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Abstract
Bilateral mesh filtering is a simple and powerful feature-preserving filtering operator which allows to smooth
or remove noise from surface meshes while preserving important features in a non-iterative way. However, to be
effective, such a filter may require quite a large support size, inducing slow processing when applied on high
resolution meshes such as the ones produced by automatic 3D acquisition devices. In this paper, we propose a
separable approximation of bilateral mesh filtering based on a local decomposition of the bi-dimensional filter
into a product of two one-dimensional ones. In particular, we show that this approximation leads to piecewise
smooth surfaces which are very close to the ones produced by the exact filter, using only a fraction of the usual
required time. Compared to bilateral image filtering, the main problem here is to find meaningful directions at
every point to orient the two one-dimensional filters. Our solution exploits the minimum and maximum curvature
directions at each point and demonstrates a significant speed-up on meshes ranging from thousands to millions
of elements, enabling feature-preserving filtering with large support size in a variety of practical scenarii. Our
approach is simple, easy to implement and orthogonal to other kinds of optimizations such as higher dimensional
clustering using a bilateral grid or a Gaussian kd-tree and can therefore be combined to them to reach even higher
performance.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Geometric algorithms, languages, and systems

1. Introduction

Surface meshes are ubiquitous in computer graphics appli-
cations and can be automatically acquired using various 3D
scanning devices. Resulting shapes often suffer from a small
scale high frequency noise which needs to be filtered be-
fore using the mesh. Mesh filtering methods (Section 2) –
mostly inspired by classical signal processing techniques –
help removing this shortcoming. However, special care has
to be taken to preserve important feature lines. While earlier
methods provided pure low-pass filters only, recent feature
preserving filters have emerged as standard components in
most mesh processing pipelines. Feature preserving filters
all relate to some sort of similarity analysis. Given a surface
vertex they establish which of the neighbors in the vertex’
vicinity should have a stronger influence on its filtered po-

sition. Mimicking signal and image filtering, bilateral mesh
filtering (BL) [JD03] appears as one of the most efficient and
versatile solutions to the problem of feature-preserving mesh
denoising.

Unfortunately, BL filtering often requires a large local
support to effectively remove noise while preserving im-
portant features. In this paper, we propose an optimization
scheme converting the exact BL filter into a separable ap-
proximation (SBL). Our technique is inspired by the sepa-
rable bilateral image filter [PV05]. Unfortunately, this ap-
proach cannot be applied directly, as there is usually no ex-
plicit 2D global parameterization provided with raw 3D sur-
face mesh. Therefore, we propose to separate BL filtering us-
ing smoothed minimum and maximum curvature directions
to restrict the number of combined neighbors at each pass
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Figure 1: Our approximation scheme provides similar re-
sults when compared to exact bilateral filtering while be-
ing several times faster. From top left to bottom right : a
noisy mesh, bilateral filtering, Laplacian filtering, separa-
ble bilateral (SBL) filtering decomposed along unsmoothed
curvature direction (SBL-u), SBL using random directions
(SBL-r) and SBL using smoothed curvature directions (SBL-
s). Error maps compare to exact BL filter and are given on a
per-vertex basis using the L2 norm.

(Section 3). We show experimentally that this solution is su-
perior to other choices in its approximation power, as shown
in fig. 1, and that the resulting SBL filter is several times
faster than the exact BL one while introducing a negligible
error (Section 4).

2. Previous Work

Mesh Denoising. The seminal work of Taubin [Tau95] ini-
tiated signal processing for meshes by introducing low-pass
filtering for mesh denoising. In particular, Taubin showed
the link between low-pass signal filtering and mesh fairing.
He introduced the Laplacian of a discrete surface signal as a
generalization of the Fourier descriptors, leading to a linear-
time algorithm for mesh smoothing.

Later, Desbrun et al. [DMSB99] introduced an implicit
integration scheme for computing the diffusion equation on
a mesh. They proposed a new definition of the Laplacian
operator, as such a smoothing operator can be seen as a time
integration of the heat equation. This allowed them to define
the curvature flow which relies only on intrinsic geometric
properties and offers a good alternative to the diffusion flow.

Donoho [Don95] presented a wavelet-based method com-
puting a wavelet transform of the mesh and thresholding
its coefficients before applying a reverse transform. Peng et
al. [PSZ01] adopt a similar strategy, but use Wiener filter and
Gaussian Scale Mixtures (GSM) as transform operators.

Also inspired by the vast repository of image denoising
techniques, Yoshizawa et al. [YBS06] recently adapted the
NL-means filter [BCM05] to meshes, by searching among
all vertices those having the most similar neighborhoods
with a given point to filter, giving them higher weights in-
dependently of their location.

Yagou and Ohtake [OBS02] [YOB02] [YOB03] proposed
several techniques based upon a two-step scheme, consisting
in smoothing the normals of faces, and then trying to make
the vertices’ positions to fit those normals.

For a recent overview of polygonal mesh smoothing
methods, we refer the reader to the book by Botsch et
al. [BKP∗10]. In the following, we focus on the formulation
of Jones and Durand [JD03].

Bilateral Mesh Filtering. Considering a noisy object
(e.g. an image or a mesh), the simplest way to remove noise
is to apply a low-pass (e.g. Gaussian) filter which replaces
each sample (e.g. pixel or vertex) by a weighted average of
its neighbors. For each sample, such a filter ignores the ac-
tual "values" (range) of the neighboring samples and consid-
ers only their distances in space to weight their contributions
in a (local) combination. Consequently, noise is filtered out,
but feature lines are proportionally blurred. The idea of bi-
lateral filtering [TM98] is to introduce a second weighting
term based on the difference in range between object sam-
ples (i.e. pixel color) to weight their relative contribution. In
fact, when using Gaussian kernels, the bilateral filter can be
seen as a single higher-dimensional Gaussian filter [PD09],
applied in a space made of both image space and range di-
mensions. Note however that a range space based on pixel
value differences is the simplest similarity space that can be
imagined for pictures. More robust similarity comparisons
have been later introduced, such as the ones based on local
neighborhood around samples in the context of Non-Local
Means filter [BCM05]. For a complete introduction to bilat-
eral biltering, we refer the reader to the course by Paris et
al. [PKTD08].

From a signal processing point of view, the main differ-
ence between an image and a surface mesh is that the former
has a trivial global space parameterization (i.e. pixel coor-
dinates) which is decorralated from the range of the signal
function (i.e. pixel color) while for the latter, the vertex 3D
position embeds in general both signal and parameterization,
i.e. space and range values.

Several strategies have been proposed to apply bilateral
filtering on meshes [JD03] [FDCO03] and point-sampled
surfaces [JDZ04]. Although not restricted to this particular
form, we focus on Jones and Durand formulation [JD03].
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Figure 2: The projection Pc j (pi) of a vertex pi according to
its neighboring face F j . The weight of F j with respect to pi

is given by the L2 norm ‖pi−Pc j (pi)‖.

They define a range space for meshes by the mean of pre-
dictions computed as the projection of the vertex onto the
tangent plane of its neighbors. This process is depicted in
Figure 2.

Considering a meshM, and one of its vertices pi, then for
each of the facesF j in its neighborhoodNi, we can compute
the projection of pi on the plane defined by the center c j and
the smoothed normal n j of F j

Pc j (pi) = pi +n j((c j−pi) ·n j) (1)

Using a spatial kernel Gσs and a range kernel Gσr , a vertex
pi is filtered according to the neighboring faces setNi by

BLNi(pi) =
1

W (p) ∑
F j∈Ni

a jGσs(di j)Gσr

(
hi j
)
Pc j (pi) (2)

with

W (p) = ∑
F j∈Ni

a jGσs(di j)Gσr

(
hi j
)

(3)

a j the area of the face j, di j = ||pi− c j|| and hi j = ||pi−
Pc j (pi)||. Note that robustness is improved by first smooth-
ing face normals using a spatial kernel Gσs/2 [JD03]. The set
Ni can be collected via a mesh flood filling process starting
at pi and selecting all faces located within a distance σs.

In our implementation, we use Gaussian kernels

Gσ(x) = e
−x2

2σ2 (4)

Although local, bilateral mesh filtering remains a slow
process and different acceleration techniques have been pro-
posed. In particular, the bilateral grid [CPD07] has been
introduced for for images. The basic idea is to embed the
image into a three-dimensional space with the third dimen-
sion corresponding to intensity before using the so-defined
3D distance to evaluate combination weights. More recently,
Adams et al. [AGDL09] improved this method by replacing
the grid with a kd-tree, accelerating the sampling and inter-
polation phases of the bilateral grid technique. These meth-
ods can be applied to bilateral mesh filtering using a higher
number of dimensions.

We explore an orthogonal approach to BL mesh filtering
acceleration, which can therefore be combined with these
higher dimensional ones for even faster processing.

3. Separable Bilateral Mesh Filtering

The key idea of our approximation model is to speed-up the
BL filter by reducing the size of Ni while still covering the
same support size. More precisely, our approximation works
in two passes: in the first pass we first collect a set of neigh-
boring faces restricted to one tangent direction on the surface
and then filter the vertex using this reduced set only. This
first pass is applied to all vertices. In the second pass, we
filter the output of the first pass using an orthogonal tangent
direction. This approach is inspired by the classical separa-
ble Gaussian filter for images. Note however that while the
exact solution is reproduced in the case of Gaussian filter-
ing, such a decomposition leads only to an approximate BL
filter [PV05].

Therefore, considering the case of meshes, the main ques-
tion is to determine two directions at each vertex to collect
the restricted sets. Our key observation is that using the min-
imum and maximum curvature directions yields a consistent
way to decompose the BL filter according to the local surface
anisotropy, capturing the feature orientation along which ap-
proximation artifacts are better hidden.

Thus, we compute minimum and maximum curvature
directions {ui,vi} at every vertex pi of M to define lo-
cally the filtering direction for our two passes. We use the
Rusinkiewicz estimator [Rus04] for curvature directions.
This estimator uses the second fundamental tensor on the
tangent plane to obtain constraints on the normal derivative,
fitted in the least squares sense and averaged over faces.
As noise perturbates most mesh curvatures estimators, we
smooth the curvature direction field using the kernel Gσs/2.
In practice, this operation is performed simultaneously with
the normal smoothing preprocess (Section 2).

Using these curvature direction we define two orthogonal
planes Π

i
u = {ni,ui} and Π

i
v = {ni,vi}, one for each cur-

vature direction and both intersecting along the vertex nor-
mal. These planes intersect the neighboring faces and offer a
straightforward predicate to collect the restricted set of faces

Figure 3: Two local planes Π
i
u and Π

i
v (green), allow to

query for two restricted sets of neighborhing faces (orange),
one for each pass, which are aligned with curvature direc-
tions.
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for each pass. We illustrate these planes and these sets on
Figure 3.

The restricted sets of neighborhing faces related to
each pass are defined as the intersection of the full ball-
neighborhoodNi with the planes

N u
i =

{
F j ∈Ni | F j ∩Π

i
u 6=∅

}
(5)

We compute N v
i similarly and in both cases we use a re-

stricted flood filling process implemented using a queue
where only faces intersecting the current plane are pushed
up to the maximum distance σs.

Finally, our SBL approximation consists of the combina-
tion of two restricted BL filterings:

SBL(pi) = BLN u
i

(
BLN v

i
(pi)

)
≈ BLNi(pi) (6)

Variations Overall, selecting smooth curvature directions
yields better approximation results consistently when com-
pared to using directly curvature directions or random pairs
of orthogonal directions at each vertex. In the following, we
refer to Table 1 for the different variants of our algorithm.

algorithm {u,v}

SBL-r random pairs of orthogonal tangents
SBL-u curvatures directions
SBL-s smoothed curvatures directions

Table 1: The different variations of the SBL filter.

4. Results and Discussion

In this section, we analyze the performance improvement of-
fered by the SBL filter and the error introduced when com-
pared to the ground thruth BL filter. We also compare the
three different variations of the SBL filter with respect to

Figure 4: Comparison between BL and SBL-s filtering w.r.t.
σs on the Armadillo model.

Mesh Faces BL (s) SBL-s (s) RMS error

sphere 20k 1.0 0.7 8.3 ·10−4

armadillo 350k 95 38 3.4 ·10−4

filigree 1M 647 152 4.7 ·10−4

Red_box 1.4M 600 193 3.6 ·10−4

Table 2: Error and timing for different meshes (σs = 0.03
and σr = 0.03). The RMS error measures the difference
per-vertex between exact BL and our SBL-s approximation.
Meshes are normalized to the unit cube.

their approximation accuracy. Performance is measured on
an Intel Core 2 Duo, 2.53GHz with 4.0 GB of RAM, single-
threaded. All filters supporting sizes are expressed relatively
to the object bounding box diagonal.

In Figure 4, we measure the execution time of several BL
and SBL-s filtering processes with growing support sizes σs.
We can observe that the SBL-s filter remains between 2 and
3 times faster than the BL filter on this example, with a larger
support size inducing a higher acceleration factor. Note that
these timings include the normal filtering process which can-
not be avoided for robustness reasons. The curvature filter-
ing process used for the SBL-s algorithm is time-consuming,
with total execution times for SBL-r and SBL-u variants be-
ing about twice as fast. Reducing its support size allows to
trade speed for accuracy.

In Figure. 5, we illustrate the per-vertex error introduced
by both BL and SBL-s filtering when applied to an artifi-
cially noisy model (i.e., for which we can measure error to
ground truth). Qualitatively, one can see that our filter is al-
most as good as the BL filter we try to approximate. Figure. 6
confirms that differences between the two denoised results
(BL and SBL) are very small.

In Figure 7 we plot the distribution of errors induced by
the three variants of our approximation scheme when com-
pared to exact BL mesh filtering. First of all, the global error
is overall small in the three cases and its distributions re-

Figure 5: Comparison between BL and SBL-s filtering
power. From left to right: original surface, same surface with
added noise (40% of the mean edge size), BL denoising and
our SBL-s denoising.
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stricted near small amplitudes. Second, we can observe how
our decomposition strategy based on smoothed main curva-
ture directions yields a significant better result than the two
other variants. Surprisingly enough, the use of random direc-
tions to collect the restricted face set is not particularly less
accurate than using non-smoothed directions.

Table 2 gives timing and RMS error between exact BL
and SBL-s filtering on four different models, some of which
are illustrated in Figure 9. We can observe that the error re-
mains particularly low even for a quite large filter support
size (5% of the object size) while the process is sped up by
a factor ranging from 2 to 3. Based on all our experiments,
we observe that the RMS error is each time inferior to 10−3,
considering a unit mesh. When decomposing this error into
normal and tangential components, it appears that the later
dominates significantly (Figure 8).

Finally, Figure 9 shows the final meshes obtained with the
SBL filters. All meshes are scaled to a unit box. We plot the
approximation error between the exact BL filter and the three
variants of the SBL approximation on a per-vertex basis.
Note that even the maximum error measured on each mesh
remains low w.r.t. to the object size. Analyzing these differ-
ent measures, we can conclude that although not formally
separable, our separable approximation of bilateral mesh fil-
tering is very close to the exact solution.

The particular choice of smooth curvature directions for
the filter decomposition demonstrates to be superior to
other variants in terms of accuracy. The reason is that ap-
proximation errors are distributed along the separation axis
and therefore better hidden when these are aligned with
anisostropic surface features, i.e. main curvature directions.
However it is important to point out that SBL-r and SBL-u

Figure 6: Histograms of the per-vertex error between the
filtered meshes (BL and SBL) and the original one. Differ-
ences between the two curves are not easy to detect for a
large range, which demonstrates the good approximation of
our method.

filters are about twice faster than the SBL-s filter, as the cur-
vature direction smoothing operation — although performed
on a much smaller support size than the SBL filter itself —
remains expensive. Still, this also provides a simple quality-
versus-speed parameter and setting it to zero boils down to
the SBL-u filter.

5. Conclusion

We have introduced a separable approximation of bilateral
mesh filtering which is simple and easy to implement. By de-
composing the filter into two successive filters with smaller
support sizes which are applied along smoothed curvature
directions only, we obtained smooth meshes with preserved
features which are visually equivalent to the result provided
by the exact filter, while being computed several time faster.
Our approximation model can be intuitively controlled by
setting the support size of the curvature directions filtering
process, trading quality for speed.

Our acceleration technique is orthogonal to high dimen-
sional embedding methods and can therefore be combined
with them. Such techniques enable fast neighbors contri-
bution quieries, while our SBL fitler reduces the num-
ber of neighbors to consider. In praticular, we plan to ex-
periment combinations of SBL filtering with the bilateral
grid [CPD07] and the gaussian kd-tree [AGDL09] methods.

Finally, a similar strategy may be applied for other classes
of feature preserving filters, such as NL-Means. We will also
explore this direction in future work.
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