of volume data. In In
Proceedings of Joint Eurographics-IEEE TVCG Symposium on
Visualization (May 2004), pp. 17–24. 2

[WLM02] WILSON B., LUM E. B., MA K.-L.: Interactive multi-
volume visualization. In ICCS ’02: Proceedings of the Inter-
national Conference on Computational Science-Part II (London,
UK, 2002), Springer-Verlag, pp. 102–110. 2

[WN08] WHALEN D., NORMAN M. L.: Competition data
set and description. 2008 IEEE Visualization Design Contest,
http://vis.computer.org/VisWeek2008/vis/contests.html, 2008. 5

c⃝ The Eurographics Association 2011.

144


