Vision, Modeling, and Visualization (2010)

ZIPMAPS: Zoom-Into-Parts Texture Maps

Martin Eisemann' and Marcus Magnor2

Computer Graphics Lab, TU Braunschweig, Germany

Abstract

In this paper, we propose a method for rendering highly detailed close-up views of arbitrary textured surfaces.
Our hierarchical texture representation can easily be rendered in real-time, enabling zooming into specific texture
regions to almost arbitrary magnification. To augment the texture map locally with high-resolution information,
we describe how to automatically, seamlessly merge unregistered images of different scales. Our method is useful
wherever close-up renderings of specific regions shall be provided, without the need for excessively large texture

maps.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [[.3.3]: Picture/Image
Generation—Computer Graphics [1.3.6]: Methodology and Techniques—Computer Graphics [1.3.7]: Three-
Dimensional Graphics and Realism—Computer Graphics [1.4.3]: Enhancement—

1. Introduction

In most interactive graphics applications, the scale at which
some 3D object may be rendered during runtime is a-priorily
unknown. For small-scale depictions, well-known mipmaps
[Wil83] avoid aliasing artifacts caused by fexture minifica-
tion. On the other hand, if a textured 3D object ought to be
displayed at a scale larger than the available texture map res-
olution, detail-deprived, washed-out renderings are the result
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Figure 1: Comparison between (a) standard mipmapping —
specific texture information is only provided up to a spe-
cific level; (b) clipmaps — texture information is loaded on
demand; (c) multiresolution textures — a quadtree structure
represents texture information at different levels; (d) our
zipmaps — a sparse representation to texture specific details
at high resolution.
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due to simple interpolation techniques. We address this prob-
lem of texture magnification.

Zoom-into-parts texture maps (zipmaps) enable rendering
detailed close-up views of specific texture regions. In con-
trast to recent approaches like Gigapixel images [KUDCO07]
or clipmaps [TMJ98], we don’t use a complete high-
resolution texture map; instead high-resolution texture in-
sets are seamlessly merged into low-resolution textures. We
show how zipmaps are almost as simple to use and render as
standard texture mapping.

As particular contributions our paper presents:

e a new hierarchical texture mapping scheme, called
zipmaps, which naturally supports enhanced magnifica-
tion of specific regions.

e a fast rendering algorithm for zipmaps, which enables ap-
plying zipmaps to arbitrary meshes in a single rendering
pass.

The remainder of this paper is organized as follows. After
reviewing relevant related work in Section 2 we introduce
our new zipmap textures in Section 3 and show how they are
applied and efficiently rendered. In Section 4 we exemplarily
show how to create zipmap textures. Section 5 presents our
results in detail before we discuss limitations and conclude
in Section 6.
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2. Related Work

Texture mapping was introduced in computer graphics as
early as 1974 as a very effective way to increase visual ren-
dering complexity without the need to increase geometric
detail [Cat74]. To overcome the aliasing problems appar-
ent when the texel-to-pixel ratio exceeds unity, also known
as minification, Williams introduced the mipmap represen-
tation [Wil83], a pre-calculated image pyramid at different
resolutions of the texture. Advanced variations, like ripmaps
[McR98] or fipmaps [BF02], solve this problem with even
higher quality, but at the cost of higher memory requirements
or slower rendering. Other possibilities are summed area ta-
bles or elliptical weighted average filters. A classic survey of
texture mapping can be found in [Hec86].

While the problem of texture minification is well solved,
the problem of texture magnification, i.e. if the view zooms
into a part of a texture, is still a very active area of research.

Interpolation: The standard and most simple approach,
which is still used in most computer games due to its sim-
plicity, is to linearily interpolate the color values between
neighbouring texels. Using a nearest-neighbour approach
results in blocky artefacts, while linear interpolation gives
blurry results.

Super-resolution: There are probably hundreds of papers
dealing with the problem of super-resolution, i.e. how to in-
crease texture or image resolution beyond the resolution pro-
vided (in the following we will use pixels and texels inter-
changeably to denote single image elements). Most of these
approaches are based on exemplar-images or learning-based
methods which derive images statistics from either the image
itself or a database of images [HJO*01, SnZTyS03, HCO04,
YWHMO8]. Other successful approaches make use of edge
and gradient information or combine these with learning-
based methods [FJP02, DHX*07, Fat07, SXS08]. Despite
good quality at moderate magnification of the images, super-
resolution approaches are usually far from real-time capable
and are not applicable to high magnification factors.

Texture Synthesis approaches create larger texture maps
from one or more small exemplar patches. One well-known
approach is the image quilting technique by Efros and Free-
man [EF01], in which a new image is synthesized by stitch-
ing together small patches of existing images. Kwatra et
al. built upon this approach by using a graph cut technique
to determine the optimal patch region to be used for synthe-
sis [KSE*03]. Constrained texture synthesis tries to guide
the texture creation process. The usual approach is to take
neighbour information of a pixel into account and minimize
some cost function which varies from approach to approach
[LHO5, RamO07].

For faster generation, tile-based approaches can be used.
While the creation of periodic texture tiles is relatively sim-
ple, the periodicity can be annyoingly apparent for certain
textures. Wang tiling can be used to allay this effect by cre-

ating patches, called Wang Tiles, which can be arranged to-
gether to non-periodically tile the plane [CSHDO3, Wei04].

All these approaches only synthesize textures at a spe-
cific scale, i.e. features are usually not enlarged or shrunk
in any way. In contrast Ismert et al. [IBG03] add detail to
undersampled regions in an image-based rendering setup if
more detailed versions of the same texture are available in
the image. Wang and Mueller present an approach where a
low resolution image guides the texture creation process for
the higher resolution details [WMO04]. Only recently Han er
al. have presented an approach that uses patches at different
scales for the synthesis process [HRRGOS].

The problem with any of these texure synthesis ap-
proaches is that they are only suitable for textures with rel-
atively similar repeating structures (though non-periodically
arranged). The addition of specific details at specific posi-
tions is not possible. Lefebvre er al. presented an interac-
tive approach to add small texture elements, called texture
sprites, onto an arbitrary surface [LHNO5]. While their im-
plementation is very memory efficient and allows for various
artistic effects it is less suited for rendering realistic details
into an existing texture, e.g. merging two photographs. Eise-
mann et al. [EESM10] presented an interesting approach to
fill this gap. They compute a dependency graph for an un-
ordered image collection and seamlessly merge the input im-
ages at different scales hallucinating details for regions not
covered by any input image.

Vector Textures: Texture maps are usually represented as
a collection of discrete image elements and are therefore al-
ways limited in representable spatial frequency. Instead of
using samples taken from the underlying texture function,
vector textures represent the function using resolution in-
dependent primitives. Tumblin and Choudhury save sharp
boundary conditions at discrete positions for every texel to
prevent some of the strong blurring apparent in usual texture
magnification [TCO4]. Sen uses silhouette maps to main-
tain sharp edges in the texture while blurring at smooth
transitions [Sen04]. A complete support for all primitives
of a SVG description in a vector texture was presented by
Qin et al. [QMKO8], building on their own previous work
in [QMKO6]. Recently Jeschke et al. [JCW09] showed how
to render surface details using diffusion curves onto arbitrary
meshes.

The drawback of vector textures is that they can only pre-
serve the low and very high frequency components, while
mid-frequencies and new details are not present in a close-
up view. This can give vector textures a quite cartoony and
unnatural look.

Large Textures: The most straight forward idea for pro-
viding detail in textures is to simply use large enough tex-
tures which are dynamically loaded on demand. But usually
hardware as well as bandwidth is limited, restricting tex-
tures to be of a certain maximum size. Tanner et al. address
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this problem by introducing clipmaps [TMJ98]. In this ap-
proach the necessary data at the best matching resolution
is loaded on demand depending on the viewers position.
This approach works particularly well for mapping height
fields [Hiit98,Los04], needed e.g. in geographic information
systems (GIS). Another work in this direction are the Gi-
gapixel images presented by Kopf et al. [KUDCO7]. A sep-
arate thread fetches the texture tiles of the Gigapixel images
needed for rendering.

In all these approaches only scenes are considered where
the needed data is in direct relation to the current view-
point, which makes texture prefetching possible because the
needed data does not change abruptly. However, this is not
always the case in general texture mapping applications.

Multiresolution and Compressed Textures: Multireso-
lution and multiscale textures represent textures by using a
hierarchichal representation. They most resemble our work
presented in this paper. In the early days hierarchical texture
representations were mostly used for multiresolution paint
programs [BBS94, PV95] where wavelet or bandpass rep-
resentations are used in a quadtree representation created on
demand. Finkelstein ef al. use binary trees of quadtrees to en-
code multiresolution video [FJS96]. Related to our work is
the approach by Ofek et al. [OSW97, OSRW97] and Mayer
et al. [MBB*01], who create a quadtree texture from a se-
ries of photographs. However quadtree structures might not
be the best representation for texture maps, as, depending on
the implementation, it may take up to log(n) texture look
ups, plus filtering might become more difficult, as neigh-
bouring texels might not be available. In contrast our ap-
proach can make use of the inbuilt hardware texture filtering
of the GPU. Kraus and Ertl divide an already given high-
resolution image (or 3D or even 4D volume) into a regular
grid of fixed sized blocks [KEO2]. The information residing
in these blocks is resampled into a common texture map, re-
ducing the size of blocks with only little information. The
grid then serves as an indirection table into the actual data
during rendering. Using the same texture for all patches may
however result in problems when applying mipmapping to
the texture. Lefebvre and Hoppe use a compressed adaptive
tree structure which allows for fast random access on cur-
rent graphics hardware while achieving large reduction in
memory requirements [LHO7]. The input however, is again
a given high-resolution image.

To overcome the need of explicit parameterization Benson
and Davis introduce octree textures [BD02]. Using an octree
instead of a quadtree allows for encoding the spatial relation-
ship directly in the position in the octree. It also overcomes
the problem of wasted texture space usually encountered in
classic 2D texture atlases [gDGPRO02, LBJS07].

3. Zipmap Rendering

Zipmap textures can be thought of as a sparse sample repre-
sentation of a large mipmap with almost arbitrary resolution,
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where only higher details for interesting parts of the texture
are saved in separate texture patches and are drawn on top of
each other during rendering (see Figure 1). Up to a specific
level n the whole texture pyramid is saved in a base level
mipmap texture, called the root. This way standard minifica-
tion methods can be used to prevent aliasing in cases where
the texels projected into image space are smaller than a sin-
gle pixel. To incorporate details for specific regions during
magnification, additional texture pyramids, called children,
are added at specific positions, if needed in a recursive man-
ner. Note that the base levels of these additional texture pyra-
mids do not necessarily need to be at the highest level of
the lower resolution image pyramid. This is beneficial for
more efficient rendering or if the detail samples have been
acquired at different time steps or from different viewpoints,
as the affected portions of the parent patch are hidden behind
the detail patches, as we will see later in Section 5.

The following is a description of the complete algorithm
for rendering zipmaps onto arbitrary meshes. An overview
of the complete process is also given in Figure 2. For render-
ing, the root and children are reassembled into a collection
of ordered texture patches. Each one is associated with a spe-
cific texture matrix M; which transforms texture coordinates
from the root to the i-th child patch for lookup. Essentially,
a zipmap texture is a simple collection of texture patches
which are rendered in a specific order to texture an arbitrary
surface. Patches containing the coarse overall information
are rendered first, while child patches containing details are
drawn later, on top of their parents.

Rendering: During rendering the color values C; from all
patches are acquired by multiplying the current texture coor-
dinate provided by the application with the texture matrices
of every patch separately. This transforms the texture coor-
dinate from the root patchs coordinate system into the child
coordinate system. A simple texture lookup fetches the cor-
responding color for the needed output pixel. In order to pre-
vent drawing child patches if the calculated texture coordi-
nates are outside the [0...1] range we can make use of hard-
ware texture clamping. The most efficient way to do this,
is to do the multiplication in the vertex shader and pass the
interpolated texture coordinates to the fragment shader. We
then compute the final color value of the rgba-quadruple C
by combining all texel rgba-values using the following sim-
ple formula:

C= Zw,-Ci , where (1)
i
wi=o; [ J(1—a;),
i>i

i.e. we simply mix the color value C; of a patch with the
already computed color according to the alpha channel of
the patch. So in most cases a new patch is simply drawn over
the old one, as most parts of the texture patches are opaque.

‘We can render up to 30 patches on a NVidia GeForce 8800
GTX, using GLSL, in a single render pass with this tech-
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Figure 2: Complete overview of the rendering technique us-
ing zipmaps. Applying zipmaps is almost as simple as plain
texture mapping. The incoming texture coordinates are mul-
tiplied with the zipmap texture matrices and can then be used
in the fragment shader for texturing.

nique, because 60 floats assigned to varying variables is the
limit. If a zipmap consists of more patches, we use a slight
variant of this strategy. In a first pass, the first 30 patches are
drawn and written to the framebuffer as described before.
Using multiple render targets, we also render the current
texture coordinates of the root patch into the red and green
channel of another buffer B;. which is initialized to zero be-
forehand, and set the alpha value to one, to mark affected
fragments. In the next pass, we bind the next texture patches
to the texture units plus the buffer containing the texture co-
ordinates. Now instead of rendering the whole textured mesh
again, we simply draw a screen filling quad and calculate the
texture coordinates of the children in the fragmentshader by
making use of Br. If its alpha value is zero, we discard the
fragment, keeping the old color value. Otherwise we mul-
tiply every M; with the queried texture coordinate from B¢
to calculate the correct texture coordinate for the i-th patch
and color the output fragment as usual. We can repeat this
process until every texture patch has been processed. If a de-
tail is repeatedly used at different positions, we simply use
different texture matrices M; for this texture. This method
is especially efficient for complex textured geometry or in
scenes with much occlusion.

Blending Patches: Current graphics hardware poses an-
other problem whenever texture patches are drawn on top of
each other. If texture values close to a patch boundary are
queried, hardware interpolation will not always be able to
query the correct texture value, which will create a seam-
less blending with the background, even if exactly the same
colors are used. This is due to the employed hardware in-
terpolation methods for border conditions which causes vis-

ible seams (Figure 3 left). We solve this problem by setting
the alpha-channel at the border of zipmap patches to zero
(Figure 3 right). We do this for every level of the mipmap
pyramids during the zipmap generation process, Section 4.
Another advantage of this approach is that patches becom-
ing smaller than one pixel in the output image simply dis-
appear and do not produce small pixel artefacts that would
otherwise be visible.

| il

Figure 3: Left: Close-up view with artefacts at patch bor-
ders (horizontal line in image middle). These appear even
if the actual texel values are the same for the patch and the
background. Right: Setting the alpha value to zero at patch
boundaries removes seams.

4. Zipmap Generation

One way to create zipmaps is of course by hand by an artist,
who arranges the input patches to his convenience. The nec-
essary transformation matrices are then computed and we
adopt the gradient-based blending technique of Eisemann et
al. [EESM10] to merge the images seamlessly. This step is
especially necessary if there is a large scale difference be-
tween the overlapping patches. We therefore establish a gra-
dient map I;.g for each color channel of the patch that is to be
drawn on top of another patch:

I8 = ||V |1 = |5, + |1, (2

where Iy and Jy are the gradients in x and y direction respec-
tively. The gradient-density map Iigdm is then created from
Iig by searching for each pixel the path with smallest cost de-
rived from the sum of the according pixels in Iig to one of
the border pixels. The final blending mask is then computed
using a combined thresholding and scaling:
Igdm
a:min(l.O,%) , 3)

where 159" is the maximum of the three color channels for
which the gradient-density map was computed. This blends
the patch nicely with most backgrounds. Of course, if re-
sults would be unsatisfying an artist could simply change
the blending mask by hand if needed.

Eisemann et al. [EESM10] also present a nice way to es-
tablish the relationships between images in an unordered

(© The Eurographics Association 2010.
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photo collection, which we adopt to our needs, to create
zipmaps from real-world footage. We first compute the hier-
archical relationship between images taken at different zoom
levels of the same object from which we want to extract the
texture. We do this by matching pairwise SIFT features and
estimating a homography to warp the images towards each
other. From these pairwise matchings, we can derive a de-
pendency graph depicting the hierarchical relation between
the images. From the dependency graph we can extract our
needed transformation matrix for each patch. The colors are
adjusted by solving a poisson equation with Dirichlet bound-
ary conditions following [PGBO03]. The boundary conditions
are given by a one-pixel border derived from the parent im-
age warped into the child image domain for each patch,
while the guidance field v for the poisson equation is given
by the gradient of the child image. The final blending is per-
formed in the same way as described before. For more de-
tails we refer the interested reader to [EESM10].

5. Results and Discussion

Zipmaps can be easily rendered in real-time, since only a sin-
gle matrix multiplication and one texture lookup per patch
are required. The memory requirements are in direct accor-
dance to the number and size of the input images used. No
additional information than the patches and their texture ma-
trices (offset and scaling) need to be saved. Since the child
patches are saved in relation to the root patch, the applica-
tion programmer only has to define texture coordinates for
the root patch, just as he would do with a conventional 2D
texture, making the zipmaps very easy to use in practice.

As test data, we have taken input images with a hand-
held camera. We cannot point out exact scaling differences
between the input images. However, we could robustly esti-
mate the homographies for an approximate scaling factor of
up to 12 (e.g. in the poster scene in Figure 4). Figures 4 to 6
show results of zipmap rendering.

On the top left, the input patches are shown. On the right
the zipmap texture is applied to different geometries, and
some close-up views from different viewpoints and different
distances are shown. The output screen resolution was al-
ways set to 1024 x 1024 pixels, so magnification is present
in most views. Our zipmap textures can be easily applied
to any kind of geometry. In Figure 4 we use a four patch
zipmap to texture a teapot. In Figure 5 and 6 we apply a
zipmap consisting of four patches, six patches respectively,
to a simple quad for illustration purposes. On the right, some
close-up views are shown. Zooming onto single droplets or
the knot-hole is now possible.For more examples see the ac-
companying video.

A typical approach in the games industry is to render de-
tail textures as textured detail geometry. While performing
an optimal amount of per-pixel work this approach has the
drawback of z-fighting, if the detailed geometry is too close
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Figure 4: Zipmap textures can be easily applied to any ge-
ometry just like conventional textures.

Figure 5: Zipmap of a facade with fountain. Time-varying
parts of the scene are merged into a common representation.

to the original or visible seams if the border handling is not
done correctly or the viewpoint gets too close. To prevent
these effects the geometry is usually cut into several non-
overlapping pieces, which is time-consuming and requires a
lot of manual work.
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Figure 6: A zipmap texture acquired from six photographs and applied to a simple quad.

6. Conclusions and Future Work

We have introduced the new concept of zipmaps, a method
for rendering detailed close-up views of textured surfaces.
Zipmaps are easy to use and efficient to render and can be
used with arbitrary images and kinds of textures, also normal
or displacement maps would be possible.

For future work we are investigating animated zipmaps
for video applications. Finally applying zipmaps to image-
based rendering techniques like the Unwrap Mosaics
[RAKRFOS] will open up other new intriguing possibilities.
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