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Abstract

The output resolution of imaging mass spectrometers is increasing rapidly due to advances in engineering and the
use of tiling. Imaging-MS data is often displayed as a total-ion-count (TIC) image; however, anatomical structures
are not easily identifiable from TIC images. For this purpose, additional high-resolution images that originate from
different imaging modalities, such as stained histological data, are preferred.
These modalities are most useful when fused; i.e., when the corresponding images are spatially aligned with
respect to each other. The viewing and analysis of such data is ideally performed in real-time and at the highest
possible resolution, allowing users to interactively query the combination of all fused data at the highest detail.
However, proper alignment between modalities and interactively presenting large volumes of data is as of yet a
challenge.
We present a system for the simultaneous viewing and analysis of high-resolution data from different imaging
modalities. Fusion is provided in such a way that interaction in one modality can be mapped to different modalities.
For example, anatomical structures can be identified from histological data and their spatial extent mapped to
a corresponding region-of-interest in the image MS data, allowing the analysis of its chemical compounds. In
turn, the MS data can be analysed and filtered, for example using multi-variate analysis such as PCA, and the
result mapped back to structures in other modalities. Level-of-detail, region-of-interest and asynchronous data
processing algorithms ensure that the system can be operated interactively at the highest resolution.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Tech-
niques I.3.8 [Computer Graphics]: Applications

1. Introduction

The output of a mass spectrometer consists of a set of mass-
to-charge ratios (m/z) of detected ions. A histogram of this
data is used to identify the elemental composition of the
sample. Image mass spectrometry produces such a set of
mass-to-charge ratios for each pixel in a 2D grid, allowing
one to analyse the chemical structure of the sample. The re-
sulting grid of m/z histograms is commonly visualized in the
form of a total-ion-count (TIC) image. For each pixel, a TIC
image maps the number of items in the corresponding set of
m/z values to an intensity value. Other methods of visual-
ization are based on various forms of multi-variate analysis
(MVA) on the m/z data, producing maps of chemically sim-
ilar regions.

Pathologists often want to analyse known anatomical
structures in a sample; however, these can not easily be iden-
tified from MS data alone. While TIC images give a rough
overview of the data, the only information conveyed is the
number of detected ions, which vary considerably due to de-
tector sensitivity and material hardness; therefore, it is hard
to reliably identify anatomical structures from TIC images.
An MVA analysis allows one to identify chemical but not
anatomical structure. Therefore, different imaging modali-
ties for the same sample, such as stained histology, are pre-
ferred to identify anatomical structures in the data. For these
different modalities to be most useful, they should be aligned
spatially.

The output resolution of image mass spectrometers is in-
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creasing rapidly due to advances in engineering and the use
of tiling. For example, the MS dataset that is used in this pa-
per consists of 128×128 tiles at a resolution of 256×256
pixels with a spectral resolution of 22 bit mass channels,
for a total of about one billion pixels. Since the sample size
is approximately 2cm×2cm, the resulting image fidelity of
such TOFSIMS experiments is close to 0.6 micrometer per
pixel. Similarly, the output of other imaging modalities often
exceeds the one gigapixel mark. This high image fidelity is
required to identify small molecular structures in the order
of micrometers, which would not be visible at lower resolu-
tions. Therefore, to avoid a significant loss of spatial infor-
mation, it is essential that all the data be viewed and analysed
at the highest possible resolution.

Furthermore, for effective exploration of the data, an inter-
active system is necessary so that the user can interactively
query the combination of all fused data at the highest detail.
It should be noted that at these high data resolutions, it is no
longer computationally feasible to perform classic multivari-
ate analysis on the entire data set. For the system to remain
interactive, different methods of analysis with reduced com-
putational cost need to be developed.

The combination of these observations leads to the follow-
ing requirements from a user’s point of view for a system to
view and analyse MS data:

• Operating at the highest resolution possible
• Interactive viewing and analysis
• Support for multiple fused modalities

We present an interactive multi-modal system satisfy-
ing these requirements. Fusion between modalities is pro-
vided in such a way that interaction in one modality can be
mapped to different modalities. A region-of-interest (ROI)
can be selected using brushing techniques and used in dif-
ferent modalities. For example, anatomical structures can
be identified from histological data and their spatial extent
mapped to a corresponding ROI in the image MS data, al-
lowing the analysis of its chemical compounds. In turn, the
MS data can be analysed and filtered, for example using
multi-variate analysis such as PCA, and the result mapped
back to structures in other modalities. Level-of-detail, ROI
and asynchronous data processing algorithms ensure that the
system can be operated interactively at the highest resolu-
tion. A sample of the system’s interface is shown in Figure 1.

2. Related Work

Many different methods of analysing MS data have been
proposed (e.g. [BGC03, GWC06]). Most of these methods
are based on multi-variate analysis, such as principle com-
ponent analysis (PCA). A disadvantage of these methods is
that they are computationally expensive, especially for mod-
ern high-resolution MS datasets exceeding a billion pixels.
Furthermore, MVA analysis does not directly take into ac-
count the spatial configuration of pixels. All m/z values are

treated equally in statistical fashion, irrespective of their po-
sition in the MS image. Furthermore, it is difficult to reliably
identify anatomical structure from MS data and its analysis.

The need to identify anatomical structure alongside chem-
ical molecular structure was previously noted by McDonnel
et al. [MvARvZD08]. They state that one of the principal
motivations for spatially resolved mass spectrometry is the
ability to correlate anatomical information provided by his-
tology with biochemical information provided by imaging
mass spectrometry. In this way, anatomical changes associ-
ated with a pathology and corresponding chemical molecu-
lar changes can be identified, advancing the understanding
of such processes.

Fornai et al. constructed a high-resolution molecular atlas
of successive tissue section of a rat heart [FKA∗10]. They
state that since the rat heart exhibits physiological charac-
teristic similar to those of humans, it is a key experimental
model in biomedicine. A future goal is to identify changing
tissue regions that are indicative of human heart disease, and
thus correlate the anatomy of the rat heart with that of a hu-
man. Therefore, this dataset is an ideal candidate for the test-
ing and development of the multi-modal system proposed in
this paper, which fuses anatomical data from other modali-
ties with chemical molecular data from MS imaging.

Interactively visualizing the large volumes of data origi-
nating from imaging mass spectrometers and microscopes is
still a challenging problem. With datsets consisting of sev-
eral billion pixel layers, the problem is closely related to
the visualization for geographic information systems (GIS).
Similar tiling and level-of-detail techniques have been used
here to implement a fully interactive system.

3. Methods

3.1. Basic system design

To meet the requirements proposed in Section 1 – interac-
tive, multi-modal and high-resolution – the technical sys-
tem design follows a number of guidelines. First, since the
viewing and analysis should be performed at the highest res-
olution for a multitude of potentially ultra-high resolution
images, the system should never attempt to load an entire
data model at the same time. To this end, a model-view ar-
chitecture is used where the view determines which parts
of the model are loaded. The model is responsible for load-
ing data from various modalities and caching it in memory
as efficiently as possible. Second, to support many different
modalities, as few assumptions as possible are made about
the type of data and how to display it, resulting in a sys-
tem that is easily extensible to new modalities. Third, since
different modalities have different resolutions, the system
should not be constrained by a single, uniform notion of
pixel size.

The view on the data can be translated and zoomed freely,
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Figure 1: Sample overview of the presented system. Four different imaging modalities have been loaded into layers and are
displayed side-by-side. From left-to-right, top-to-bottom the images represent stained histology, image TOFSIMS, microscopy
and a regular photograph of the same mouse-heart sample. At the bottom an m/z histogram is displayed for a selected ROI. The
MS data resolution is sub-sampled to 8k×8k for an image fidelity of about 2.5 micrometer per pixel. The histological data has a
resolution of 20k×20k with an image fidelity of 1 micrometer per pixel. Such high resolutions are essential for the identification
of small chemical structures.

which is realized by dragging with the mouse for translation
and using the mouse’s scroll wheel to zoom. Finally, rota-
tion is achieved by dragging the mouse and pressing the right
mouse button. Zooming and rotation are performed with re-
spect to the current cursor position, allowing one to intu-
itively zoom in on any part of the data. The data are orga-
nized in a set of 2D blocks, and the view determines which
parts of the data are visible and the size of their projected
area. Subsequently, the view requests the model to load these
blocks of data from disk. This loading is performed asyn-
chronously in a separate thread, so the view thread does not
become blocked after a request to load data. In the mean-

time, while the data is being loaded, the view uses a low-
resolution approximation of the data until the actual data be-
comes available. This ensure an interactive system, similar
to the mode of operation in Google Maps.

Currently three data formats are supported by our system:
regular image files in various formats, high-resolution tiled
TIFF images and mass spectrometry data. Regular images
are assumed to be of sufficiently low resolution that they can
be loaded in their entirety and require no special handling.
Tiled TIFF is a popular output format for ultra-high resolu-
tion images, for example originating from microscopes. This
format allows the loading of individual blocks of data as re-
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quested by the view. For the MS data we make use of a spe-
cial, in-house binary format. For every pixel, the number of
ion events for that pixel is stored. Following this data is a list
of all m/z values corresponding to ion events. The pixels are
stored in a space-filling curve according to their Morton- or
Z-order. The advantage of using Z-order for storage is that
scaling can be achieved efficiently by adding up consecu-
tive values on disk. The file also contains an index block that
points to the starting positions of blocks of data, so these can
be individually loaded.

The view determines which data are visible, but the actual
rendering is off-loaded to different display objects. These
objects make use of OpenGL and GLSL to render the data.
A texture format is acquired from the data model, after
which custom, programmable shaders are used to visualize
the data. This allows many different types of data to be dis-
played in a custom manner.

3.2. Features and system operation

The presented system consist of a number of key features,
which will be described next. All of these are based on the
basic system design as described in the previous section.
The view on the data is layer-based, meaning that differ-
ent modalities can be loaded into different layers, which
can then be displayed either side-by-side or in overlay mode
with configurable opacity. When the camera is moved, all
viewports are updated accordingly simultaneously. Interac-
tion, such as transformation and selection, can either be per-
formed on all layers or on a selected layer of interest. Side-
by-side viewing is especially useful for selection, where cor-
responding regions in both modalities are visible at the same
time. Viewing in opacity overlay mode is useful for check-
ing the alignment between modalities. This also allows one
to manually align different modalities.

Semi-automatic alignment is also provided in the form of
having to manually select corresponding feature points in
two modalities. The user achieves this by simply double-
clicking the mouse on corresponding points in different
viewports using side-by-side viewing. The system then de-
termines the transformation that best maps one cloud of fea-
ture points into the other and applies this transformation to
the layer, effectively aligning the modalities. There are sev-
eral ways to calculate this transform, but the method we have
implemented is based on the Amoeba algorithm for the un-
constrained optimization of a non-linear function [NM65].
Other methods, for example ones to solve the mean-centred,
orthogonal Procrustes problem [Eve97], could be used as
well.

Selection is performed by means of interactive brushing;
the user can drag a virtual paintbrush to select a region-of-
interest for analysis. This selection is either performed on the
currently selected layer or on all layers at the same time. Es-
pecially the latter mode of operation is useful in side-by-side

viewing to interact with the paintbrush in one modality and
automatically select a corresponding ROI in another, previ-
ously aligned modality. On the user’s request, the m/z data
for the selected ROI in MS data is fetched from disk by the
data model and then displayed in a histogram of m/z ranges.
The histogram either displays raw ion-event counts per bin
or, alternatively, the histogram can be normalized in such a
way that the area under the histogram or the length of the his-
togram vector equals one. Length normalization can be used
to subsequently compare m/z spectra by means of an inner
product [Alf04]. This allows the identification of chemical
compounds in the ROI.

Finally, a simple filtering mechanism on m/z ranges is
provided. The user can select a range of m/z values, and
for each pixel in the ROI, the percentage of m/z values in
the pixel’s histogram that fall within this range is mapped
to an intensity value. This is equivalent to integrating the
are normalized histogram over a user-selected domain. The
resulting intensity map is overlaid on the data and gives a
quick spatial overview of the concentration of certain chem-
ical compounds corresponding to the selected m/z range. Ex-
tensions to this filtering mechanism are described at the end
of Section 5.

4. Results

For system testing, we used an existing high-resolution data
set of a flash-frozen rat heart [FKA∗10]. The dataset consist
of several 12 ţm thick tissue sections that were cut with a cry-
omicrotome; however, we only used a single sample slice in
this paper. The samples’ dimensions are 2cm×2cm. The MS
data was produced by a Physical Electronics (Eden Praire,
MN) TRIFT-II time-of-flight SIMS (TOF-SIMS) using Au+
primary ions at a resolution of 32k×32k pixels. To increase
the ion counts per pixel of the MS data to acceptable levels,
the data was subsampled on-the-fly to 8k×8k by the model
loader, resulting in a spatial resolution of approximately 2.5
micrometer per pixel. The spectral resolution for the m/z val-
ues is 22 bits. Haematoxylin and Eosin stained histological
data with a resolution of 20k×20k pixels (1 micrometer per
pixel) was also acquired for these sections after TOFSIMS
analysis. Finally, 2346×2720 resolution optical images in
JPEG format as well as low-resolution photos of the frozen
sample are available. Full overview of the histology and MS
data are shown in Figure 2.

From Figure 2 it can be seen that it is difficult to identify
anatomical features from MS data. The problem becomes
especially apparent when zoomed in at higher resolutions,
as is shown in Figure 3. This part of the data is a zoomed-
in version of the outline shown in Figure 2. Features such
as cells can be identified in the histology data but not in the
MS data. Without a multi-modal, aligned viewing system, it
would be very difficult to determine cell distribution from
the MS data alone.

As a proof of concept, we describe a sample operation of

c© The Eurographics Association 2010.

286



F.A. Smit & R. van Liere & L. Fornai & R. Heeren / An Interactive, Multi-Modal Approach to Analysing Highres Image MS Data

Figure 2: A full overview of the used dataset. Stained histology data is shown on the left, while a TIC image of the MS data
is shown on the right. It is difficult to reliably identify anatomical features in the MS data. The non-uniform distribution of ion
counts is also apparent from the figure, which darkens towards the bottom of the image. The blue inset is shown magnified in
Figure 3.

Figure 3: A close-up view of the boxed inset from Figure 2. Stained histology data is shown on the left, while spatially cor-
responding TOFSIMS data is shown on the right in the form of a TIC image. The histology data clearly shows anatomical
structure that would be hard to identify in the TIC image.
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Figure 4: Stained histology and TOFSIMS data are aligned
and displayed at full resolution. Brushing has been used to
select the artery wall in the histology data and is automat-
ically mapped to the TOFSIMS data. The histogram at the
bottom shows the m/z data for this selected ROI.

selecting an artery wall and examining its chemical compo-
sition. The process is depicted in Figure 4. First, the artery is
identified from the histological data and viewed at full reso-
lution. Next, the histological and MS data are aligned using
the earlier described methods. A side-by-side view is chosen
to immediately see the effect of selection on both layers. The
user now selects the artery wall by brushing over it in the
histological data, causing it to be selected in both imaging
modalities. Finally, the mass histogram is updated to match
the selected ROI in the MS data. The whole process is per-
formed interactively at maximum resolution with multiple
layers loaded for a total viewed data size of over 7 giga-
bytes. When rapidly zooming in and out, the model loader
occasionally took up to a second to load the high-resolution
data, but overall no delays were noticeable during operation.
Also, because of the level-of-detail processing, a lower res-
olution view of the data was shown during loading periods,
so no perceptually disturbing artefacts were visible.

The display components for the images simply displayed
texture data as RGBA images. For the MS data we used
a component that displays single-channel TIC images. The
number of ion-events per pixel was loaded from disk and
mapped to a black and white intensity value. We noticed a
large deviation in ion-counts across the image. Detector sen-
sitivity proved not to be uniform within single blocks and
also changed between blocks, causing an uneven distribu-
tion of ion-counts. This can be seen in Figure 2, where the
intensity of the TIC image gradually degrades towards the
bottom of the image. The edges of the individual blocks can

also be distinguished. This shows once more that TIC images
are not the best candidate to identify anatomical features in
the data.

The alignment process proved to be non-trivial due to de-
formations in the samples for different modalities. We found
it best to align the different modalities specifically for a
smaller region of interest, resulting in high-quality align-
ments. Global alignment is still useful for a quick overview
of the data, but when selecting detailed features a high-
accuracy approach is required. Nonetheless, with some man-
ual adjustment it was possible to align features quite well.

We have demonstrated the system to a number of physi-
cists and pathologists in the department. Their first reaction
was that they were impressed with the high resolution views
of the data and the interactive speeds. Previously, they had
mostly worked with 256×256 pixel output images of PCA
analysis (78 micrometer per pixel), where detailed features
of the data were impossible to see. They claimed that even
though they knew the MS output data was of high resolution,
they lacked the software to analyse and view the data at these
resolutions. The interactivity and high detail of the system
promotes exploration of the data. Finally, the pathologists
were interested in the anatomy-based workflow; often, they
wish to determine chemical properties of specific, known
anatomical structures and are less interested in a global dis-
tribution of chemical compounds as found by MVA analysis
of the MS data.

5. Discussion

While the presented system succeeds in meeting the require-
ments described in Section 1, there is much room for fu-
ture improvement. First, the alignment between modalities
is currently a manual process; the user either directly aligns
the images or manually selects a set of points to be aligned.
Ideally, this alignment should be performed automatically
by the system. One possible way of achieving this is by us-
ing edge detection on both modalities and aligning the found
edges automatically. Alternatively, feature points could be
identified automatically and then be aligned. A problem with
this and the edge detection approach is that it is not im-
mediately obvious what constitutes a feature in different
modalities. For example, MVA analysis can be used to au-
tomatically identify chemical feature points in the MS data;
however, finding corresponding features in different types of
data, such as stained histology, which only contain color data
is a challenge. The problem is to determine which chemical
features map to which optical features. Most likely, this pro-
cess can never be performed fully automatically, but perhaps
with some user guidance it can be achieved. Such a semi-
automatic alignment algorithm would significantly ease the
process of alignment.

The image data from all modalities is currently two di-
mensional. However, several images from consecutive slices
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through a 3D object are available. It would be desirable to
load such a stack of 2D slices and transform them into a 3D
model. This transformation into 3D requires alignment be-
tween different slices. To perform this alignment automat-
ically, similar considerations as described in the previous
paragraph apply. An additional difficulty is that the slices
are now subtly different from each other, and feature points
found in one slice may not exist or be deformed in the next.
This may be solved by placing physical alignment markers
into the sample, but this does not help for data already pro-
duced without these markers. Furthermore, even with mark-
ers in the sample, deformations still pose a problem. Algo-
rithms designed to perform alignment between modalities
may be equally useful for constructing 3D models.

With multiple, ultra-high resolution images, the lack of
sufficient display resolution and surface becomes an issue.
The user interface should be designed in such a way that
display space is not an overly limiting factor. To this end,
the use of multi-display systems and multi-resolution sys-
tem may prove beneficial. Software solutions to maximize
the benefit of the available display space should also be ex-
plored.

Due to the introduction of tiling image mass spectrom-
eters and further engineering advances, MS data resolu-
tions are expected to increase still further over the upcoming
years. Pathologists would ideally be able to discern individ-
ual cells and even parts of cells on a sub-micrometer scale.
To achieve this, besides higher output resolution from mass
spectrometers, high-resolution visualization and analysis of
the data is essential. Low-resolution approximations for the
sake of increased computing efficiency – such as 256×256
pixel PCA analysis – is not sufficient for this purpose. Since
it is unlikely that such large datasets can be analysed inter-
actively in their entirety, it is important to develop localized
analysis methods that operate on regions-of-interest and take
level-of-detail considerations into account.

We have used only a simple form of filtering for the MS
data, but the system is easily extensible to different filter-
ing and analysis methods. MS data is usually analysed using
forms of MVA, such as principle component analysis (PCA).
While these methods succeed in identifying similarities in
the data, the analysis itself ignores all spatial information.
Different methods that use the available spatial information
may result in better analysis of the data. Another approach
is to use custom domain filters over the m/z range, as op-
posed to a simple uniform domain of integration. In this
way, the normalized histogram is convolved with a prede-
fined histogram of interest, resulting in an intensity map that
depicts how well the pixels’ histograms match a template
histogram. In this way, the filtering method is no longer re-
stricted to identifying individual peaks in the m/z data, but
can be used to determine the goodness-of-fit to complex his-
tograms. Such methods can also be used for finding feature
points for alignment.

6. Conclusions

We presented an interactive, multi-modal system for the
viewing and analysis of MS data that operates at the high-
est possible resolution. The unique aspects of this system
are that it manages to operate at very high resolutions while
maintaining full interactivity and that the analysis of the
data is linked between modalities. This was achieved using a
level-of-detail, tiling and region-of-interest selection to min-
imize the amount of data to be loaded and processed. Data
was loaded and processed asynchronously to avoid breaking
the interactivity of the system. The multi-modal nature al-
lows one to select anatomical features from different modal-
ities and analyse their chemical structure from the corre-
sponding MS data. These anatomical features would be hard
to identify using MS data alone. Finally, the physicists and
pathologists to whom we have demonstrated the system were
impressed with the high resolution and speed of interaction.
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