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Abstract

We present an efficient GPU-based method to perform 3D chamfer distance transform (CDT) in a wavefront
scheme. In this context, we also introduce a binary voxelization algorithm which provides the initial boundary
condition for the CDT. The voxelization method is capable of both, surface and solid voxelization, allowing for
the computation of unsigned distance fields for arbitrary polygonal meshes and signed distances for models with
orientable surfaces. Our method is trimmed on speed rather than accuracy. It works with simple chamfer metrics
such as the Manhattan and chessboard distance and requires only a single rendering pass per distance layer.
Due to the wavefront scheme, a propagation can be stopped if a required number of distance layers is reached.
However, even a complete distance field can be computed in the magnitude of 102 seconds including the pre-
processing voxelization step. This allows for a use in real-time applications such as path planning or proximity
computations. We demonstrate the application of our method for the latter.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [1.3.5]: Computational Geometry
and Object Modeling—

1. Introduction

Considering a volumetric domain around one or more
3D objects, a distance field contains the minimum dis-
tance to all geometric primitives for each point in the do-
main. 3D distance fields play an important role in many
areas of computer graphics, computer vision and related
areas. Typical applications include surface representation
[FPRJOO, KBSS01, BC08], collision or proximity computa-
tions [GBF03, SGGMO06, MRS08], medial axis estimation Figure 1: These examples show 30 discrete depth layers us-

and skeletonization [Mon68, ZT99, BSB*00, FLM03], CSG
operations [BC01, NDS04] or the computation of Voronoi
diagrams [HKL*99, SKW09].

Depending on the type of application, different distance
metrics can be used. The most meaningful metric is the Eu-
clidean norm, however, it is also by far the most expensive
one in terms of computation. A common alternative is to
approximate the Euclidean distance by metrics, which can
be propagated locally, i.e. where the distance information
at a voxel can be computed from the values of its neigh-
bors. This principle is commonly known as chamfer distance
transform.
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ing the chessboard metric around complex objects in a 256°
voxel grid. The entire process, including voxelization, took
just 2.3 ms on an Nvidia GTX 280.

The propagation can be either done in a sweeping or a
wavefront scheme. In the first one, the propagation moves
from one corner of the domain to the opposite corner in a
voxel-by-voxel manner, typically requiring a forward and a
backward pass to complete the distance transform. Another
possibility is a wavefront-scheme, where the distance prop-
agates from the surfaces in the direction of increasing dis-
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tances. Distance fields can be further classified to be signed
or unsigned. If the objects in the scene have orientable sur-
faces, distance values can be given a sign, depending on
whether the measured point is inside or outside an object.

In this paper, we introduce an efficient framework, which
propagates either a signed or an unsigned distance field in
a wavefront scheme. Our method either works directly on
voxelized data, or on arbitrary polygonal meshes since it
also includes a binary GPU-voxelization algorithm to pro-
duce the initial zero-set of the distance field. After this pro-
cess, the voxels are stored in 2D textures on the GPU and
are directly used in this form for the propagation of the dis-
tance field. We combine all voxels in the scene having the
same distance value in a common distance layer which is
rendered and stored in a separate 2D texture. For each new
layer, we employ a single rendering pass to obtain the re-
spective neighborhood information by means of logical bit-
operations in a fragment shader. Since we process one dis-
crete distance layer at a time, we use simple chamfer-metrics
such as the Manhattan or chessboard metric, which only con-
sist of integer values. These metrics are only rough approx-
imations of true Euclidean distances but can be propagated
in a highly efficient way. Our method is thus designed for
applications which require high speed rather than accurate
Euclidean distances. We demonstrate the applicability of our
distance field for real-time 3D proximity computations in a
subsequent section.

The contributions of our work are the following:

i) A GPU voxelization method for arbitrary 3D models
which is capable of performing real-time solid and bound-
ary voxelization.

ii) A method to perform a chamfer distance transform with
simple metrics such as the chessboard and Manhattan
metric in a wavefront scheme.

Furthermore, we present a framework which combines the
entire process of distance transformation for arbitrary polyg-
onal meshes, including the pre-processing voxelization in a
consistent data structure on the GPU. In fact, one could also
use other voxelization methods in order to produce the ini-
tial boundary condition for our distance transform, but this
would hamper the performance of the entire process. In our
framework, the interfaces between the two steps are consis-
tently adapted which means that no data conversions or ex-
pensive GPU-CPU transfers are necessary between the com-
putation of the zero-set of the distance field and the propa-
gation of the distance transform.

2. Related Work

Since our framework also includes voxelization, we briefly
describe some approaches which are closely related to our
proposed voxelization method.

2.1. GPU-Voxelization

One of the first methods using GPU-rasterization was intro-
duced by Fang and Chen [FCO00]. In their approach, cutting
slices are moved in z-direction with a constant step size in
a front-to-back order and the geometry is rasterized for each
new slice. The step size is equal to the z-resolution of the
voxel grid so the resulting frame buffer data becomes one
slice of the voxelization. The method requires as many ren-
dering passes as there are voxels along the z-dimension for
a complete voxelization.

Dong et al. [DCB*04] were the first to render vox-
els directly to a 2D texture using the bits of the RGBA-
components of each texel to store the voxels. They also
use three orthogonal perspectives and only process triangles
which project the maximum area along the current perspec-
tive. However, since they attempt to store the entire voxel
grid in a single texture, the x- and y-dimensions of the tex-
ture do not naturally correspond to the dimensions of the
voxel grid, making it cumbersome to reconstruct the true 3D
structure of the voxel domain from the 2D texture for further
processing.

Eisemann and Decoret [ED08] exploited further improve-
ments of graphics hardware to perform solid voxelization in
a single rendering pass. They use 32 bits per color chan-
nel, allowing them to store 128 voxels in a single texel. In
addition, they use multiple render targets to process up to
1024° voxels in a single pass and perform a solid voxeliza-
tion by means of simple XOR blending operations. However,
the method only works for watertight models and since they
only use a single perspective, the voxelization easily misses
surfaces which are parallel to the viewing direction.

The voxelization method provided in this paper eliminates
these drawbacks at a minimum of extra costs and is therefore
perfectly suitable to provide the boundary condition of 3D
distance transforms for arbitrary polygonal meshes.

2.2. 3D Distance Fields

Because of its widespread field of applications, 3D dis-
tance fields have been studied for decades. An exhaustive
overview of techniques is provided by Jones et al. [JBS06].
Methods can be basically classified into ones which directly
compute an exact Euclidean distance field and ones which
determine an approximation by propagating discrete dis-
tance information across neighboring voxels (distance trans-
forms). The type of input data conforms with this classifi-
cation. While exact methods require the objects to be rep-
resented as triangle meshes, discrete methods work on vox-
elized input objects.

2.2.1. Exact/Direct Distance Computation

If an exact Euclidean distance field is required, one would
have to compute the distance of each sample point to each
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geometric primitive and choose the distance to the closest
primitive as value at the respective point. Since this brute-
force strategy is very expensive for meshes with a large num-
ber of triangles, the distance field computation is often accel-
erated by graphics hardware.

Hoff et al [HKL*99] compute generalized Voronoi dia-
grams (GVD) by generating a polygonal mesh for each site,
representing the site’s distance function. When rendering
such a distance mesh, the rasterizer provides all distances
across the mesh by interpolation. A 3D distance field is ob-
tained by rendering the volume slice-wise for each geometric
primitive.

A similar approach to compute distance fields is the
Characteristics/Scan-Conversion Algorithm introduced by
Mauch [Mau03] and efficiently implemented by Sigg et al.
[SPGO3]. In this method, the relevant volume for the dis-
tance field computation at each triangle is reduced by a poly-
hedron containing the Voronoi cell of the respective triangle.
Sud et al. [SOMO04] further improve this technique by ex-
ploiting spatial coherence between slices. All these methods
suffer from the fact that the distance function of certain sites
is non-linear and thus, the distance meshes need to be finely
tessellated to approximate these non-linear functions. Sud et
al. [SGGMO06] overcome this problem by interpolating dis-
tance vectors rather than just the distance values.

2.2.2. Distance Transforms

The complexity of direct methods depends on the number
of triangles in the scene which makes them computationally
expensive for complex scenes. In contrast, distance trans-
forms generate a surface boundary condition and distance
information is propagated to the rest of the volume. Gen-
eral overviews and analyses of 3D distance transforms can
be found in [Bor96, SB02, JBS06].

If only distance values are propagated, the DT is denoted
as chamfer DT and was first introduced by Rosenfeld and
Pfaltz [RP66]. A distance matrix is used which indicates the
local distance values around a voxel. An example of various
3x3x3 matrices is shown in Figure 2. An analysis on opti-
mality of chamfer distance matrices is provided in [BM98].

Figure 2: Chamfer distance matrices for a) Manhattan (aka
city-block) b) chessboard and c) Euclidean 3x3x3 metric.
The distance values correspond to the respective center
voxel.
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This idea was extended by the concept of vector distance
transforms (VDT) [Dan80], where not only the distance is
propagated, but also the relative coordinates of the nearest
surface point. Breen at al. [BMWO0O0] propose a wavefront
scheme of a VDT and an efficient GPU implementation for
2D Images is presented by Schneider et al. [SKWQ09].

Other methods which perform distance transforms on the
GPU include the jump-flooding algorithm [RT06] and the
fast hierarchical algorithm [CKOQ7], which also provides a
control mechanism between speed and accuracy.

While these approaches aim at approximating the Eu-
clidean distance as good as possible, our method is on the
other side of the trade-off-scale between speed and accuracy.
It is designed for applications which require fast proximity
computations even for complex scenes in real time without
requiring exact Euclidean distances.

3. Data Structures and Notations

Our method operates on a binary, cubic 3D voxel grid V of
size N®. Let o be a binary word consisting of N bits and w[z]
is the z-th bit. We denote this binary word as voxel lane and
formulate the voxel grid V as 2D array of voxel lanes wy.y:

V= {(J.)x,y|X,y S [ON — 1]}

A single voxel vxyz € {0,1} can either be accessed by
V [x,y,z] or by wxy[z]. The introduction of voxel lanes is due
to the data structure we use to store an N2 voxel grid, which
is a 2D texture of size N x N. Each texel stores one voxel
lane which can be processed in parallel on GPU hardware.
Since we can store 32 bits per color channel, we can store a
voxel lane of size 128 in each texel, so a 1283-grid can be
stored in a single texture (cf. [ED08]).

It is easily possible to extend the resolution in x- and y-
directions, however, in order to increase the z-resolution, we
have to perform a slicing approach. Thereby, a voxel grid of
size (k-128)° is stored in k textures with size k- 128 x k- 128
respectively and each voxel lane wxy contains k - 128 bits
which are distributed over the k texture slices.

4. Solid- and Boundary Voxelization of 3D Objects

The first step of any distance transform is to obtain the initial
boundary condition. Therefore, we transform the objects in
the scene into an N2 voxel grid V such that a voxel V [x,y, ]
is ’1” if it contains a surface of the mesh and 0" otherwise.
In case of solid voxelization, the voxels lying in the interior
of an object are set to "1’. We begin with the description of
the boundary voxelizer.

4.1. Boundary Voxelization

Determining the required N3 voxel grid V from a single per-
pective is a trivial task on the GPU. We simply render the
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scene with an N x N-viewport and each voxel lane wx,y is
processed by a fragment shader. This shader quantizes the
incoming z-value into the range [0,..,N — 1] and sets the re-
spective bit in the voxel lane. It is important that these oper-
ations are performed with the depth-test disabled. However,
the resulting voxel grid is very sparse at surfaces almost par-
allel to the viewing direction since the rasterizer misses large
areas of these surfaces. This is illustrated in Figure 3.

Figure 3: Problem of voxelization from only one viewing di-
rection v: The surfaces which are almost parallel to v are
only sparsely voxelized.

To remedy this problem, we add information from other
perspectives. We use 3 orthogonal directions and render all
of them in a single pass using multiple render targets. This
results in three individual voxel grids V¢,V and Vt, one from
each of the perspectives front, left and top. In order to com-
pose them into a common voxel grid, two of them have to be
rotated so that the corresponding 3D data matches. We de-
note the rotated version of a voxel grid V as V. However, this
rotation is not trivial due to the fact that voxels are stored in
the bits of 2D textures.

Using the front-direction as reference, we have to deter-
mine rotated version of each voxel lane (I)L,y and @, to com-

bine them with the voxel lane co;_yy. In order to achieve that
these voxel lanes represent the same portion of the 3D voxel
space, the following identities between the rotated version
(I)L_,y and the original lane w!(,y must hold:

ik = okli] i, k=0,.,N—1.
Analog for the top perspective:
& K = wkilil i,j,k=0,.,N—1

As we can see, a rotated voxel lane requires an extraction
of a single bit from N different voxel lanes as well as the
composition of these bits to a binary word with N bits. How-
ever, this operation can be done in parallel for each voxel
lane in a fragment shader. The render target for this pass is
an N x N quad and the textures containing the voxel grids
V¢,V and V; are provided to the shader, which then performs
the rotation steps and the combination of all three perspec-
tives using a logical OR. The final voxel grid V is therefore
obtained by

V=V vV Vv WL (@)

4.2. Solid Voxelization

If objects in the scene have well-defined interior and exte-
rior regions, we can assign solid voxels to the interior parts
which will later be used to identify signed distances. While
various solid voxelization algorithms [DCB*04, EDO08] re-
quire 100% watertightness of the models, we also allow for
objects which consist of solid as well as non-solid parts. An
example for such an objects is the potted plant from Figure
4. While the pot is solid, the leafs are modeled as surfaces.

Figure 4: Each individual perspective can show misleading
volume due to the fact that the leafs of the plant are modeled
as surfaces.

In the first step of our algorithm, we render the scene with-
out z-tests and quantize the depth of incoming fragments in
the bits of the respective voxel lane. In contrast to the bound-
ary voxelization, we distinguish between front- and back-
facing polygons and write the respective voxels in two sepa-
rate grids, a front-grid V" and a back-grid V°. This operation
is done for each perspective in a single pass.

In a second pass, these grids are handed to a fragment
shader which renders an N x N buffer, producing the voxel
lanes of the solid voxel grid V*. The shader detects all in-
tervals [a,b] between bits of a front-lane w{,y and a back-
lane w2, for which wyy[a] = w2,[b] = 1 and additionally
wryli] =wly[i] =0 Vi€ [a+1,b—1]. Thebits inside such
an interval are defined as solid voxels and are written into the
resulting solid voxel lane w§ . This process is illustrated in
Figure 5.

Yet, we have separate data from three different perspec-
tives and have to combine them into a common voxel grid.
However, the combination of solid voxels cannot be done in
the same way as the combination of the boundary voxels. As
we can see in Figure 4, the fact that some parts of the ob-
jects are not solid yields to misleading volume. In contrast
to the boundary voxels, where the goal was to add miss-
ing information from other perspectives, we now want to
subtract information. This is possible since the misleading
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wene (O]

oy, [0{1]0]o]o{1)0]0]0]0[0]0

b
®xy [0]0]0{100][0]0{1)0]1]0]0

=
w%y [O[0[1]0[0[0[1]0[o[olo[0)

Figure 5: Determining solid voxels for a single lane. From
top to bottom: oriented surfaces along a discretized voxel
lane, corresponding front-lane o' and back-lane oob, result-
ing solid voxel lane w®.

volumes are view-dependent. A solid voxel is thus only de-
fined where it occurs in all three perspectives. These voxels
are obtained by combining the solid voxel grid V¢ from the
front-perspective with the rotated grids V;* and V¢ from the
left- and top-perspective using a logical AND-operation. The
formula for the entire solid voxel grid V* thus renders to:

V :V? A \A/|s A \7ts
The solid voxelization implicitly provides a boundary vox-
elization by combining the front-grid v and the back-grid
VP for each perspective and then combining the results in
the same way as in Equation 1. Figure 6 shows results of our

voxelization method while performance analyses are pro-
vided subsequently in Section 6.

Figure 6: The object on the left was processed with a reso-
lution of 256° voxels. Cutting planes are added to illustrate
solid voxels (green). The object on the right is voxelized in a
5122 grid.

5. 3D Distance Transform

We will now present a simple and easy-to-implement dis-
tance transform which is based on the voxelization from the
previous section. The distance value at each voxel is ob-
tained from the values of neighboring voxels, which clas-
sifies our method as chamfer distance transform. Traditional
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algorithms loop through the entire N® voxel grid in a for-
ward, and again in a backward pass in order to obtain a full
distance field. In contrast to this O(N®) method, we per-
form a wavefront scheme which computes a distance layer
by looping through the voxel lanes w; j which is O(Nz).

5.1. Distance Propagation

As mentioned in the introduction, we only use chamfer met-
rics which produce integer distances. These include the dis-
tance masks from Figure 2 a) and b), the Manhattan and the
chesshoard distance. These matrices define a local 3 x 3 x 3
neighborhood around a center voxel, which always has the
matrix entry ’0”. The neighboring entries denote the distance
value to that center.

Since we only use matrices containing zeros and ones, we
denote a matrix M as

M :{m[lvhk} 6{031} ‘ i7j7k:717071}

Furthermore we pool all voxels having the distance n in
a separate binary voxel grid V. The layer Vy is the original
voxel grid as obtained from the boundary voxelization de-
scribed in section 4.1. Each new layer Vi, 1 can be computed
from the previous layers Vn,V,_1, .., Vg in the following way:

Vn+1[X,y,Z} :(\/Vn[X-i-Ly—i- j,Z-i—k] 'm[i7 J7k]>/\
i,j,k

-\ Vilx.y.Z] 2
1=0

where i,j,k = -1,0,1. The final OR-concatenation of all pre-
vious layers is necessary to avoid an overwriting of voxels
which are already occupied by shorter distances. This guar-
antees that the layers are disjoint and each voxel can be un-
ambiguously assigned a distance value. In order to compute
a single layer, equation 2 would have to be applied for all
voxels in the domain, i.e. N® times. This sounds bad since
traditional chamfer methods require two loops through the
N3 grid to compute an entire distance field.

However, the clue to our method lies in the fact that we
can reduce the number of operations per layer to O(NZ) due
to an efficient implementation. Since a voxel lane wyy is
compactly stored as a series of unsigned integers, we can
process an entire lane using only simple bit-shifts and log-
ical operations on these integers in a fragment shader. The
details about this efficient method are provided in the fol-
lowing.

5.2. Implementation

The data from the voxelization, i.e. the zero-set Vg of the dis-
tance field, is residing on the GPU in form of one or more 2D
textures as described in section 3. This data structure allows
us to implement the propagation scheme from equation 2 ina
highly efficient way. In each new layer V1, a voxel is set if
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i) it is not set in any of the previous layers Vj, i =0,..,nand
ii) at least one neighbor defined by the respective distance
matrix is set in the previous layer Vp.

o [o]1]o]o]o]1]
o-2[1]0]o]o[1]0]
+o/2[0]0]1]0]o]o]
=n(0)[1]0]1]0[1]0]

Figure 7: left: 8-neighborhood of a voxel lane wy,y. Right:
computation of a voxel lane n(wyxy) by simply adding bit-
shifted versions of wx.y.

Instead of performing these tests on each individual voxel,
we process an entire voxel lane w%l of the new layer V1
at once. Therefore, we consider the eight neighbors around
a corresponding voxel lane wQ,y from the previous layer Vi
as shown in Figure 7 left. In addition, we define a neigh-
borhood operation n(w) on a voxel lane, which produces a
voxel lane containing the left and the right neighbors of each
bit in the original lane w (cf. Figure 7 right). This operation
is simply obtained by combining bit-shifted versions of the
binary word w:

1 5

n(w)_2~w+§w—5w 3)
For the chessboard metric, we additionally require a neigh-
borhood operation n’(w) which also contains the original
bits. This is simply done by adding w to equation 3, so
n’(w) = 7/2 - w. However, the binary word w is in practice
distributed over various RGB-components and texture slices.
In the implementation, we have to take care that possible
over/underflowing bits are handed over to the next/previous
component.

The first part of computing a new voxel lane w1t using
the Manhattan metric is to compose the voxel lanes n(wyy),
WY 1y,0%_1,Wyy41 and wf 1 with a logical OR. The re-
maining operation is the one corresponding to the second
part of equation 2, i.e the test whether the respective voxel
is already set in one of the previous layers. To do this ef-
ficiently, we use an accumulation grid Va which contains
the concatenation of all previous layers and which is up-
dated in each computation of a new layer. The second OR-
concatenation of 2 can thereby be substituted by Va[x,y,z].
We denote the voxel lanes of the accumulation grid as ”.

The entire operation which has to be performed for each
voxel lane wagl in order to obtain a new distance layer Vj 1
using the Manhattan metric is:

5
n+1 n n n n n A
wfy = <§wx_y VR VR VR VR g ) ATy

In case of the chesshoard metric, we additionally have

to consider the edge-neighbors. The corresponding formula
renders to:
5 7 7 7 7
1
Wiyt = <§w2.y v EwQJrl.y N Ewg—l,y N Ewg.wl v Ewg.yfl

n n n n A
VO 1y V Oy 1 VO 1y VR gy 1) AWy

Note that we could also implement a metric which con-
siders the full 26-neighborhood around a voxel as distance
"1’ by simply applying the multiplication of 7/2 to all of the
8 neighboring voxel lanes. However, the chessboard metric
is more accurate since vertex neighbors have an Euclidean
distance of v/3, which is better approximated by 2 than by
1.

If a solid voxelization was applied prior to the distance
propagation, a sign can be trivially assigned to each distance
by testing whether the respective voxel is set in the solid
voxel grid V5.

6. Results

This section provides performance analyses of the individual
steps of our framework and demonstrates the application of
our distance transform for proximity computations. The im-
plementation was done in OpenGL and the evaluation was
performed using an Nvidia GTX 280 graphics card.

6.1. Performance

Although voxelization is a pre-processing step for 3D dis-
tance transforms, it is also crucial that this step is fast in
order to allow applications for an interactive re-initialization
of the zero-set in highly dynamic scenes. This goal is met by
our voxelization scheme as illustrated in Table 1.

Triangles | Res. B.Vox. | S.Vox.
128° 0.31 0.85
10,000 256° 1.4 2.3
5123 6.8 10.4
128° 0.7 13
100,000 | 2562 2.1 35
5123 8.5 13.4
128° 2.4 2.9
300,000 | 256° 55 6.7
5123 15.1 16.9

Table 1: Time in ms for the boundary and the solid voxeliza-
tion depending on the number of triangles and resolution of
the voxel grid.

The first step of the voxelization, rendering the scene
from 3 different perspectives, is the only one in the pipeline
which depends on the complexity of the scene. All subse-
quent steps, including those of the distance transform, are
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performed on voxel grids and thus only depend on the voxel
resolution. The solid voxelization needs additional effort for
the detection of solid intervals as described in Section 4.2,
which becomes the bottleneck for scenes with only few tri-
angles. In more complex scenes, the first step is the dominant
factor of the run-times.

Besides the fast computation, our voxelization method
also works very robust for objects which are not entirely wa-
tertight. This property is not achieved by the previous ap-
proaches mentioned in Section 2.1.

The propagation of the distance field directly builds upon
the output of the voxelization step without requiring any data
transfers or conversions. The performance of the distance
transform is shown in table 2 and a visualization of distance
layers around 3D objects can be seen in figure 1.

Res. Single Layer | Complete DF | Memory
1283 0.019 2.43 262 KB
256° 0.031 7.93 2.1 MB
5128 0.053 27.13 16.76 MB

Table 2: Run-time (in ms) of the distance transform for a
single layer and an entire distance field. The last column
shows the memory consumption of a single layer.

We illustrate numbers for a single layer as well as a com-
plete distance transform requiring a worst-case computation
of N distance layers for an N x N grid. However, the worst-
case scenario is just theoretical and very unlikely to happen
in real applications. In fact, some applications only require
a distance field in a certain range around an object so the
propagation can be stopped if this range is compassed. The
complexity of the algorithm then reduces to MN?Z, where M
is the number of required distance layers.

A major problem of propagating a large number of dis-
tance layers in a high-resolution voxel grid is memory con-
sumption. The last column of Table 2 shows the required
memory of a single distance layer on the GPU. Since a voxel
layer is rendered in the bits of 2D textures, the information
is stored very compactly, nevertheless, we have to employ
new textures for each discrete distance value. This is also
a key issue why we restrict the distance to integer metrics.
Theoretically, we could also apply our framework to cham-
fer metrics such as the Euclidean 3x3x3 from Figure 2 c) by
introducing v/2- and v/3-layers. However, the number of dif-
ferent distance values rapidly increases away from a surface
which makes the method infeasible for non-integer metrics.

6.2. Post-Processing Data Conversion

It is suitable to transform the distance information into a true
3D structure for further processing. Evaluating the distance
value at one specific voxel is cumbersome for an application
if the distance information resides in multiple 2D textures.

(© The Eurographics Association 2011.

In the worst case, all textures have to be traversed in order to
determine the layer having a *1” on the corresponding posi-
tion.

Transforming the data into a 3D array can be trivially done
on the CPU. However, data transfer between the GPU and
CPU is time-critical for real-time applications. The conver-
sion can also be done directly on the GPU by rendering into
the slices of a 3D texture, which requires N passes for an N3
voxel grid. In the i —th render pass, the i —th bit of each
voxel lane is extracted and multiplied by the corresponding
layer index. If the signed distance is required an additional
multiplication with —1 has to be applied if the correspond-
ing solid voxel is set. After this process, a distance value can
be directly accessed by a single texture lookup. The time
consume of this conversion is in the same magnitude as per-
forming an entire distance transform of the corresponding
resolution.

6.3. Proximity Computations

To demonstrate the efficiency of our method, we imple-
mented an application which performs real-time proxim-
ity/collision computations of two moving objects. For each
frame, we compute a complete 3D distance field around one
of the objects with a 128° voxel grid. While rendering the
other object, the proximity to the first one is evaluated on
the fly in a vertex shader. For each incoming vertex, we look
up the respective discretized point in the computed distance
field. Finally, we assign a color to the vertex which encodes
the distances in a HSV-scale from red to blue in order to
visualize the distances. Figure 8 shows a screenshot of this
application, which runs with 125 frames per seconds.

N~

Figure 8: A scene with two airplane objects shown from dif-
ferent perspectives. The proximity of one object to the other
was evaluated for each vertex using our distance transform
and is color-coded for visualization.

A collision of the objects can be easily detected (or even
predicted) using this framework. Also, the location of a col-
lision can be obtained up to voxel precision.

7. Conclusion

We have presented an entire framework to compute a 3D dis-
tance field entirely on the GPU. This includes a robust and
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efficient voxelization which provides the zero-set of the dis-
tance field and is also capable of solid voxelization in order
to define signed distances. A big advantage is that the data
type of the voxels is adapted to the required input data type
for the distance transform. This provides a smooth and con-
sistent pipeline from polygonal meshes to a discrete 3D dis-
tance field. The type of distance metric is restricted to integer
metrics such as the Manhattan or the chesshoard distance in
order to allow for a fast propagation of discrete distance val-
ues. Our method is designed for applications which do not
require exact Euclidean distances but need fast computation
of proximities. The consistent combination of voxelization
and distance transform also allows for a fast re-initialization
of the distance field, which is important for real-time appli-
cations with high dynamic scenes.
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