Vision, Modeling, and Visualization (2011)
Peter Eisert, Konrad Polthier, and Joachim Hornegger (Eds.)

Pose Correction by Space-Time Integration

J. Martinez Esturol, C. R6ssll, S. Fr(jhlichz, M. Botschz, and H. Theisel!

! Visual Computing Group, University of Magdeburg
2 Graphics & Geometry Group , University of Bielefeld

Abstract

The deformation of a given model into different poses is an important problem in computer graphics and computer
animation. In a typical workflow, a carefully designed reference surface is deformed into a couple of poses, which
can then act as a basis for interpolating arbitrarily intermediate poses. To this end the input poses should be
free of geometric artifacts like self-intersections, since these degeneracies will be reproduced or even amplified
by the interpolation. Not only are the resulting artifacts visually disturbing, they typically cause severe numerical
problems for further downstream applications.

In this paper we present an automatic approach for removing these geometric artifacts from a given set of mesh
poses, while maintaining the original mesh connectivity. The deformation from the rest pose to a target pose
is faithfully reproduced by integration of a smooth space-time vector field, which by construction guarantees
the absence of self-intersections in the repaired target pose. Our approach is computationally efficient, and its
effectiveness is demonstrated on a range of typical animation examples.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [1.3.5]: Computational Geometry

and Object Modeling—Geometric Algorithms

1. Introduction

A central task in computer graphics, geometric modeling,
and computer animation is the deformation of a shape from
a given reference pose to a variety of new poses. To sat-
isfy the demand for ever more realistic deformations with-
out significantly increasing computation or simulation time,
several recent approaches incorporate training data in the
form of example poses: Given a rest shape and several ex-
ample poses, new shape variations are created by custom-
tailored interpolation or extrapolation within a suitable shape
space [KMPO7]. Example-based approaches have been pro-
posed, e.g., for shape interpolation [XZWBO0S5, LSLCOS5,
KG08,WDAH10,FB11], skeletal skinning [LCF00, WPP07,
WSLGO07], shape deformations [SZGP05,FKY08,PJS06], as
well as physical simulations [FYK10].

The reference model typically has been carefully designed
and/or acquired from a physical object, often requiring a lot
of manual work to check for and remove geometric incon-
sistencies, such as degenerate triangles, fold-overs, or self-
intersections. The example poses are then created by de-
forming the rest pose and fine-tuning the result. In most
cases, the rest pose and the example poses share the same
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structure, i.e., the same mesh connectivity, which we assume
in the following for our approach.

Unfortunately, in practice many example poses suffer
from geometric artifacts — even if the rest pose is a clean
mesh. Oftentimes the degeneracies are introduced when de-
forming the rest pose into the target poses, e.g., by linear
blend skinning [LCFO00]. For similar reasons many models
obtained from shape-databases also contain geometric in-
consistencies. These artifacts are then reproduced (some-
times even amplified) in example-based mesh processing
techniques. They do not only corrupt the visual appearance,
they may even cause severe numerical problems for more
sophisticated nonlinear approaches [FB11], where they slow
down or even spoil convergence of optimization schemes.

In this paper we present an automatic post-processing
technique for detecting and resolving geometric inconsis-
tencies in given example poses. Based on a linear (hence
robust) mesh interpolation technique, we first generate a
set of intermediate key-frames between rest pose and tar-
get pose. From those we derive smooth vertex trajectories,
to which we fit a 4D space-time vector field. Integrating
this vector field through time deforms the rest pose mesh
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Figure 1: Elbow deformation of the Goblin model. Self-
penetrations of an articulated target pose (left ®) are cor-
rected by our approach locally without altering the connec-
tivity of the underlying mesh (right ).

into the target shape, but since path lines never cross each
other in space-time [TWHSO05] the resulting mesh is free of
self-intersections by construction. Regions that initially con-
tained self-intersections are repaired, the remaining parts are
faithfully reproduced. Figure 1 shows an example.

2. Related Work

In this section we review related work. Our general scope is
mesh repair, and in our approach we apply vector field based
shape deformations and scattered data interpolation by radial
basis functions.

Mesh repair. There is a variety of methods for repair-
ing inconsistencies in geometric models like holes, self-
intersections, folds, and topological noise in different types
of geometric models. Methods can roughly be classified into
surface based methods and volumetric methods (cf. the re-
cent survey by Ju [Ju09]).

Surface based methods modify the surface meshes di-
rectly. In an early work, Bohn [Boh93] proposes a topo-
logical shell-closure operator that guarantees orientable
surfaces. In order to also repair geometric inconsisten-
cies, Barequet et al. [BDK98] employ heuristics for solv-
ing ambiguous geometric configurations. A frequent prob-
lem for scanned objects is topological noise. Guskov and
Wood [GWO01] remove small handles by a local wave-front
mesh analysis and non-separating cuts.

Volumetric methods are based on implicit surface mod-
els that guarantee surfaces without self-intersections. For in-
stance, Nooruddin and Turk [NTO03] use voxelization to ob-
tain an implicit surface, the repaired surface is generated
from iso-contours. Space partitions can lead to efficient algo-
rithms. In [Ju0O4] an octree space voxelizations of an in/out
volume classification is used for feature adaptive mesh re-
pair. Bischoff et al. [BPKOS] present an octree-based mesh
repair framework which provides high accuracy. A follow-
up [BKO5a] focuses on locality such that mesh connectiv-
ity is modified only locally in the vicinity of inconsisten-
cies. Recently, nested space partitions have been proposed
by Campen and Kobbelt [CK10] for model repair.

All these methods operate on a single surface, and all of
them modify the internal structure, e.g., the mesh connec-
tivity. In contrast to this, the input to our method consists
of poses of the same mesh with fixed connectivity. Only the
geometry of the meshes is corrected by a deformation ap-
proach: our algorithm does not modify mesh connectivity.
We remark that there are deformation approaches which sup-
press intersections directly in the modeling process [BKO03]
or in a physical simulation of cloths [BWKO03]. However,
these approaches aim at interactive or physically plausible
shape deformation rather than automatic model repair as a
post-process.

Vector field based deformations. Our approach can be
considered as a deformation method that exploits special
properties of an underlying continuous deformation vector
field. This vector field is determined automatically by the in-
put poses. Surface deformations based on vector fields have
been used by Funck et al. [VFTS06, vFTS07] for interactive
and volume preserving shape editings. In their approach they
exploit divergence-free fields to enable volume preservation.
Martinez et al. [MRT10] extend this idea to simultaneous de-
formation of an arbitrary number of implicit surfaces. Kilian
et al. [KMPO7] use a different type of vector fields to obtain
near isometric deformations.

Radial basis function interpolation. We apply radial ba-
sis functions (RBF) as a model for space-time vector fields.
RBFs are a general and widely used tool for mesh-less scat-
tered data interpolation. They are used in numerous applica-
tions on different sorts of data. Examples related to geom-
etry processing include surface-fitting based on point sam-
ples [CBC*01,0BS05] and also real-time surface deforma-
tions [BKO5b].

3. General Idea and Overview

This section gives an overview of our method, which is also
illustrated in Figure 2. Details on the particular steps are pro-
vided in the subsequent Section 4.

Given are two poses of a surface mesh, a reference mesh
and a target mesh that both share the same connectivity. The
target shows defects such as self-intersections, and our goal
is to remove defects and to repair the mesh.

We propose a deformation approach to repair the target
pose. The deformation is represented as a space-time vec-
tor field integration, and we exploit the fact that path lines
of integrated surface points do not intersect in space-time
(see, e.g., [TWHSO05]). This way we obtain a surface that
approximates the given target and by construction is free of
self-intersections.

We want to find a continuous time-dependent vector field
describing the motion of the surface under deformation from
the reference pose to the target pose. We do this by fitting a
smooth vector field to a set of discrete samples. In our case,
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Figure 2: Overview of our method. After space-time con-
straints are generated from the preprocessed reference and
target poses, we fit a space-time vector field which describes
the deformation. Then a space-time shape integration yields
the repaired pose. Steps highlighted in e use GPU hardware
acceleration.

these samples are tangent vectors of the trajectories of sur-
face points moving in space-time. We obtain the tangent vec-
tor samples by first generating a sequence of key frames that
represent some intermediate surfaces. Then we fit trajecto-
ries as C'-continuous cubic spline curves at each vertex to
obtain continuous curves which describe the motion of each
vertex.

Large parts of the target surface do not require any repair
or modification. Our goal is to reproduce such regions as
good as possible, whereas regions with defects in the target
pose should be repaired. We achieve this by an automatic
classification of surface regions. The reproduction of well-
behaved surface regions is due to constraints on the vector
field fitting. The key idea is that regions with defects do not
generate any constraints on the vector field, i.e., we use the
extrapolation provided by the underlying RBF model for re-
pair. This can roughly be compared to hole filling in appli-
cations to surface reconstruction (see, e.g., [CBC*01]).

The vector field is represented as a radial basis func-
tion over the space-time domain (see, e.g., [TWHSO05]). The
function interpolates the constraints given by key frames and
vertex classification. Then fitfing the vector field leads to
solving a linear system.

Finally we integrate all vertices of the reference pose
through the vector field to obtain the corrected result pose.
The integration exploits the property that path lines never
cross each other in space-time to guarantee intersection-free
time-surfaces.

4. Algorithmic Details

Our approach proceeds in three steps: generation of space-
time constraints, vector field fitting, and integration. This is
illustrated in Figure 2. In this Section we describe the algo-
rithmic steps in detail.

We consider meshes M, that share the same connectivity:
the surfaces are defined by vertex positions x; € R3ieV,
where V is the set of vertices. Let Mg be the reference pose,
and My, T # R are target poses. We assume that the ref-
erence My does not contain defects, and the target poses
should be repaired. Note that our goal is to maintain a con-
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Figure 3: Preprocessing: key frame interpolation. From the
reference (e) and one target shape (®) we generate a dense
set of intermediate key frame shapes (transparent o).

Figure 4: Repair of common skinning artifacts. (a) Badly
chosen skinning weights lead to intersection artifacts at re-
gions of neighboring skeleton joints (e mesh), which are au-
tomatically detected and repaired by our method (- mesh).
(b) Other types of skinning artifacts can also be repaired,
but they require manual selection (e vertices). Note that the
original skinning skeleton is not required for any correction.

sistent triangulation over all poses, i.e., the connectivity re-
mains fixed. This is in contrast to other methods that focus
on repairing a single mesh like [CK10].

4.1. Preprocessing

Our algorithm works on the reference pose Mg and one sin-
gle target pose M7 at a time. It does not require or use
data of other target poses. The input is a pair of meshes
(Mg, Mr). The preprocessing step consists of key frame
interpolation, intersection detection, and constraint genera-
tion.

Key frame interpolation. Our shape interpolation is based
on interpolation in gradient space (see [XZWBO05]). How-
ever, we could also use any other method for the generation
of key frames (see, e.g., [SP04,KG08, WDAH10]). Note that
the key frames may contain defects and artifacts. In fact, if
the target pose contains defective regions, the intermediate
key frames are likely to have defects, too. Figure 3 shows an
example for key frame shapes. Every surface refers to a time
step.

Vertex classification. We determine the surface points
V€ C V that refer to well-behaved regions as follows. Ini-
tially all surface parts are considered well-behaved, and we



36 Martinez Esturo et al. / Pose Correction by Space-Time Integration

initialize V° = V. Then we generate a number of key frame
surfaces and scan these meshes for self-intersections. (We
used 11 key frames in our examples.) We need to detect self-
intersections in all intermediate key frames — not only in
the target mesh — to capture the global support of evolv-
ing self-intersections. The intersection tests are performed
efficiently using a space hierarchy of axis-aligned bounding
boxes enclosing the triangles and exact geometric predicates
provided by the CGAL library [CGA09]. Whenever we find
self-intersecting triangles, their vertices and all vertices in
their 1-ring are removed from VC. Our experiments show
that the removal of one additional ring of vertices works
well in practice. Removing a larger neighborhood can lead
to smoother transitions between regions. However, there is a
trade-off between smoothness and reproduction. The classi-
fication can be modified manually to correct other types of
artifacts that are not detected automatically (see Figure 4 for
an example).

Space-time constraint generation. The key frames define
trajectories of vertices moving in space-time. For vertex po-
sitions x;(#;), j € V, we fit cubic C" spline curves ¢; such that
¢;(t;) =x;(t;). We use Hermite interpolation with tangent di-
rections approximated by finite differences w.r.t. time. The
trajectories ¢; can be evaluated at arbitrary times ¢ € [0, 1],
where ¢;(0) and ¢;(1) evaluate to points on the reference
and the target surface, respectively.

For vector field fitting we require sampling of positions
¢;(¢) to place RBF centers and sampling of tangents %c(t) =
¢(¢) to evaluate constraints. The space-time deformation
vector field is a 3D function on a 4D space-time domain,
f(x) : R* — R>. Given the vertex classification V° and
smooth trajectories ¢; we can define pointwise interpola-
tion constraints for the vector field function. Let y;(t;) =
(cj(ti),ti)T € R* be a point in space-time. Then we have
the interpolation condition f(y;(;)) = ¢;(#;). We denote the
set of constraints C as

c={ (v &) 7€V =1 i=0. s}

¢;(t) are the tangents to trajectories of vertices j € VE. We
used s = 12 for our examples.

4.2. Space-time Vector Field Fitting

Finding the space-time vector field which interpolates all
constraints in C is the most crucial step in our method. The
quality of the vector field directly relates to the quality of the
deformed shapes. Furthermore, fitting of a continuous space-
time vector field that is smooth and well-behaved between
constrained points dominates the runtime of our approach.

RBF interpolation. We represent the space-time vector
field as a sum of radial basis functions (RBFs) that interpo-
late the constraints: f(y;(#;)) = €;(;). Our four-variate three-
dimensional RBF model f: R* — IR? is defined by a set of

centers y; € R* and corresponding weights w; € R3:

fy) =Y w;0;(y) +7(y) -
J

The function ¢,(y) = ¢ (Hyj — yH) is the basic function cor-
responding to the jth center ¥;. We employ the triharmonic
kernel ¢(r) = r? In(r) in combination with a quadratic poly-
nomial m(y) € I, since then the resulting function f min-
imizes spline-like fairness energies and provides desirable
extrapolation properties.

In order to interpolate n constraints V = [vl,...,vn}T €
R™*3 (corresponding to ¢j(t;)), we place the centers
Y1,.--,Yn at the constrained positions (corresponding to
y;(t;)) and solve a dense linear system for the coefficients

of the basic functions W = [wy,...,wa]' € R”*3 and of the
quadratic polynomial U € IR">*3:

(o) (0)=(0)

® € R™" and IT € IR""*!5 are defined by ®;; = ¢;(y;) and
I;; = mj(V;), and {my,...,m5} is a basis of IT,. The 15
rows at the bottom augment the system with the orthogo-
nality condition mIw=0 (see [CBC*01)).

RBF center selection. The above system is dense, and we
are limited to a few thousand centers in practice. Therefore
the selection of centers plays a key role in RBF interpolation.
We propose an iterative strategy for center selection which
is an extension of the strategy used in [CBC*01]. The idea
is to satisfy a prescribed fitting accuracy € by selecting inter-
polation constraints.

Center selection is an iterative process. We start with the
two most distant space-time points in C as the initial set of
RBF centers. In each iteration we evaluate the fitting error,
and we stop if the maximum error drops below a treshold
g, i.e., if max{||f(y) —¢|* | (y,¢) € C} < &. In each itera-
tion, Carr et al. [CBC*01] enlarge the set of centers by the
m space-time points with highest errors. We extend the orig-
inal approach and add a farthest point sampling step: We
select the m most distant points within p candidate center
points with highest error, where p > m. We use a kd-tree
to partition the 4D space-time domain for efficient farthest
point queries. The rationale is to avoid generation of clusters
of centers that would lead to ill-conditioned linear systems
(see [BKO5b]). It turns out that our strategy significantly re-
duces the number of centers required to achieve a prescribed
error bound € and increases the numerical stability (see Sec-
tion 5). For all examples we used m = 128, p = 1024, and a
fitting accuracy of € = 10~*.d, where d is the length of the
spatial bounding box diagonal of the reference pose. The al-
gorithm terminated for all examples, i.e., the maximum error
is reduced until it falls below €.

We remark that numerical stability and convergence rate
of iterative fitting are additionally improved by the vertex
classification that excludes contradictory constraints.
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Blocked factorization update. For the factorization of the
resulting linear system we exploit symmetry and combine
center selection with the factorization of the system. This
way, we obtain an efficient update scheme for factorization.
In each iteration we update an (n+ 15) x (n+ 15) LU fac-
torization with partial pivoting of the RBF system which is
given as

Dy Il T
A= % =P'LUR.
(ng 0 v

The system matrix A corresponds to the n selected centers
of the previous iteration. The matrices P and R are permu-
tations (in the first iteration R =1I), L. and U are lower and
upper triangular. Permutations and triangular factors are up-
dated in each iteration. The current iteration leads to a new
(n4m+15) x (n+m+ 15) system A’, which incorporates
m additional centers. We rewrite A’ by first applying global
row and column permutations G to the new system matrix
A’ such that we can reuse the factorization of A:

Doog D1 Ilp

A C
A=[of, &, I :G(CT ® )G,
m ot o L1

where the block matrix CT = <<I>{Q IT 1) was substituted.

The new factorization of A’ = P'TL/ U’ R’ is then given by

T
oy #) (s 1) o) 1)e
0 P PS L/\0 U/\0 I
——— —— —— —— —
PT L [0 R’
Its evaluation requires back-substitutions with known trian-
gular factors to obtain S = C'RTU landT=L"'PC. A
complete LU factorization (with partial pivoting) PTLU =
@, | — ST is required only for a m x m matrix. (The sup-
plemental material to this submission contains details of the
derivation.)

After each iteration the RBF coefficients are found using
the updated factorization:

W\ omyu—tgi—1g [V
(U),RU L p(o),

where the matrix V contains the constrained tangent vectors
at the current centers. Blocked factorization updates improve
performance significantly as demonstrated in Section 5.

4.3. Space-time Shape Integration

The RBF interpolation defines a smooth vector field f in
space-time. Interpolation of space-time constraints ensures
both spatial and temporal continuity of f. We integrate this
vector field for all vertices of the reference surface start-
ing at time ¢ = 0, and we expect an approximation of the
target surface at + = 1. The idea is to reconstruct the tra-
jectories ¢;(t) of vertices j with path lines in f starting at
x;(0). For well-behaved regions, the path lines are close to
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Figure 5: Relocation of intersecting triangles. Deformation
results where triangles in e indicate the locations of inter-
secting triangles of the target pose. If possible, relocation
distance is minimal (b) while larger relocations are required
for deeper initial penetration distances (a).

the original trajectories, and integration ends in x;(1). How-
ever, as path lines never cross each other in space time (see,
e.g., [TWHSO05]) self-intersections cannot be reproduced —
instead they are repaired.

For the numerical integration we use a standard fifth or-
der Runge-Kutta integrator with adaptive step size control
(see, e.g., [PTVF07]). This integrator performed well in all
our experiments as the fitted vector fields turned out to be
very smooth. The computation cost is dominated by evalua-
tion of the RBF. To speed up computations we apply a paral-
lel implementation on the GPU based on NVIDA’s CUDA
framework. Compared to a parallel CPU implementation
on a quad-core processor we obtain a speedup of 320% in
double-precision compute mode. We apply the GPU evalua-
tion similarly for setting up the linear systems.

We remark that by using global vector field integration our
approach can only remove self-intersections that are not al-
ready present in the reference pose. Yet these do not impede
our method otherwise: after vertex classification we simply
re-add the corresponding vertices of the reference pose to
VC. Indeed, this way initial self-intersection are reproduced
with no effects on the remainder of our method.

5. Analysis and Results

In this Section we analyze properties of our approach and its
implementation and present results. Please see the accom-
panying video and additional material for more deformation
results and examples of continuously deforming time inte-
gration shapes.

Target shape reproduction. Our goal is to repair de-
fects. However, regions of the target mesh without any de-
fects should be reproduced. Our experiments show that our
method introduces geometric differences only locally at ver-
tices i ¢ Ve, Figure 6 shows an example were the overall
shape of the target cat pose is maintained while all self-
intersection are corrected. The example in Figure 7 shows
color coded local geometric differences of some target mod-
els and our repaired models. The regions which show high
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Figure 6: Shape reproduction. The shape of the target cat
model (®) is correctly reproduced in the non-intersecting re-
gions of the head, neck, back and tail. The close-ups show
the regions corrected by our method ().

0 0.08

Figure 7: Geometric differences. Shown are corrected sur-
faces generated by our method. The color code indicates the
geometric differences to the given target shapes. (Models
were scaled to the unit sphere to enable comparison). The
regions where shapes differ significantly are regions with
defects in the initial pose and which are repaired by our
method. The experiment confirms accurate reproduction and
smooth transitions to repaired regions.

geometric differences in the plots are regions which have
been repaired. All other regions are reproduced accurately.

Resolving intersections. Deformations of continuous
shapes guided by a smooth space-time vector field cannot
introduce new intersections of the shape during space-time
integration. The reason for this is that path lines, trajec-
tories of surface points in space-time, do not intersect.
In all our experiments there are no newly introduced
self-intersections. Figure 8 shows an example with non-

Figure 8: Resolving complex self-intersections. We compare
the given target mesh (e®) to the repaired mesh (). All self-
intersections which were not already present in the reference
pose have been successfully removed. The overall shape was
maintained.

trivial self-intersections. The left target shape contains 523
self-intersecting triangles. In contrast, our result on the right
contains 22 self-intersecting triangles in the ears of the
lion. All of these 22 self-intersections are already present
in the reference shape. Therefore, our method successfully
removes intersections which had been introduced by ini-
tially modeling the target shape. Figure 5 illustrates how
the surface regions of VC are relocated to their corrected
intersection-free rest positions. The corrections are pro-
portional to the penetration depths in order to dissolve the
self-intersections correctly.

Discretization. Integration cannot introduce  self-
intersections. This property holds strictly only for
integration of a continuous surface. In the discrete set-
ting, we are integrating only vertex positions, such that
we have to assume a sufficiently dense sampling of the
surface. However, none of our experiments suffered from
under-sampling and resulting self-intersections. This issue
is discussed similarly in [VFTS06] in a different context of
zero divergence implying volume preservation.

Benefits for subsequent processing. The motivation for
surface repairing is not restricted to improving visual ap-
pearance. Even more important is the improvement and sup-
port of other geometry processing methods which either suf-
fer from defects or strictly require “clean” surface meshes.
These are, e.g., methods based on nonlinear optimization.
Here, the numerical computations frequently rely on well-
behaved distribution of inner and dihedral angles. In our
experiments we examine the recent example-driven defor-
mation and interpolation approach [FB11], which applies
Gauss—Newton iterations for nonlinear optimization. The
optimization is sensitive to extreme dihedral angles (cor-
responding to local self-intersections) leading to increased
number of iterations or even failure of convergence. Our ex-
periments show that using the corrected poses the optimiza-
tion required up to 60% fewer iterations until convergence.
Moreover, for poses like the lion pose in Figure 7, the non-
linear optimization fails to converge for the original data but
converges for our results.

Timings. We compare our center selection scheme to the
scheme used in [CBC*01] experimentally in Table 1 (top).
All timings were measured on Linux PC equipped with a
quad core AMD Phenom II CPU running at 3.4GHz, an
NVIDIA GTX 460 GPU and 4GB of host memory. Our ex-
periments show that our scheme leads to better conditioning
of linear systems, which in turn leads to fewer centers and a
significantly faster overall fitting process. The plot in the bot-
tom of Table 1 demonstrates the runtime speedup achieved
when using our block factorization update scheme. Note that
the speedup rate grows super-linearly with the number of
centers.

In all our experiments, the preprocessing stage required
on average between 1.5s (lion), 1.9s (horse), and 2.3s (cat)
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Poses (|V]) [CBC*01] Ours

Lion (5 x 5k) 1x100/12k/22%x 10> 2x10°/2.7k/ 13
Cat (5 x 7k) 2x 10" /15k/3.4%x 103 2% 107 /4.5k /42
Horse (10 x 8k) 3 x 10'9/13k/3 x 103 7 % 10°/ 4.6k / 43
Goblin (86k) exceeds memory limit 6x 108/ 10k / 603
3 2 — T T T T T T T T T T T T T T T

Q | — Full solve |

= — Blocked update

: | 1

§ 0 1 I 1 1 1 1 1 1 1 1 1

1000 # Centers 2000 3000
Table 1: RBF center selection. Top: The table shows max-
imal condition number x(A;), average number of centers,
and average total run times for vector field fitting. We com-
pare the center selection scheme in [CBC*01] (left) and our
new scheme (right), with blocked factorization update and
GPU based evaluation. The rows show results for different
data sets (averages of multiple poses). All times are given in
seconds. Bottom: The plot compares our blocked factoriza-
tion update to traditional factorization.

for the smaller models; it required 19s for the goblin. Typical
timings for integration are 29s (lion), 32s (cat), and 39s for
the goblin (10k centers). Note that the integration does not
only depend on the number of vertices and centers but also
on the smoothness of the vector field: For instances integra-
tion required only 19s for the horse model.

6. Discussion

From a designer’s point of view self-intersections may in-
deed be desirable: they tend to generate a more natural vi-
sual appearance especially at joints of neighboring articu-
lated parts (see Figure 1), although the actual surface does
not represent the outer hull of a solid object anymore. How-
ever, we believe that other kinds of self-intersections (see
Figures 4,6,8) require corrections even for visual plausibil-
ity. This is especially necessary for multiple poses of a single
model as all interpolations or combinations of these shapes
would inherit the visual artifacts. Even more important than
visual aspects is the improvement of the triangulation in
view of further algorithmic processing stages. This is a cen-
tral goal of any mesh repair method. Our experiments show
that numerical properties of a typical non-linear mesh blend-
ing are significantly improved.

Our approach has several limitations. Self-intersections
that are already present in the reference pose are repro-
duced, they are not corrected. In order to guarantee no self-
intersections in the target, we require no self-intersections
in the reference. This is not a severe limitation because the
reference surface is usually modeled from scratch, and the
additional effort to manually remove defects is often not sig-
nificant.

Our method reproduces the shape of well-behaved re-
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Figure 9: Limitations. The example shows key frames with
opposing directions of motion. This leads to global self-
intersections in the interpolated key frames: the lion’s tail
moves through the leg on the way to the target pose; there is
no intersection between tail and leg in the target pose (top).
By construction, this situation cannot be reproduced by vec-
tor field integration. Instead, integration results in a partially
corrected (o) shape. The remaining regions are copied from
the original target (bottom).

gions. However, the reproduction is only nearly exact and
slight variations in the final vertex coordinates are possible
since the fitted vector field is only exact up to the error bound
€. Moreover, the tangent curves are only approximated in a
pointwise way by the interpolation constraints. Yet, if higher
quality reproductions are necessary the fitting error bound €
and the number of interpolation time steps s can always be
adjusted accordingly to improve the results.

Guaranteeing absence of self-intersections is a main fea-
ture of our method. However, this can also impose a fun-
damental limitation. Figure 9 shows an example where the
key frame interpolation generates a global self-intersection:
the lion’s tail moves through the leg. Generally, such self-
intersections can occur in practice. In a sense the input to in-
terpolation methods is ill-posed: these methods usually de-
pend on local surface properties such as isometry or bend-
ing energy, they do not incorporate global (or even seman-
tic) properties. Therefore, global self-intersection cannot be
avoided automatically in key frame generation. By construc-
tion, our method is unable to reproduce self-intersections in
space-time. So in the example, the lion’s tail cannot move
“through” the leg — it will always stay in front of the leg
while both regions are deformed. In such cases, we ignore
the result from surface integration for the affected region and
replace it instead by the corresponding region of the input
target mesh.

7. Conclusions

We presented a novel automatic approach to mesh repair,
which is tailored to the correction of a sequence of meshes
with same connectivity representing different poses of the
same shape. Our aim is to keep the mesh connectivity fixed;
this is in contrast to existing mesh repair methods. This sort
of mesh repair is important not only to suppress visual arti-
facts but also to improve numerical stability of further mesh
processing stages.
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Our approach to mesh repair is based on continuous mesh
deformation. The deformation is defined by space-time in-
tegration of a smooth vector field. This guarantees that the
deformation of the reference surface does not introduce self-
intersections in the desired target shape. Our approach is ef-
ficient thanks to first, an improved strategy to select basis
functions, second, a novel blocked factorization update, and
third exploiting the GPU. Experiments for a variety of ex-
amples confirm the effectiveness of the method.

The guaranteed avoidance of self-intersections is a main
feature of a space-time surface integration. However, this im-
poses also a limitation as self-intersections cannot be repro-
duced. At present we apply local modifications of the mesh
to handle such cases. A challenge for future research is to
avoid “collisions” leading to global self-intersections during
pose interpolation in the first place. Anther possible direction
is extension of the approach to space-time coherent remesh-
ing.
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