
The Minimal Bounding Volume Hierarchy

Pablo Bauszat1 and Martin Eisemann1 and Marcus Magnor1

1Computer Graphics Lab, TU Braunschweig, Germany

Abstract

Bounding volume hierarchies (BVH) are a commonly used method for speeding up ray tracing. Even though the

memory footprint of a BVH is relatively low compared to other acceleration data structures, they still can consume

a large amount of memory for complex scenes and exceed the memory bounds of the host system. This can lead to

a tremendous performance decrease on the order of several magnitudes. In this paper we present a novel scheme

for construction and storage of BVHs that can reduce the memory consumption to less than 1% of a standard

BVH. We show that our representation, which uses only 2 bits per node, is the smallest possible representation on

a per node basis that does not produce empty space deadlocks. Our data structure, called the Minimal Bounding
Volume Hierarchy (MVH) reduces the memory requirements in two important ways: using implicit indexing and

preset surface reduction factors. Obviously, this scheme has a non-negligible computational overhead, but this

overhead can be compensated to a large degree by shooting larger ray bundles instead of single rays, using a

simpler intersection scheme and a two-level representation of the hierarchy. These measure enable interactive ray

tracing performance without the necessity to rely on out-of-core techniques that would be inevitable for a standard

BVH.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geom-
etry and Object Modeling—Object Hierarchies I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Raytracing

1. Introduction

Ray tracing is one of the fundamental methods for image
synthesis in computer graphics. Due to the algorithmic ad-
vances in this field and more processing power, interactive
ray tracing is nowadays possible [PMS∗99, WBWS01]. The
biggest gain in efficiency is achieved by using acceleration
data structures, like kd-trees or BVHs.

The idea behind a BVH [RW80,KK86] is to subdivide the
primitives of a scene into possibly overlapping sets. For each
of these sets a bounding volume (BV) is computed and these
are arranged in a tree structure. The bounds of every node in
this tree are chosen so that it exactly bounds all the nodes
in the corresponding subtree and every leaf node exactly
bounds the contained primitives. Ray traversal then starts at
the root node and if a ray misses a BV in this hierarchy, the
whole subtree can be skipped.

Unfortunately, all common acceleration data structure can
use a significant amount of memory, especially if complex

models are to be rendered. Compared to other approaches
BVHs usually have the lowest memory requirements and a
precomputable memory footprint as shown in [WK06]. Sev-
eral approaches exist which try to minimize the memory us-
age by using one or more of the following methods:

1. Reduction of the information that is stored for each BV
2. Reduction of the precision of the data the BV is stored

with
3. Removal of child and primitive pointers by implicit in-

dexing
4. Increasing the branching factor, i.e., the number of chil-

dren per node, to reduce the total number of nodes in a
BVH

5. Compression of the hierarchy data

Hybrid techniques have been thoroughly investigated dur-
ing the last years which try to combine the benefits of
kd-trees and BVHs. Most of them are a variation of the
Bounding Slab Hierarchy by Kay and Kajiya [KK86]. Orig-
inally they used at least six bounding slabs to form a closed

c© The Eurographics Association 2010.

Vision, Modeling, and Visualization (2010)

DOI: 10.2312/PE/VMV/VMV10/227-234

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/PE/VMV/VMV10/227-234


Pablo Bauszat and Martin Eisemann and Marcus Magnor / The Minimal BVH

hull around an object. If these slabs are perpendicular to
the world coordinate axis, the BV is called an axis-aligned
bounding box (AABB). By saving the active ray interval,
one is able to estimate a hit or miss of a ray with a BV
even if it uses less than six sides. Common approaches use
one [Zac02, WK06, EWM08], two [WMS06, ZU06], or a
mix of different bounding slabs [HHHPS06]. This sparse
bounding slab representation may reduce the memory re-
quirements up to a third, compared to a standard BVH. But
not all of these approaches are able to prevent empty space
deadlocks, which we describe in Sect. 2.1, or need at least
some special treatment for them.

In standard BVHs the bounds of an AABB are stored us-
ing six floating point values.Mahovsky and Wyvill [MW06]
investigated a hierarchical scheme for encoding BVs in a
BVH relative to their parent node that reduces the storage re-
quirements by 63%-75%. They also noted that the computa-
tional overhead can be alleviated by tracing bundles of rays,
as whole frustra can be easily culled. Cline et al. [CSE06]
take a similar approach. They also use a hierarchical en-
coding scheme, compressing a node to 12 bytes, plus a
high branching factor of four and implicit encoding of the
child pointer due to a heap like data structure. Segovia and
Ernst [SE10] follow Mahovsky’s approach and use 4 bytes
per BVH node, but extend it in two important ways. Despite
compressing the triangle data as well, they store the BVH
nodes in clusters to reduce the size of all references to child
nodes and they use a two-level BVH which uses both un-
compressed BVH nodes for the top levels and compressed
nodes for the rest of the hierarchy. This idea of a two-level
hierarchy for compression was first presented in [LYTM08].
We make use of some of their techniques, allowing us to re-
duce the memory requirements to two bits per node.

Kim et al. [KMKY10] apply a compression algorithm to
reduce the memory footprint of a BVH. The algorithm in-
troduces a decompression cost during the traversal which
should result in a performance decrease. For large scenes
(especially scenes which cannot be rendered without out-
of-core techniques) this performance loss is canceled by the
possibility to keep the whole BVH in the main memory and
better cache usage. Their approach achieves a compression
ratio of 12:1, while we propose a technique that is able to
achieve a compression ratio of up to 101:1.

Though other factors like geometry, textures, etc. influ-
ence the memory requirements as well, we will concentrate
in this paper only on the acceleration data structure and
present the smallest possible representation on a per node
basis for a BVH. The other factors are left for further re-
search.

2. The Minimal Bounding Volume Hierarchy

We propose a minimal representation for a BVH which of-
fers the lowest memory consumption possible on a per node

Figure 1: Memory layout of the MVH. The nodes array con-

tains the inner nodes first and then the leaf nodes. Each node

itself is represented by only 2 bits. All other information is

reconstructed on the fly.

basis, without surface reduction deadlocks. In this paper we
present the Minimal Bounding Volume Hierarchy (MVH) as
a k-ary object partitioning scheme. Similar to BVHs a ray
traverses this tree in a top-down fashion. If it does not inter-
sect one of the nodes, the whole subtree can be skipped (see
Sect. 2.3). Standard AABBs used in BVHs usually encode
the following information in 32 byte structures: minimal and
maximal bounds, reference to the child nodes, is it a leaf or
inner node, number of contained triangles in case of a leaf
node, axis used for ordered traversal [WBS07] and the first
node that is to be traversed along this axis. We will show how
to remove or implicitly save all this information using only
2 bits per node plus very few global parameters. There has
been a lot of work over the years in compression of BVHs
and we would like to be able to leverage that work as much
as possible, adopting the implicit indexing from [CSE06]
and the 2-level BVH from [SE10].

2.1. Data Representation

A MVH is essentially a complete k-ary tree that is stored in
an array, and indexed like a heap. Every node is either a leaf
node or has k children. Node zero is the root node and for
any other inner node with index i its children are indexed
with ik + 1 to ik + k, we adopted this indexing scheme from
[CSE06]. In our examples we used k = 2.

We set a fixed number of primitives n per leaf node. This
serves several purposes. Firstly, no triangle count in the leaf
nodes is needed. Secondly, for each leaf node we can com-
pute the offset into the primitive array from its index i by

primID = (i− l)n ,

where l is the index of the first leaf node in the array. This
implicitly declares all nodes with an index smaller than l as
inner nodes, which is important for the traversal in Sect. 2.3.
This is visualized in Fig. 1.

During the construction of the MVH, described in

c© The Eurographics Association 2010.

228



Pablo Bauszat and Martin Eisemann and Marcus Magnor / The Minimal BVH

Sect. 2.2, every primitive in the left child is assured to con-
tain smaller or equal coordinate values than the primitives
in the right child with respect to the splitting axis. This way
we can get rid of the traversal axis and the index of the first
child node to test along that axis. Please note, that this is an
approximation of the real traversal axis. In a standard BVH
the traversal and splitting axis do not necessarily need to be
the same, but in most cases they are. Sect. 2.2 describes our
choice of the splitting axis.

After getting rid of all the child and primitive pointers the
next step is to minimize the information that is stored for the
bounding boxes of the nodes. In the common BVH all 6 slabs
of the AABB are stored. For each of the min/max slabs the
exact position is given. The AABB of a node and the AABBs
of the child nodes share at least six out of twelve slabs.
Testing these slabs would be redundant as already stated
in [EWM08, FD09] and can be omitted by saving the active
ray interval, i.e. entry and exit parameter of a ray r =~o+t ·~d.

The AABB for a node which exactly fits the primitives
encapsulated by the node is furthermore called the real

AABB of a node. Hybrid BVH techniques, as e.g [WK06,
HHHPS06, WMS06, ZU06, EWM08] reduce the memory
footprint for the AABB by only storing bounding informa-
tions for one dimension or even only one slab. The traversal
starts with the roots real bounding box which covers all the
primitives in the scene. Then for each traversal step the ray
is only tested against the new slabs. One can think of this as
the process of constantly reducing the size of the previous
bounding box using the slabs information stored in the tra-
versed node. The deeper the traversal steps into the tree the
more empty space is carved away and the smaller is the vol-
ume of the node’s bounding box. Notice that former hybrid
techniques stored the exact slabs positions as floating point
values.

For the MVH node we also store only one dimension of
the AABB, but we do not store the min and max slabs di-
rectly. Instead we use a fixed reduction factor ζ ∈ (0,1),
i.e. in each subdivision step the size of the AABB along the
splitting axis is either reduced by a constant factor or stays
the same if the reduction is not possible due to the underlying
geometry. For a given dimension we can reduce the parent’s
AABB volume by increasing the minimum slab, decreasing
the maximum slab or both. The four resulting bounding box
variants are:

1. No-Cut: if no surface reduction is possible for this node
2. Left-Cut: if the minimum slab is increased
3. Right-Cut: if the maximum slab is decreased
4. Both-Cut: if the Left-Cut and Right-Cut is used

For each node of the MVH we therefore only store the above
information requiring 2 bits. The 2 bits cover the four possi-
ble cases, see Figure 2, and we set the bits accordingly:

1. Bit 00: if none of the reduced AABB would include the
real bounding box

Figure 2: The image shows the cuts that are performed de-

pending on the node bits for the 2-dimensional case. The

black box is the previous bounding box, while the red box

represents the real bounding box (i.e. the bounding box that

encapsulates all the primitives of the node). The blue dot-

ted lines define where the previous box is cut and the min

and/or max slabs are replaced. Notice that the real bound-

ing box might be smaller than the bounding box used in the

MVH node. However the resulting virtual bounding box al-

ways includes the real bounding box and accordingly always

encapsulates all the primitives for the node.

2. Bit 10: The Left-Cut AABB includes the real bounding
box

3. Bit 01: The Right-Cut AABB includes the real bounding
box

4. Bit 11: The Both-Cut AABB includes the real bounding
box

One could even go one step further and reduce the infor-
mation stored to 1 bit by removing the Both-Cut and reduc-
ing the slab according to the splitting axis, i.e. the left child
of a node has either the same bounds as its parent or its maxi-
mum slab is decreased and the right child has either the same
bounds or its minimum slab is increased. A similar approach
was used in [WK06], though the slabs were saved with full
precision. Unfortunately this can lead to what we call an
empty space deadlock. In such a deadlock empty space can-
not be removed without introducing specialized or empty
bounding boxes. Figure 3 gives an example. This deadlock
can appear whenever objects are diagonally arranged. When
the objects are divided into subsets and only the maximum
slab of the left child and the minimum slab of the right child
is adjusted the resulting boxes will contain a large amount
of empty space. This empty space cannot be removed with
further subdivision, only split. It will therefore always stay
part of at least one child node down to the leaf nodes. Havran
et al. [HHHPS06] therefore made use of additional six-sided
AABB to solve this problem. It is possible to remove dead-
locks with even a 1bit representation, by cycling through the

c© The Eurographics Association 2010.

229



Pablo Bauszat and Martin Eisemann and Marcus Magnor / The Minimal BVH

Empty Space

Deadlock

Empty Space

Deadlock

Bounding planes

Group of primitives

Figure 3: An empty space deadlock example. If the left child

node is restricted to only adjust the maximum slab and the

right child node to only adjust the minimum slab, empty

space cannot be removed in certain arrangements by fur-

ther subdivisions. The empty space in the red boxes will al-

ways be part of at least one of the child nodes or subdivided

among them, but cannot be removed. The bounding boxes

have been slightly enlarged for better readability.

splitting axes depending on the level in the hierarchy, but we
refrained from doing so due to the tremendous performance
loss incurred. Therefore the additional bit is essential to be
able to carve away the empty space if necessary, as it allows
to carve away empty space on both sides of a splitting axis.

2.2. Construction

To ensure the applicability of all the memory reduction tech-
niques proposed in Sect. 2.1 we use an object median like
split strategy inspired by [CSE06] to build our MVH:

1. The total number of primitives P (or its indices) is ex-
tended by duplicating the last primitive until the number
of primitives is a multiple of the given fixed primitives
per leaf count n. This ensures that each leaf will contain
exactly the same amount of primitives.

2. The total number of nodes is computed. For a binary
BVH this is simply 2(P/n)−1.

3. For each node the number of primitives in the subtree
is computed. This is done in a two-step algorithm. First
the fixed primitive per leaf count is assigned to all leaf
nodes. Then the count for all inner nodes is computed
by summing up the count of its children in a bottom-up
manner.

4. Corresponding to the total number of nodes N, an array
of at least 2N bits is allocated, we use an array of 32-bit
integers.

5. The MVH is then built using an object median split where
the partitioning process uses the precomputed counts for
dividing the object list in two parts. For each node the par-
ent’s bounding box is cut using the three variants (Left-
Cut, Right-Cut and Both-Cut) and compared to the real
bounding box for the primitive list. If one of them is ap-
plicable the result is stored using the corresponding two

Figure 4: The left image shows a tree for a primitive count of

six, k = 2 and n = 1 built from a usual left-balancing object

median split. The right image shows the tree built with the

modified object median split. The tree is constructed in a way

that all inner nodes are stored first in the memory, followed

by the leaf nodes, and still is left-balanced.

bits in the nodes array. When a leaf node is reached, the
primitives or their indices are put at the appropriate offset
position in the primitive array. In each subdivision step
the longest extent of the approximated AABB is chosen
as the new splitting axis. The reduction factor ζ plus the
roots bounding box are saved as global parameters.

A comparison of our construction technique to a standard
object median split is given in Fig. 4.

A study on the influence of ζ is given in Sec. 3. If prepro-
cessing time is not crucial, ζ could be optimized using the
expected execution time for a BVH as described in [GS87].

2.3. Traversal

The traversal of the MVH resembles the traversal of a hy-
brid BVH [EWM08] with an additional bounding plane re-
construction step.In order to init the traversal, the active ray
interval is computed by clipping the ray against the root’s
AABB. For each traversed node we first reconstruct the
bounds of that node based on the corresponding bit represen-
tation and the approximated parent’s AABB. If the node is a
leaf node, the according primitives are tested. A leaf node is
reached when the index of the left child for a node is greater
or equal to the number of nodes in the tree. If any other node
is hit, we first reconstruct the approximated bounding plane
and adjust the ray parameters accordingly. To reconstruct
the splitting plane we only need to search for the axis of
the longest extent of the parent node. A simplified pseudo-
code for the intersection test is given in Fig. 5, the rest of the
traversal is similar to a standard BVH traversal scheme.

2.4. Two-Level MVH

Compressing a BVH node always leads to a significant over-
head and performance drop, compared to an uncompressed
BVH representation [Mah05]. There are two findings which
allow to improve the performance while maintaining a small
memory footprint:

1. In a balanced BVH half of the memory requirements are

c© The Eurographics Association 2010.

230



Pablo Bauszat and Martin Eisemann and Marcus Magnor / The Minimal BVH

float minTab[4] = { 0.00f, zeta, 0.00f, zeta };

float maxTab[4] = { 0.00f, 0.00f, zeta, zeta };

bool intersect(Ray& r, float& tHit,

int* mvhArray, int node, AABB& parent,

float tNear, float tFar){

// reconstruct AABB //

vec3 size = parent.max - parent.min;

char axis = GetAxisOfMaximumExtent(size);

char bitID = GetNodeCut(node);

if(bitID == 0){ return true;}

parent.min[axis] += size[axis]*minTab[bitID];

parent.max[axis] -= size[axis]*maxTab[bitID];

// intersection //

float tmin, tmax;

parent.intersect(r, tmin, tmax, axis);

float tNear = max(min(tmin, tmax), tNear);

float tFar = min(max(tmin, tmax), tFar);

return ((tNear<=tFar) && (tNear<=tHit));

};

char GetNodeCut(int node, int* mvhArray)

{

int iIndex = node » 4;

int iShift = (node & 15) « 1;

return ((mvhArray[iIndex] » iShift) & 0x3);

}

Figure 5: Intersection scheme for a single node of the MVH.

For the rest of the traversal (not shown here) standard tech-

niques with implicit indexing can be used.

used by the last level, as the number of nodes doubles per
level

2. Most rays will have to traverse the top nodes of the hier-
archy, therefore a good partitioning here is crucial for a
good performance.

We therefore create a two-level MVH. Such a two level ap-
proach was also successfully applied to BVH compression
in [SE10]. The top of the tree is is stored in an uncom-
pressed BVH format and we use the very efficient surface
area heuristic for subdivision [MB90, Wal07]. The leafs of
this BVH do not point to triangles directly but to a separate
MVH instead. We also save the offset into the primitive array
in this leaf node as well as the number of triangles per leaf.
Each MVH therefore only needs to save one additional in-
teger for its number of nodes despite the compressed nodes,
keeping the additional memory overhead very low. This way
the user is able to trade of performance vs. compression ra-
tio.

3. Results and Discussion

In this section we compare the common BVH with our im-
plementation of the MVH for rendering speed and memory
usage. We implemented the MVH in our own interactive ray-

tracing system which supports tracing single rays as well as
packets.

The statistics are taken on an AMD 5600+ 2.8 GHz Dual
core system with 2 GB Ram. The images are rendered com-
pletely on the CPU using both cores of the system. All ren-
dered images are of size 1024× 768 pixels. We tested our
MVH on a variety of different test scenes and compared it to
an optimized BVH using the surface area heuristic for con-
struction [MB90,Wal07]. Some of them are shown in Fig. 6.
The maximum number of primitives per leaf node was set to
four.

Memory Footprint: At first we compare the memory con-
sumption of the common BVH and the MVH, whose size
reduction is our main goal. In Table 1 an overview of our
test scenes and the memory usage for the BVH and MVH is
given. While for the MVH the number of primitives per leaf
node is fixed due to our specialized construction routine, the
BVH is built using the sophisticated surface area heuristic
(SAH) [MB90,Wal07]. For one primitive per leaf this would
result in a constant factor of 128:1, i.e., for all scenes a BVH
would consume 128 times more memory than our complete
MVH. If we let the SAH decide on the subdivision and when
to create a leaf node the ratio might de- or increase by a small
amount, due to the fact that more or less than four primitives
might end up in one leaf node.

Using the two-level representation of Section 2.4 results
in a small memory overhead but at tremendously increased
performance, see Table1. The influence of the ratio between
uncompressed levels and compressed levels in terms of
memory requirements and ray tracing performance is given
exemplarily for the Fairy scene in Figure 7. Note that even
at a level of 14 the memory requirements for our two-level
MVH is below 250kB compared to 1.91MB for an uncom-
pressed BVH (not all leafs of the two-level MVH are at level
14 due to the SAH, therefore the memory requirements are
below the 512kB for a complete tree).

For all of our tests we set the number of uncompressed
BVH levels to ten, which results in a memory overhead of at
most 35kB (32 kilobytes for the BVH nodes and one integer
for the global MVH information for each BVH leaf node).

Reduction factor: We investigated the influence of differ-
ent reduction factors for our test scenes. We choose 4 primi-
tives per leaf for all scenes and used packet ray tracing render
times with a complete MVH (without two-level acceleration)
for comparison. Fig. 8 shows the render times in seconds for
the different reduction factors from 0.1 (10% per cut) up to
0.5 (50% per cut). The best factor was usually achieved with
a value of between 0.35 and 0.30.

Different cuts on the higher levels of the MVH can influ-
ence the overall quality. This is the case with any greedy con-
struction scheme. Therefore, it may happen, that the function
is non-convex on the reduction factor, see e.g. the Sponza
graph in Fig. 8. However this is seldomly the case.

c© The Eurographics Association 2010.

231



Pablo Bauszat and Martin Eisemann and Marcus Magnor / The Minimal BVH

Bones Sponza Office Fairy

Cars Dragon Buddha

Figure 6: Scenes used to test the MVH performance.

Scene # Tris BVH MVH Ratio BVH:MVH 2-level MVH Ratio BVH:2-level MVH
Bones 4,204 70.75KB 0.51KB 100:1 26.59KB 3:1
Sponza 67,462 797.94KB 8.23KB 97:1 41.02KB 20:1
Office 385,376 1,636.50KB 47.04KB 35:1 72.71KB 23:1
Fairy 174,117 1,957KB 21.25KB 92:1 50.41KB 39:1
Cars 549,662 6,051.63KB 67.09KB 90:1 170.20KB 36:1
Dragon 871,306 10.44MB 0.11MB 101:1 142.08KB 75:1
Buddha 1,087,716 13.39MB 0.13MB 101:1 168.50KB 81:1

Table 1: Comparison of the memory consumption between a BVH, a complete MVH and a 2-level MVH with ten uncompressed

hierarchy levels.

Scene BVH MVH 2-level MVH
ts tt rt ts tt rt ζ Loss ts tt rt ζ Loss

Bones 2.5 1.3 0.10s 67.7 84.3 2.70s 0.3 1:27 3.2 2.7 0.16s 0.3 1:1.6
Sponza 39.2 16.7 0.98s 3,828 415 160.7s 0.3 1:164 159 196.6 7.35s 0.3 1:7.5
Office 26.1 63.3 1.42s 1,992 262 328.2s 0.4 1:231 110 153.6 5.11s 0.4 1:3.6
Fairy 21.0 10.5 0.56s 12,690 3,740 519.0s 0.35 1:926 72.4 83.9 3.46s 0.35 1:6.1
Cars 44.5 15.4 1.06s 4,461 1,943 221.0s 0.4 1:208 148.9 186.4 7.07s 0.4 1:6.5
Dragon 19.3 6.6 0.51s 2,081 1,676 66.8s 0.35 1:131 154.1 188.0 8.04s 0.35 1:15.7
Buddha 2.5 0.76 0.11s 311 262 10.37s 0.35 1:94 23.3 28.4 1.27s 0.35 1:11.5

Table 2: Comparison of the single ray traversal between a BVH, our MVH and our 2-level MVH. As expected the performance

strongly decreases for single rays. ts = traversal steps, tt = triangle tests, rt = render time. Number of intersection is given in

millions.

c© The Eurographics Association 2010.

232



Pablo Bauszat and Martin Eisemann and Marcus Magnor / The Minimal BVH

Scene BVH MVH 2-level MVH
ts tt rt ts tt rt ζ Loss ts tt rt ζ Loss

Bones 19.1 219 0.02s 316.4 369.9 0.06s 0.3 1:3 24.6 256.6 0.02s 0.3 1:1.09
Sponza 190.8 22 0.08s 1,542 3,393 1.87s 0.3 1:25 784.6 2,102 0.13s 0.3 1:1.71
Office 179.2 2,961 0.10s 25,002 7,895 3.26s 0.4 1:33 702.5 6,464 0.17s 0.4 1:1.74
Fairy 185.6 2,337 0.08s 49,250 8,114 3.83s 0.35 1:46 683.9 5,527 0.17s 0.35 1:1.98
Cars 332.9 2,671 0.12s 20,458 14,350 2.36s 0.4 1:20 1,067 6,996 0.23s 0.4 1:1.96
Dragon 391.0 4,399 0.15s 11,244 19,142 1.55s 0.35 1:11 1,777 15,468 0.40s 0.35 1:2.71
Buddha 281.3 1,191 0.10s 3,042 20,939 0.58S 0.35 1:6 882.6 11,155 0.25s 0.35 1:2.38

Table 3: Comparison of the packet traversal between a BVH and our MVH techniques. When using 16× 16 ray bundles the

overhead can be compensated to a large degree. Please keep in mind the drastic memory reduction of the MVH techniques.

ts = traversal steps, tt = triangle tests, rt = render time. Number of intersection is given in thousands.

4 5 6 7 8 9 10 11 12 13 14
0

0.5

1

1.5

R
e

n
d

e
r 

ti
m

e
s
 i
n

 s
e

c
o

n
d

s

Tradeoff Render Times vs. Memory Requirements

 

 

4 5 6 7 8 9 10 11 12 13 14
0

200

400

600

800

1000

1200

1400

1600

1800

2000

M
e

m
o

ry
 R

e
q

u
ir
e

m
e

n
ts

 i
n

 K
B

Number of uncompressed levels in the MVH

MVH Timings

BVH Timings

Memory MVH

Figure 7: Comparison between render times and memory

requirements for the Fairy scene using different numbers

of levels for the uncompressed BVH. Each leaf in the BVH

points towards a separate MVH. The memory requirements

for a complete BVH would be 2MB for this scene.

Performance: We compared the ray shooting performance
for both single and packet-based ray tracing using a simple
eyelight shader. As expected, the approximated AABBs of
the MVH lead to significant performance losses for single
ray traversal, see Table 2. However, when shooting ray bun-
dles the introduced overhead can be compensated to a much
larger degree, see Table 3. We use 16×16 ray bundles. Frus-
tum culling is used to skip nodes that are not hit by the packet
at all. We use the ranged packet traversal technique as pro-
posed in [WBS07]. The performance ratio of the MVH com-
pared to a BVH is obviously better with packet traversal than
for single ray traversal as expected. The rendering times for
a complete MVH are 3− 46 times slower than for a BVH.
This shows the drawback of the object median split, which
has a tough time to deal with large triangles and non-uniform
distributions. Using the two-level MVH, the rendering times
increase only by a factor between 1.09 and 2.71 to an opti-
mized BVH, but only a few kilobytes of memory are used.
We could even go on and increase the number of uncom-
pressed BVH nodes to improve the rendering times at the

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1

2

3

4

5

6

7

8

9

Reduction Factor

R
e
n
d
e
r 

ti
m

e
 i
n
 s

e
c
o
n
d
s

Dragon

Sponza

Bones

Buddha

Figure 8: Influence of the reduction factor ζ on the render

times.

cost of a worse compression, which is still better than any
published BVH compression published so far, to the best of
our knowledge. Note that for the more complex scenes, like
the dragon or Buddha more than 99% of the nodes are in
compressed format. This two-level representation is in fact a
very convenient way to tradeoff memory reduction for per-
formance.

We also tested our approach for more realistic shadings,
multiple light sources and shadows, as well as effects such as
reflections and refractions, to reduce to amount of coherency
in the ray directions. Some results are shown in Table 4.

Please note that all the given examples fitted into main
memory, even for the standard BVH. We expect the perfor-
mance ratio to improve strongly as soon as a standard BVH
including all primitves and additional information does not
fit into main memory anymore.

4. Conclusion

In this paper we proposed a scheme for a BVH-like acceler-
ation data structure which trades off rendering performance
for smaller memory consumption. The MVH has the lowest

c© The Eurographics Association 2010.

233



Pablo Bauszat and Martin Eisemann and Marcus Magnor / The Minimal BVH

Scene BVH MVH 2-level MVH
ts tt rt ts tt rt ζ Loss ts tt rt ζ Loss

Fairy 536.3K 8,250K 0.29s 104.6M 153.3M 11.8s 0.35 1:41 2,135K 35.4M 0.91s 0.35 1:3.11
Cars 1,221K 10,560K 0.56s 90.7M 921.6M 25.3s 0.4 1:45 5,612K 79.0M 2.29s 0.4 1:4.1

Table 4: Comparison of the packet traversal between a BVH and our MVH techniques with advanced shading effects. For both

scenes two point light sources were placed in the scene and whitted-style ray tracing is performed, including texturing. We

restrict the secondary rays to two bounces at the maximum. ts = traversal steps, tt = triangle tests, rt = render time.

per-node memory footprint ever proposed for an acceleration
structure that can still achieve interactive performance on
many standard scenes. We showed a specialized construction
algorithm which is based on the object median split and how
to modify the common BVH single ray traversal routines to
handle MVH traversals. While a complete MVH is probably
more of a theoretical than practical interest, the two-level
MVH approach gives us a convenient way to trade-off mem-
ory consumption for performance. The MVH is best used
for huge, static scenes with millions of primitives and for
systems with low memory resources, as it allows the render-
ing of much more complex models without using out-of-core
techniques.

For future work we would like to investigate the impact of
using more than two children per node, as this might not only
reduce the memory consumption even further, but might be
beneficial for a better subdivision, as well as tracing inco-
herent rays [DHK08]. Also an adaptive reduction factor per
level of the hierarchy might increase the rendering perfor-
mance. The additional memory requirements would be only
logk(N) floating point values for N nodes.

References

[CSE06] CLINE D., STEELE K., EGBERT P.: Lightweight
Bounding Volumes for Ray Tracing. Journal of Graphic Tools

11, 4 (2006), 61–71.

[DHK08] DAMMERTZ H., HANIKA J., KELLER A.: Shallow
bounding volume hierarchies for fast simd ray tracing of inco-
herent rays. Computer Graphics Forum (Proceedings of EGSR

2008) 27, 4 (2008).

[EWM08] EISEMANN M., WOIZISCHKE C., MAGNOR M.: Ray
Tracing with the Single-Slab Hierarchy. In Proceedings of Vision,

Modeling, and Visualization (VMV’08) (10 2008), pp. 373–381.

[FD09] FABIANOWSKI B., DINGLIANA J.: Compact BVH stor-
age for ray tracing and photon mapping. In Eurographics Ireland

2009 (2009), pp. 1–8.

[GS87] GOLDSMITH J., SALMON J.: Automatic creation of ob-
ject hierarchies for ray tracing. IEEE Computer Graphics and

Applications 7, 5 (1987), 14–20.

[HHHPS06] HAVRAN V., HERZOG R., H.-P-SEIDEL: On
Fast Construction of Spatial Hierarchies for Ray Tracing. In
IEEE/Eurographics Symposium on Interactive Ray Tracing 2006

(2006).

[KK86] KAY T. L., KAJIYA J. T.: Ray tracing complex scenes.
In Proceedings of SIGGRAPH ’86 (1986), pp. 269–278.

[KMKY10] KIM T.-J., MOON B., KIM D., YOON S.-E.:

RACBVHs: Random-accessible compressed bounding volume
hierarchies. IEEE Transactions on Visualization and Computer

Graphics 16, 2 (2010), 273–286.

[LYTM08] LAUTERBACH C., YOON S.-E., TANG M.,
MANOCHA D.: Reducem: Interactive and memory effi-
cient ray tracing of large models. Comput. Graph. Forum 27, 4
(2008), 1313–1321.

[Mah05] MAHOVSKY J.: Ray Tracing With Reduced-Precision

Bounding Volume Hierarchies. PhD thesis, University of Cal-
gary, 2005.

[MB90] MACDONALD D. J., BOOTH K. S.: Heuristics for ray
tracing using space subdivision. Visual Computer 6, 3 (1990),
153–166.

[MW06] MAHOVSKY J., WYVILL B.: Memory-conserving
bounding volume hierarchies with coherent ray tracing. Com-

puter Graphics Forum 25, 2 (2006), 173–182.

[PMS∗99] PARKER S., MARTIN W., SLOAN P.-P. J., SHIRLEY

P., SMITS B., HANSEN C.: Interactive ray tracing. In Symposium

on Interactive 3D Graphics (1999), pp. 119–126.

[RW80] RUBIN S., WHITTED T.: A 3-dimensional representa-
tion for fast rendering of complex scenes. In SIGGRAPH ’80:

Proceedings of the 7th annual conference on Computer graphics

and interactive techniques (New York, NY, USA, 1980), ACM
Press, pp. 110–116.

[SE10] SEGOVIA B., ERNST M.: Memory efficient ray tracing
with hierarchical mesh quantization. In Graphics Interface 2010

(2010), pp. 153–160.

[Wal07] WALD I.: On fast Construction of SAH based Bound-
ing Volume Hierarchies. Proceedings of the 2007 Eurograph-

ics/IEEE Symposium on Interactive Ray Tracing (2007), 33–40.

[WBS07] WALD I., BOULOS S., SHIRLEY P.: Ray Tracing De-
formable Scenes using Dynamic Bounding Volume Hierarchies.
ACM Transactions on Graphics 26, 1 (2007), 1–18.

[WBWS01] WALD I., BENTHIN C., WAGNER M., SLUSALLEK

P.: Interactive rendering with coherent ray tracing. Computer

Graphics Forum 20, 3 (2001), 153–164.

[WK06] WÄCHTER C., KELLER A.: Instant Ray Tracing: The
Bounding Interval Hierarchy. In Rendering Techniques 2006 (Eu-

rographics Symposium on Rendering) (2006), pp. 139–149.

[WMS06] WOOP S., MARMITT G., SLUSALLEK P.: B-KD Trees
for Hardware Accelerated Ray Tracing of Dynamic Scenes. In
Proceedings of Graphics Hardware (2006), pp. 67–77.

[Zac02] ZACHMANN G.: Minimal hierarchical collision detec-
tion. In VRST ’02: Proceedings of the ACM symposium on Virtual

reality software and technology (New York, NY, USA, 2002),
ACM, pp. 121–128.

[ZU06] ZUNIGA M., UHLMANN J.: Ray queries with wide object
isolation and the de-tree. Journal of Graphics Tools 11, 3 (2006),
27–45.

c© The Eurographics Association 2010.

234


