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Abstract

We describe an approach to suppress bleeding artifacts without altering the boundary location in gradient-domain
compositing, a technique to create seamless composites. While gradient-domain compositing has become a stan-

dard tool for many complex image editing tasks such as seamless cloning, panorama stitching or scene completion,

its quality suffers from mismatches in the composited image regions. We propose an approach that is robust to non-

optimal region selection by the user without altering his selection which may be neither intended nor possible for

certain compositing tasks. In addition, we present an easy-to-use extension to composite interleaving objects.

The usability of our approach is demonstrated by several image compositing tasks and comparisons to current

state-of-the-art algorithms in gradient-domain image compositing are presented.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.3]: Picture/Image
Generation—Computer Graphics [I.3.4]: Paint Systems—Computer Graphics [I.3.6]: Interaction techniques—

1. Introduction

Gradient-domain compositing has become an important
technique in computer graphics in fields such as panorama
stitching [Aga07,LZPW04,Sze06], seamless image compo-
sition [PGB03, ADA∗04], video editing and enhancement
[BZS∗07,GBD∗09,BZCC10], scene completion [HE07] and
many other applications. It is nowadays “one of the most
widely used algorithms in computational photography and
video” [Aga07]. The idea is to first delineate the composited
regions and then to copy gradients rather than colors from
the source images into the composite. In a final step the color
composite is reconstructed from the gradients by solving the
discretized Poisson equation.

Unfortunately, however, the solution is only approximate
as the gradient field may not be integrable and color spilling
effects or halos may be the result. Gradient-domain com-
positing usually works best if the color difference between
the source and target image along the boundary is constant
or at least smooth. Existing work [LZPW04, JSTS06] there-
fore aims at optimizing the boundary between regions. This
approach is not sufficient in several cases. First, the user may
not want the specified region to be altered and second, auto-
matic boundary optimization may not yield acceptable re-
sults if the combined regions are largely different.

Another problem encountered in gradient-domain com-

positing tasks is the composition of overlapping objects. In
general the gradient of the source image is pasted on top
of the target image without considering the underlying con-
tent. Pérez et al. [PGB03] proposed some artistic concepts to
guide the merging, depending on the desired effect. Pasting
the source image behind the meaningful content of the tar-
get image is not possible. Neither can the user specify which
object in the composition should be in front of the other.

This paper describes a simple and efficient approach to
minimize bleeding artifacts in gradient-domain image com-
positing tasks and to enable a multi-layered composition of
overlapping or interleaving objects. We therefore propose a
two-step algorithm. First, the critical regions, causing the
color bleeding artifacts in the source and target images are
detected and the Poisson equation is adjusted accordingly
to prevent color transitions along these areas. After solving
the adjusted Poisson equation, the overlapping areas of the
foreground objects in source and target are detected. The or-
dering is randomly initialized and can then be adjusted by
the user according to his needs by a simple point-and-click
interface.

2. Gradient-domain Compositing

Since the seminal works of Pérez et al. [PGB03] image com-
positing in the gradient domain has become amazingly pop-
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Figure 1: We present a seamless image-compositing technique which allows to composite complex interleaving objects without
color bleeding artifacts and which is robust to selection inaccuracies. Using our method we are able to seamlessly place objects
from the source image even behind objects in the target image. From left to right: (a) The source image and target image along
with the user defined extraction mask. (b) The result using the method of Tao et al. [TJP10]. (c) Our result with the object placed
in front. (d) Our result with the object placed in the back of the image.

ular. Generally, the task at hand is to seamlessly insert a part
of a source image IS into an equally shaped target area Ω in
a target image IT with a given boundary ∂Ω. The basic idea
behind Poisson image editing, or more generally gradient-
domain reconstruction, is to search for an Image I that best
fits the gradient field of ∇IS with optional color constraints
along the boundary ∂Ω from the target image IT in a least-
squares sense:

argmin
I

∫∫
Ω
||∇I−∇IS||

2 with I|∂Ω = IT |∂Ω , (1)

where ∇. = [ ∂.
∂x
,

∂.
∂y
] is the gradient operator, I|∂Ω depicts

the pixels along the boundary ∂Ω. A unique solution to this
problem can be found by solving the Poisson equation with
Dirichlet boundary conditions:

∇2
I =∇2

IS with I|∂Ω = IT |∂Ω (2)

While this approach works very well if the color offset
along the boundary is constant or very smooth, many au-
thors noted that a manually defined boundary may lead to
noticeable reconstruction artifacts. As a result several ap-
proaches have been introduced to refine the boundary lo-
cation [ADA∗04, LZPW04, JSTS06]. The inherent problem
with these is that it might not be possible to find good po-
sitions for the boundary, e.g. if structural misalignments are
present. One way to overcome this problem is to smoothly
warp the image content in order to make merging success-
ful [JT03, JT08, EGM11]. However, warping is only possi-
ble if the task is to stitch similar objects in a common im-
age domain. Also, unrealistic deformations may be the re-
sult. And quite often the user may simply not allow to alter
the boundary or deform the content. In this case the only op-
tion is to alter the integration process. One approach in this
direction was just recently proposed by Tao et al. [TJP10],
which most resembles our own work. In their approach the
curl of the boundary is used as a hint on where color bleed-
ing might actually appear in the image and the gradient field

is changed accordingly. Additionally, they control the inte-
gration residuals such that they are located in textured areas.
While the underlying mathematical formulation is very ele-
gant, color bleeding is still present. In contrast to the contin-
uous formulation of Tao et al. we propose to use integration
barriers which completely block color transitions in critical
areas. As we will show in Section 4 this leads to visually
superior results in many cases. This was also proposed by
Farbman et al. [FHL∗09] though they required user inter-
vention to mark the regions causing color bleeding artifacts,
while our approach can work fully automatically. Lalonde et
al. [LHE∗07] use a presegmentation of the objects before in-
serting them. In contrast our approach preserves the details
of the background in the source image, which gives the user
additional freedom for compositing.

However, none of the existing approaches is able to seam-
lessly insert a new object behind a foreground object in the
target image. A big drawback of the approach by Tao et al. is
that the user needs to choose the final position for insertion
in the target image before he adjusts the mask. Moving the
object afterwards is not possible without tedious adjustment
of the mask. An interesting concept in this direction was pre-
sented by McCann and Pollard [MP09] called local layering.
Instead of providing a single layer per object, the visibility is
estimated on a local overlap basis. We will show how such a
concept can be integrated into the seamless compositing task
to achieve superior image composites which are difficult to
achieve with other methods.

3. Our approach

Our approach consists of three main parts. First, we robustly
determine foreground objects in both, the source and target
image, Section 3.1. Next, we adjust the classic Poisson equa-
tion to prevent color bleeding and halos, but assure that the
source still seamlessly merges with its subjacent image, Sec-
tion 3.2. In a last step the user may decide which foreground
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Figure 2: Foreground Estimation: Based on the user defined
mask the fore- and background, FS and BS, respectively, in
the source image IS are estimated using the GrabCut tech-
nique. To robustly initialize the background segmentation in
the target image IT , we transfer the GMMof the source back-
ground BS to the target background BT .

objects should be in front and which behind, based on a local
layering concept. Section 3.3.

3.1. Foreground Estimation

The user starts by selecting a region from the source image IS
which he wants to seamlessly paste into the target image. To
segment the source image patch into meaningful regions, we
apply the GrabCut technique by Rother et al. [RKB04] giv-
ing us an estimate of the fore- and background regions in the
selected patch. The GrabCut automatically models fore- and
background as an optimized set of Gaussian Mixture Models
(GMM) using iterative Graph Cuts [BVZ01]. Assuming that
source and target have similar colored backgrounds, which
is not an uncommon assumption, think of a blue sky as back-
ground, we extract the GMM from the source’s background
and apply it to the target’s background estimate. For each
pixel in the target image we compute its probability to be-
long to the extracted GMM. If it is higher than 0.5 the pixel
is considered as belonging to the background, otherwise as
belonging to the foreground. Evaluating the GrabCut again
on the target image with this initialization leads to a robust
segmentation in most cases. Obviously, such an initializa-
tion cannot always be free of errors. Therefore, as it was
proposed by Rother et al., we allow for manual correction
of the foreground estimation by letting the user draw sim-
ple strokes on the source or target image pixels, constraining
them either to be definitely foreground or definitely back-
ground. This is only necessary if the previously described
automatic GrabCut estimation fails and generally takes no
more than a few seconds per image. This procedure is also
visualized in Figure 2 If not stated otherwise, all results in
this paper have been produced without manual refinement.

3.2. Non-bleeding Compositing

Once the segmentation of IS and IT is completed the user
chooses an appropriate position to insert the source patch IS
into the target image IT . This is no final decision. Our system
allows to change the position again later in the procedure

FS

BS

FT

BT

∂ΩB

∂ΩP

Figure 3: Seam classification: We detect those pixels ∂ΩB

which are potential candidates for color bleeding artifacts
along the seam based on the constellation of fore- and back-
ground in source and target. Only the regions where BS is
connected to BT are safe areas for the integration.

which is beneficial for the artist as he can easily adjust the
image to his needs later on.

Color bleeding and halo effects in Poisson image editing
occur, whenever the gradient field becomes non-integrable
[TJP10]. Therefore the task is to find an estimate of these
regions along the user-specified boundary ∂Ω and in a sec-
ond step adjust the Poisson equation, Equation (2), to pre-
vent these artifacts.

We divide the boundary pixels ∂Ω into two disjoint sets:
∂ΩP for which the classic Poisson equation should reveal
sufficient results and ∂ΩB for those pixels which are poten-
tial candidates for artifacts. Due to the segmentation we can
distinguish between four constellations along the boundary
∂Ω and how they possibly influence the solution of the Pois-
son equation. An illustration is also given in Figure 3.

1. BS-BT : If the source background touches the target back-
ground along the boundary no change is necessary, as our
assumption is that the gradient field is integrable in these
parts and we add these pixels to ∂ΩP

2. BS-FT : The color of the foreground of the target image
potentially varies strongly compared to the background
of the source image, therefore the Poisson equation needs
to be adjusted to prevent color bleeding. These pixels are
added to ∂ΩB.

3. FS-BT : Equivalent to 2.
4. FS-FT : As the foreground in the source and target image

do not necessarily belong to the same object, we need to
adjust the Poisson equation here as well and add these
pixels to ∂ΩB

As from time to time the GrabCut technique is slightly im-
precise, we also add those pixels to ∂ΩB where FS or FT are
closer than m pixels to the boundary ∂Ω. In all our experi-
ments we set m= 3 pixels.

To prevent color bleeding along ∂ΩB we introduce inte-
gration barriers into the classic Poisson equation. These bar-
riers are similar to the diffusion blockers in [BEDT10] and
the image border handling in [PGB03]. I.e., we remove from
our system of linear equations any part that relates two pixels
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across ∂ΩB. For a better understanding Figure 4 illustrates
such a situation. For each pixel p let Np be the set of its 4-
connected neighbors and let (p,q) denote a pixel pair such
that q ∈ Np. The finite difference discretization of Equation
(1) combined with our special border handling yields:

min
I|Ω

∑
(p,q)∩Ω6=∅

((Ip−Iq)−(IS,p−IS,q))
2, with I|∂ΩP

= IT |∂ΩP

(3)
Its solution satisfies the following linear equations:

∀p ∈ Ω : |Np|Ip− ∑
q∈Np\∂ΩB

Iq = |Np|IS,p− ∑
q∈Np\∂ΩB

IS,q

(4)
where |Np| is the number of pixels in the 4-connected neigh-
borhood of pixel p that are not equal to any pixel in ∂ΩB. By
solving the adjusted Poisson equation the color of the source
patch IS is adjusted so that the color transition is smooth
across areas where the backgrounds touch each other, i.e.,
along ∂ΩP, while we preserve a crisp transition along ∂ΩB,
as desired. Please note that the colors along ∂ΩB are still
adjusted, but the influencing pixels are different.

IS

IT

∂ΩP

∂ΩB

Figure 4: Integration barrier: We adjust the classic Poisson
equation so that pixels across the barrier ∂ΩB are unrelated.
Dirichlet boundary conditions for pixels on ∂ΩP are handled
as usual.

Ill-conditioned or non-unique solutions are possible in the
rare case that ∂ΩB is equal to the user-specified mask, i.e.,
only a foreground object without background is copied or the
background part is completely enclosed by the foreground
object. To handle such a case we initialize our solution with
the colors from the source image. This way, the method
would boil down to a simple copy and paste without color
adjustment still revealing plausible results. Previous meth-
ods, on the other hand, would try to adjust the foreground
object which is usually undesired. As soon as the interact-
ing boundary is at least one pixel in size, a unique seamless
solution is found.

3.3. Composition of Interleaving Objects

To allow for interleaving objects we assign an ordering to
the different classified regions on a local basis. We divide
the image into overlapping regions and track the ordering of
layers in each region separately. This is done by first cre-
ating a binary mask, setting each pixel to white where an
overlap of the foregrounds is detected. Each other pixel is

(a) (b) (c)

Figure 5: Interleaving objects: (a) Our system marks over-
lapping regions of foreground objects in red. (b) and (c) The
user may then choose which part should be in front by sim-
ply clicking on the appropriate region.

set to zero. We then search for connected components us-
ing a standard connected component analysis [CSRL01]. We
define the foreground objects to be visually more important
than the background objects and therefore we initially place
FS in front of FT and FT in front of BS (BT is never visible in
the composited regions). We mark the regions where FS and
FT overlap and for each distinct overlapping region the user
can choose which one should be in front and which one in
the back by a simple point-and-click interface. For complex
interweavings, such as the tree branches in Figure 7, we also
provide a randomized ordering for each overlap region. For
each region a random number is computed. If it is smaller
than 0.5 we assign FS as being in front, otherwise FB. This
way we provide also the possibility to place objects behind
others. No recomputation of the image colors is necessary if
the ordering is changed, making the approach fast to work
with. An example is given in Figure 5.

4. Experimental Results

We implemented an interactive framework to test and com-
pare our approach to other techniques. The only computa-
tionally expensive procedure in our approach are the Grab-
Cut which can take a few seconds to compute in our cur-
rent implementation and to solve the Poisson equation for
which any solver of the appropriate sparse linear system
can be used. In our implementation we use the UMFPACK
solver [Dav09] which takes two or three seconds to compute
the results for a 0.5 megapixel image, making our approach
reasonably fast to work with. In all comparisons we used
the same user drawn mask to extract IS and placed it at the
same position. Specifically we compare our approach to the
following methods:

Copy & Paste: IS is simply drawn over IT .

Poisson: Here IS is adjusted according to the classic Poisson
image editing by Pérez et al. [PGB03].

Drag & Drop: Before solving the Poisson equation we
optimize the boundary ∂Ω according to the energy func-
tional proposed by Jia et al. [JSTS06] to find the optimal
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path around the foreground object in IS. The necessary fore-
ground mask is the same as in our approach.

Error-tolerant: The gradient field is adjusted according to
Tao et al. [TJP10] creating low curl boundaries and concen-
trating integration residuals in textured areas, where they are
less conspicuous.

In Figure 6 several image compositing tasks are shown
and compared. None of the masks were manually corrected
in these examples. Simple Cut & Paste is obviously not
able to create visually pleasing results due to the color
differences, Figure 6a. As expected Poisson image edit-
ing [PGB03] cannot cope with erroneous masks and colour
bleeding and halos are the result, Figure 6b. Especially vis-
ible at the boundary between the pyramids and palms in the
third row of Figure 6b. The same scene also poses a big
problem to boundary refinement methods [JSTS06] as an
alteration may result in semantically incorrect composites,
like the flying palms in Figure 6c. The method of Tao et

al. [TJP10] proves to work sufficiently well for most exam-
ples but still reveals some color bleeding in regions where
the curl is close to zero but the color differs between IS and
IT , as can be seen in the first row of Figure 6d. On the other
hand Tao et al.perform better in the pyramid example, where
a slight color bleeding is visible on the left side of the palm.
But this could be easily corrected in our approach with a sin-
gle stroke in the user-correction step of the foreground mask.

Our method is the only technique that allows to place ob-
jects behind other objects in the target image, Figure 1. Note
that none of the previously mentioned methods is able to re-
produce this effect. While a similar effect would be possible
with matting techniques [CCSS01,GCL∗06,GO10], matting
still adds an additional manual color correction step, in order
for the object to nicely fit in the image, which is automati-
cally achieved by Poisson image editing techniques. As the
segmentation in our approach is independent of the placing,
the artist is free to move the dove around and the algorithm
will correctly adjust the colors and overlapping areas. Only
a few strokes of the user were necessary to adjust the fore-
and background mask of the target image. Even very com-
plex compositions of trees are possible, Figure 7. Note the
interleaving pattern of the branches created by our random-
ization procedure. More examples can be found in the addi-
tional material.

5. Discussion & Conclusion

In this paper we have presented an image-compositing al-
gorithm which advances classic Poisson image editing in
several directions. First, we do not directly modify the user
selected boundary, which is important for various image-
compositing tasks. Second, our method is robust to selec-
tion inaccuracies and reduces color bleeding artifacts and
halos around the boundary. And third, it is capable of sophis-
ticated image compositing tasks with interleaving objects,

which would be very tedious by manual intervention and
even impossible with previous seamless cloning techniques.
The complexity is very similar to the standard Poisson equa-
tion as our integration barriers can be directly incorporated
into the sparse linear system.

While it might seem less sophisticated to completely
block the diffusion process at specific locations instead of
using a non-linear diffusion [PM90,TJP10], we chose to do
so, as a reweighting will still introduce some color bleed-
ing into the result and we found that robust and high quality
results are easier obtainable with our approach. In addition
no tuning of coefficients is necessary, making our technique
easy to work with. For future work we plan to integrate bor-
der matting into our formulation to deal with the problem
of matting in the presence of blur and mixed pixels along
smooth object boundaries, which could otherwise produce
small artifacts along the object.
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(a) (b) (c)

(d) (e) (f)

Figure 7: Interleaving composites: Our approach allows to create very complex, interleaving composites with almost no user
interaction at all. (a) The source image. (b) The user defined mask. (c) The target image. (d) The source image was composited
twice into the target image using our algorithm. (e) Close-up view of the branches. Note the interleaving pattern. (f) Close-up
view of the stem. Note that any color bleeding from the ground is suppressed. The user is free to change the ordering of the
branches at any time.

c© The Eurographics Association 2011.

71


