Vision, Modeling, and Visualization (2010)

Hardware Accelerated 3D Mesh Painting

Randolf Schirfig and Kai Hormann

Faculty of Informatics, University of Lugano, Switzerland

Abstract

In this paper we present a new algorithm for interactively painting onto 3D meshes that exploits recent advances of
GPU technology. As the user moves a brush over the 3D mesh, its paint pattern is projected onto the 3D geometry
at the current viewing angle and copied to the corresponding region in the object’s texture atlas. Both operations
are realized on the GPU, with the advantage that all data resides in the fast GPU memory, which in turn leads
to high frame rates. A main feature of our approach is the handling of seams. Whenever the brush overlaps two
or more patches, this situation is detected and the paint pattern is copied correctly to the corresponding texture
charts. In this way the operation of the projection into the texture atlas is completely reduced to a single texture
lookup. The performance is independent of the resolution of both the brush and the texture atlas as well as the

number of mesh triangles.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Bitmap and framebuffer
operations 1.3.7 [Computer Graphics]: Color, shading, shadowing, and texture

1. Introduction

A common way of storing data given on the surface of a
3D mesh is to write it to the object’s texture atlas [Low01].
And as the texture resolution dictates the sampling density,
current techniques usually fill the texture by sampling the
surface values on the mesh once for each texel. For large tex-
tures this can be very expensive and therefore undesirable, in
particular if the data on the mesh surface changes frequently.

An example of the latter is mesh painting, where the user
wants to draw with a brush onto the surface of a mesh and so
its texture atlas must be updated correctly and at interactive
speed. In this situation, a more natural approach is to work
the other way around, that is, to project and copy the brush
pattern into the relevant texels.

The aim of this paper is to describe a general technique for
realizing this mapping y: B — 7 from the brush B (given
as a bitmap) into the 2D texture atlas 7 of a 3D mesh M ef-
ficiently on the graphics card. In a nutshell, we decompose y
into a projection ©: B — M that maps the brush onto the 3D
mesh (see Section 3.3) and the parameterization @: M — T
of M which further maps into the texture atlas, where @ is
computed with any standard method [LPRMO02, LZX*08].
Combining both mappings then yields y = ¢ o.

The main difficulty of this approach is to correctly deal

(© The Eurographics Association 2010.

DOI: 10.2312/PE/VMV/VMV10/211-218

with texture atlases that contain more than one texture chart.
In this situation, the 3D mesh is split into several patches,
each with its own texture chart, which is generally unavoid-
able for complex meshes, both for topological and practical
reasons regarding parametric distortion [LPRMO2]. Now, if
the projection R = n(88) C M of the brush is a contiguous
region on the mesh surface that spans across k > 2 patches,
its image @(R) in the texture atlas is no longer contiguous as
it lies in different texture charts (see Fig. 4). We handle this
situation by mapping the brush into each of the separate tex-
ture charts that correspond to the k patches which intersect
with R. In order to realize this idea, we must enlarge the
charts by computing additional virtual texture coordinates
for the mesh vertices near the patch boundaries (see Sec-
tion 3.5). A nice consequence of using enlarged charts is that
the texture data is replicated in corresponding regions near
the chart boundaries in the texture atlas, which in turn helps
to avoid texture bleeding if bilinear texture filtering and mip-
mapping is turned on. Figs. 1 and 7 show some examples of
our approach.

Our technique is designed to nicely follow the flow of the
graphics pipeline and exploits the capabilities of every unit:
vertex processor, geometry processor, rasterizer, and frag-
ment processor. Once fed with the relevant data, it computes
the mapping W purely on the GPU, without needing to read

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/PE/VMV/VMV10/211-218

212 R. Schiirfig & K. Hormann / Hardware Accelerated 3D Mesh Painting

Figure 1: Overview of our method (from left to right): The first image shows the 3D mesh that the user wants to paint onto.
Note that it is segmented into several patches as becomes clear from the next image, which shows the content of the TexBuffer,
i.e. the interpolated texture coordinates for the mesh, colour-coded in the red and green components. The third image shows
the virtual texture coordinates of triangles near the seams. The colour coding is as for the second image and it can be observed
that they continue the texture coordinates of each patch across the seams into the neighbouring patches. The rightmost image
finally shows the result of a painting session; the corresponding texture atlas is shown in Fig. 2.

any data back from the graphics card, and it requires only a
single drawing step for any painting that is done.

A notable feature of our technique is that it treats the brush
as a contiguous object and does not simply project each sin-
gle pixel individually into the texture atlas. The latter ap-
proach would create holes in the texture if the texture has a
higher resolution than the brush, but our approach does not
suffer from such sampling artefacts. Moreover, the runtime
is independent of the mesh complexity.

1.1. Contributions
The main contributions of this paper are:

e We introduce the concept of a TexBuffer that contains the
2D texture coordinates of the 3D mesh in screen coordi-
nates and is used to realize the mapping Y by telling each
point in the brush B to which position in the texture atlas
it corresponds.

e We describe how to compute suitable virtual texture coor-
dinates for enlarging the texture charts.

e We use both concepts to ensure that the brush is projected
correctly into the texture atlas, even in the case when its
projection onto the 3D mesh overlaps one or more seams,
hence the brush must be copied to more than one chart in
the texture atlas.

Figure 2: Part of the texture atlas used for the rightmost
image in Fig. 1.

(© The Eurographics Association 2010.

R. Schiirfig & K. Hormann / Hardware Accelerated 3D Mesh Painting 213

2. Related Work

The first approach to mesh painting was presented by Han-
rahan and Haeberli [HH90]. They simply sample the brush
once for each vertex of the mesh and store the sampled val-
ues as vertex colours. This technique was introduced before
the rise of textures and has the disadvantage that the mesh
has to be very densely tessellated for visibly appealing re-
sults. A similar approach was later presented by Agrawala et
al. [ABL95].

The recent paper by Fu and Chen [FC08] proposes to draw
directly to the mesh triangles and even sub-sample the mesh
if it is not sufficiently tessellated for good results. This ap-
proach does not follow the design of modern graphics hard-
ware, which provides methods for reading such detail from
a texture. Other GPU-based techniques sample the whole
texture area, which is very expensive. Although this might
work at interactive rates with a small texture atlas, it be-
comes slower with increasing texture sizes or more than one
image per texture atlas if the mesh is very complex.

Other approaches simply process all texels of the whole
texture atlas by drawing all mesh triangles into the texture
atlas and sampling the corresponding screen triangles. If for
some texel the corresponding screen pixel is overlain by the
current brush, then the pixel is set to the colour of the corre-
sponding brush pixel, otherwise the texel is discarded. This
is completely done within the fragment program and there-
fore quite expensive since it operates on many pixels that are
actually not get drawn to.

Igarashi and Cosgrove [ICO1] follow this idea but intro-
duce an intermediate step for storing the colour from a paint-
ing session in a frame buffer object that covers the whole
screen. This is sufficient as long as the camera does not
change and appears to the user as if the paint had already
been copied into the texture atlas and texture-mapped back
on the mesh surface. But the colour is actually only copied
into the texture atlas of the object (by the method described
above) whenever the camera moves. The main drawback of
this approach is that it is bound to screen resolution. When
the brush resolution exceeds the screen resolution, it can
therefore not be copied without loss into the texture atlas,
even if the resolution of the latter allows for the brush to be
stored in full resolution.

Another paper that uses the GPU for rendering was pre-
sented by Ritschel et al. [RBMO06]. They propose to store
geometry images in a texture atlas which is then used to ren-
der the object and allows for interactive surface changes by
painting on the mesh. But this paper is restricted to Catmull—
Clark subdivision surfaces, because it relies on the specific
connectivity information that is induced by the hierarchy of
these surfaces.

The technique described by Lefebvre et al [LHNOS5] is
designed to draw on meshes that do not possess a parameter-
ization. Therefore the paint information is not stored in a tex-

(© The Eurographics Association 2010.

Figure 3: A small collection of brushes used for the example
in Fig. I and brush geometry for n = 8 (rightmost image).

ture atlas but instead in a 3D texture. For painting as well as
for rasterization this method uses an octree which is handled
entirely on the GPU to guarantee fast access to the texture.
The advantage is that it does not require any precomputed
parameterization into a texture atlas. On the other, a 3D tex-
ture requires a lot of space in the graphics card memory. An-
other drawback of this approach is the limitation of the max-
imum texture resolution. This limitation does not apply to
our method because it could easily be extended to work with
multiple 2D textures per model, and then the overall texture
resolution would be virtually unlimited.

3. The Algorithm

Let us start by fixing the notation used in the description of
our algorithm. The given 3D mesh M consists of vertices
P C R? and triangles T, and usually each vertex P € P has a
unique associated texture coordinate p € 7 in the 2D texture
atlas 7 C R%. These texture coordinates can be computed
with any standard parameterization method (see [HLS07]
for an overview) and we assume them to be given. In our
examples, we used the method of Lévy et al. [LPRMO2].
They induce the parameterization ¢: M — T, which lin-
early maps from each mesh triangle 7 = [Py, P}, P>] € T to
the corresponding texture triangle ¢ = [pg, p1,p2] C T

If the mesh is split into m > 1 patches M = M;U---U
M, each with its own texture chart 7;, then we occasionally
add the chart index i to texture coordinates and triangles in
order to emphasize to which chart they belong (e.g., pi eTi
ort/ C T}). Moreover, any mesh vertex P on the common
boundary of a pair of neighbouring patches M; and M ; has
two texture coordinates, pi and pj , one in each correspond-
ing chart, and likewise for the few vertices where three (or
even more) patches meet.

The brush B that is used for painting onto the mesh con-
sists of the brush texture (a general 2D image) and the
brush geometry, which is a simple regular 2D mesh with
(n+1)? brush vertices Q and 2n* brush triangles S; see
Fig. 3. The brush resolution n depends on the distance be-
tween the camera and the object and is chosen such that size
of the brush triangles is similar to the size of the mesh tri-
angles in screen space (see Sec. 3.4 for details). More for-
mally, we let the brush be the unit square B = [0,1] x [0, 1]
and consider the brush texture to be a mapping that speci-
fies a colour value Z(b) for any point b € B. Moreover, the
brush vertices are distributed on a regular grid over B, i.e.
Q = {(i/n,j/n) : 0 <i,j < n}, and so the whole brush is
covered by brush triangles, B = [Jgcg S.

214 R. Schiirfig & K. Hormann / Hardware Accelerated 3D Mesh Painting

Now the main goal of our method is to efficiently imple-
ment the mapping y: B — 7 on the graphics card and use
it to copy the brush texture Z(B) into the texture atlas 7.
This is done by first projecting each brush vertex Q € Q onto
the mesh M and then using the given parameterization @
to determine the associated texture coordinate ¢ = y(Q) =
(@om)(Q) of the projected point (Q) € M. Finally, we ex-
tend the mapping W from the brush vertices to the brush tri-
angles, i.e. for each brush triangle S = [Qg,Q1,0>] € S we
linearly map the brush texture Z(S) to the corresponding tri-
angle s = [q0,q1,¢2] in T.

3.1. Overview

We distinguish two possible user interactions: either the user
changes the camera position or the viewing angle, or uses
the brush to draw onto the mesh. In the first case, we

e draw the mesh on screen with texturing and lighting
turned on, so that the user sees what he is interacting with;

e draw the object again into the TexBuffer, which is a
FrameBufferObject (FBO) that stores the interpolated tex-
ture coordinates of the mesh (see Section 3.2).

On the other hand, when drawing onto the mesh, the user
moves a textured brush (see Fig. 3) with the mouse over the
screen and this image needs to be copied (or alpha-blended)
into the corresponding regions of the texture atlas, either
continuously (painting) or when the mouse button is pressed
(stamping). In order to do so, we

e draw the brush triangles on screen and texture them with
the currently chosen brush texture to show the user where
the brush is;

e read the corresponding texture coordinates for the brush
vertices from the TexBuffer and draw the brush triangles
again, this time into the texture atlas, using the texture co-
ordinates retrieved in the previous step (see Section 3.3);

e draw the mesh on screen with texturing and lighting
turned on (as above) with the new texture information cre-
ated in the previous step, so as to give the user feedback
of his drawing action.

Note that all steps can be done at interactive rates and depend
neither on the complexity of the mesh (number of vertices
and triangles) nor on the resolution of both the brush texture
and the texture atlas.

3.2. Initialization

At the start of the program, both the mesh M (including tex-
ture coordinates) and its texture atlas 7 are loaded. Since we
need to have write access to the texture on the graphics card,
we store 7 as an FBO. The texture can either be an existing
texture image or just an empty bitmap, set to a user-specified
background colour. An important feature of using an FBO
as texture is that FBOs allow to write negative values, and
hence support additive and subtractive image manipulation.

We further instantiate the TexBuffer (short for texture-
buffer) as a second FBO, whose size is identical to the win-
dow in which the 3D mesh is displayed. This TexBuffer
is used to store the interpolated texture coordinates of the
mesh and it is set up in a second rendering step whenever
the user has changed the camera settings. For each mesh tri-
angle T = [Py, Py, P,] that is rendered into the TexBuffer, we
let the rasterizer linearly interpolate the texture coordinates
Po, P1, p2 of its vertices, and let the fragment program write
the interpolated texture coordinate (u,v) € T into the red and
green component of the TexBuffer pixels (see Fig. 1). If the
mesh consists of two or more patches, then we further use
the blue component to store the index of the chart that each
triangle belongs to (see Sec. 3.4 for details).

Thus, the TexBuffer provides an efficient evaluation of the
parameterization @: M — 7T on the GPU: for any surface
point M € M that is visible from the current camera position
and hence has an associated screen coordinate (x,y) € N2,
we can simply get its texture coordinate @(M) by reading it
from the TexBuffer at the coordinates (x,y).

3.3. Painting

During a painting session, the goal is to quickly transfer the
brush texture into the texture atlas, and this essential part of
the program must be as fast as possible, because it is carried
out for every paint stroke. We implement this operation on
the GPU by rendering the brush geometry in the following
way.

Whenever a paint event is evoked, each brush vertex
Q € Q has a certain screen coordinate (x,y) that depends
on the current position, orientation, and size of the brush.
By associating with Q the surface point M € M that is vis-
ible at pixel (x,y) in the screen buffer, we effectively de-
fine a projection ®: B — M for each brush vertex with
7(Q) = M. Note that this merely describes the underlying
concept, but does not involve any computations. The real
action happens in the vertex program, where we read the
TexBuffer at (x,y) to retrieve the texture coordinate @(M)
of the surface point M and replace the coordinate (x,y) of Q
by @(M) before sending this brush vertex down the rest of
the graphics pipeline, along with its brush texture coordinate
(i/n,j/n) € B.

Aso(M) =@(n(Q)) = w(Q), this modification essentially
converts each brush triangle S = [Qp, 01, Q5] into the corre-
sponding texture triangle s = [go,q1,42], where g; = y(Q;).
By now rendering this triangle into the FBO that contains the
texture atlas 7, with texturing turned on, we effectively copy
the brush texture Z(S) that is given for each brush triangle S
into the correct portion of the texture atlas.

We should emphasize here that the brush triangles form
a contiguous cover of the brush, and so this way of imple-
menting the (piecewise linear) map y: B — 7 is guaranteed

(© The Eurographics Association 2010.

R. Schiirfig & K. Hormann / Hardware Accelerated 3D Mesh Painting 215

Figure 4: If the brush geometry (yellow square) is projected completely into one chart, then we simply map its brush vertices
into the corresponding texture chart (top row). However, if it overlaps a seam (bottom row), then we cannot proceed in this way,
as this would result in the wrong texture region to be filled with the brush texture (left). Instead, we generate two instances of
the brush triangles and map them to both corresponding texture charts, utilizing VTC (right).

to create a contiguous copy of the brush texture in the tex-
ture atlas. L.e., even if the resolution of the texture atlas is
much higher than that of the brush texture, it does not leave
any relevant pixels in 7 unpainted, as it could happen if we
would only splat the individual brush texture pixels into 7.

3.4. Seams

While the method explained in the previous section works
well if the mesh consists of a single patch, a slightly more
involved process is required for handling multiple patches,
which is the usual situation for any non-trivial mesh. It can
then happen that the brush overlaps two or more patches and
so the brush texture must be split and copied into two or
more disjoint regions in the texture atlas. We resolve this
problem on the level of brush triangles.

First of all, as mentioned in Sec. 3.2, we use the TexBuffer
to also store the chart indices of the visible mesh triangles.
So when looking up the texture coordinate g for some brush
vertex Q in the vertex program, we also get the more detailed
information that it belongs to some chart 7;, i.e. ¢ = qi. After
the primitive assembly, we then use a geometry program to
check if the current triangle s = [qf), q{ , qlﬂ is contained in a
single patch or spans across a seam by comparing the chart
indices i, j, k. If they are all the same then we just proceed as
usual (Fig. 4, top), but if two of them differ, say i # j =k,
then rasterizing s as it is would copy the brush texture for
this triangle to the wrong region of the texture atlas (Fig. 4,
bottom left).

Instead, the correct solution in this situation is to create
two instances s' = [q,4},45] and s/ = [¢},q],qj] of s and
to render them into the charts 7; and 7}, respectively (Fig. 4,

(© The Eurographics Association 2010.

bottom right). But how do we get the missing texture coor-
dinates g}, ¢}, g5 for setting up s and s/?

A straightforward solution is to simply enlarge each patch
M by adding a ring of triangles to its boundary before com-
puting the corresponding chart 7;. Thus, if M; and M are
neighbouring patches and T is a triangle in M; with at least
one vertex on the seam, then it gets two corresponding tex-
ture triangles 1 CTiand v/ C T;. While only the primary
texture triangle t is used for texturing T when the mesh M
is displayed, we need the secondary to provide the miss-
ing texture coordinates above. More precisely, when initial-
izing the TexBuffer, we store the interpolated texture coordi-
nates from ' and the index i as RGB values as described in
Sec. 3.2, but additionally store the interpolated texture coor-
dinates from ¢/ and the index j as RGB values in a second
colour attachment of the TexBuffer-FBO.

Then, if the brush triangle vertex Qy is projected into this
triangle, ©(Qo) € T, we first fetch its primary texture co-
ordinate g, from the TexBuffer in the vertex program as
in Sec. 3.2. If the geometry program later detects a seam
overlap, we look up the secondary texture coordinate q(j)
in the same way from the second colour attachment of the
TexBuffer in order to correctly set up the triangle s/. Of
course, the same strategy is applied to get the secondary tex-
ture coordinates q’i and qé of the other two brush triangle
vertices which are needed to specify s'. Note that all this can
be realized in the geometry program with just a single con-
ditional branch and is thus very efficient.

Near a mesh vertex P where three mesh patches meet, it
can even happen that the vertices of a single brush triangle
are mapped into three different texture charts. In this case,

216 R. Schiirfig & K. Hormann / Hardware Accelerated 3D Mesh Painting

(a) (b) (©)

(@)

Figure 5: From left to right: chart of a mesh patch (a); VTC of neighbouring triangles with one seam edge (b); initial VIC of
remaining vertices in the one-ring (c); result of optimizing the one-ring (d); initial VTC of vertices in the two-ring (e); result of
optimizing the two-ring (f). Note how the optimization untangles the triangles and reduces the distortion.

we need to create three instances of s, which in turn requires
to store another secondary set of texture coordinates plus in-
dex for all mesh triangles in the one-ring around P, and we
simply use a third colour attachment to the TexBuffer for
storing and accessing this data.

Even with this method of texture chart enlargement,
it may occur that the secondary texture coordinates,
which are needed to specify the several instances of a
seam-overlapping brush triangle, are not available in the
TexBuffer. For example, this can happen when the brush tri-
angles are relatively big compared to the mesh triangles (in
screen space) and then one of its vertices may end up be-
ing projected into a mesh triangle that is not adjacent to the
seam and hence has no secondary texture coordinates in the
neighbouring patch (compare Fig. 1).

Our solution to this problem is twofold: first, we enlarge
the patches not only by a single ring of triangles, but rather
add two or even three rings around the boundary of each
patch; second, we adapt the brush resolution 7 so that brush
triangles and mesh triangles are of similar size. E.g., if the
mesh is far from the camera, we need a high resolution of
the brush, while a brush with two triangles is sufficient if the
user has zoomed very close to the mesh.

3.5. Virtual Texture Coordinates

Although the idea of providing secondary texture coordi-
nates by enlarging and parameterizing the mesh patches as
described in the previous section works conceptually, it has
two major disadvantages:

1. It is often the case that a parameterization is given and
can or should not be changed, for example, when a user
wants to modify an already existing texture atlas.

2. By parameterizing the enlarged patches individually, it
can happen that distortion across a seam edge between
patches M; and M is different in the corresponding
charts 7; and 7;, and this can yield a severe texture mis-
match on both sides of the seam when mapping the tex-
ture back to the mesh as shown in Fig. 6.

We overcome both disadvantages by enlarging not the
patches, but rather the charts of a given parameterization

(without modifying them) and by taking care of maintaining
the same parametric distortion around corresponding chart
boundaries. In order to distinguish the secondary texture co-
ordinates computed by our method from the ones obtained
by simply parameterizing enlarged patches, we call them vir-
tual texture coordinates (VTC). While computed difterently,
VTC are utilized by our method exactly as explained in the
previous section.

Suppose M; and M ; are neighbouring patches and that
[Py, P] is one of the seam edges on their common boundary.
Adjacent to this edge are the two triangles 7} = [Py, P1, P>] C
M;and T, = [P3,P,,P|] C M, with corresponding texture
triangles 71 = [ph, p, pb] C T; and 1 = [P}, p},pi] C Tj. ac-
cording to the given parameterization. In order to compute
the VTC p}, of Py in T; we

1. rotate T} about the common edge [Py, P>] so that the ro-
tated vertex Py and 7> lie in the same plane;

2. determine the barycentric coordinates of P, with respect
to Ty, i.e. we compute Ay, Ay, A3 such that By = Y3_, APy
and Zl%:l M=1;

3. set p{) = 2221 kkpi.

In this way, the quadrilateral ¢ ; = [p{, p{, p, p3] is an affine
image of the quadrilateral [Py, Py, Ps,P,], and by comput-
ing the VTC pg of P3 in 7; analogously, we guarantee
that the parametric distortions across the two correspond-
ing chart boundaries [p’i7 p’2] and [p{ , pé} are compatible.
That is, if we copy the brush texture into both quadrilater-
als O; = [ph, pi, ps, pb] and O ; as described in Sec. 3.4 and
illustrated in Fig. 4, and texture the mesh triangles 77 and 7
with the texture information stored in r} and 13, then these fit
perfectly together along the common edge [Py, P»], because
¢ and O are just affine images of each other (see Fig. 6).

While this fixes the VTC for the vertices of all triangles
with one edge on a seam (see Fig. 5 b), there usually remain a
few more vertices in the one-ring around each patch bound-
ary for which we still need to specify a VTC. For example,
if [Py, Py] and [Py, P,] are two successive seam edges with
adjacent triangles [Py, Py, P3] and [Py, P>, P4] and two trian-
gles [Py, Ps, P3], [P1, Py, Ps] in between (all in the same patch
and on the same side of the two edges), then the previous

(© The Eurographics Association 2010.

R. Schiirfig & K. Hormann / Hardware Accelerated 3D Mesh Painting 217

- |

Figure 6: It is important to calculate the VTC very carefully.
If the parametric distortion to both sides of the seam is not
compatible, then the painted pattern gets strongly distorted
when mapped back to the mesh (left), otherwise it works out
nicely (right).

algorithms determines VTC p3 and p4 for P; and Py, but not
for Ps.

We first initialize this missing VTC by a simple linear in-
terpolation ps = (p3 + p4)/2, and similarly if there should
be more missing VTC between p3 and p4 (see Fig. 5¢). We
then minimize the parametric distortion for the affected tri-
angles [Py, Ps,P3] and [Py, Py, Ps] by applying a few itera-
tions (10 to 15) of the ARAP method [LZX*08] to get an
optimized VTC ps (see Fig. 5d).

The whole procedure can be repeated to add more rings
of VTC to each chart (see Fig. 5e,f), with the only differ-
ence, that from the second ring on, all added VTC can be
optimized by the ARAP method, as only the VTC that were
computed in the very first step above are constrained to re-
main unmodified so as to guarantee compatible distortion
across the seam edges. The only case in which we deviate
from this condition is when some of the initially computed
virtual texture triangles overlap each other, which happens
very rarely (less than 1%). Then we include the VTC that
cause the overlap into the ARAP optimization so as to get
rid of the overlap.

4. Discussion

Our mesh painting algorithm stands out for three reasons:
first, the underlying brush geometry guarantees that the
brush texture is copied correctly into the texture atlas, re-
gardless of the resolution of both the brush and the atlas. If
instead we would project the individual texels of the brush
texture into the texture atlas, then two errors are likely to
occur:

e [f the brush texture has a higher resolution than the tex-
ture atlas, then several brush pixels might get projected
onto the same texture pixel, resulting in an “overdraw”
of that pixel, so that the texture will look irregular. This
cannot happen when using brush triangles, because the
graphics card discards triangles that cover only a single
texture pixel.

(© The Eurographics Association 2010.

e If the brush texture has a lower resolution, then the pro-
jected pixels may lie far away from each other in the tex-
ture atlas, thus creating a grid pattern with gaps in be-
tween. Again, this cannot happen when using brush trian-
gles, because the brush is always copied contiguously into
the texture atlas this way.

Second, our method nicely handles the problem of seam-
overlapping and provides a simple way of projecting a con-
tiguous area from screen space correctly into the texture at-
las, even if this area spans across several patches and thus
needs to be mapped to several charts at separate locations in
the texture atlas.

Third, all steps of our technique are implemented exclu-
sively on the GPU, including all data access, which avoids
expensive read back operations of data into the RAM. It ex-
ploits the natural flow of the graphics pipeline (vertex —
geometry — fragment program) and needs to write only
into those pixels of the texture atlas that are affected in each
paint event, instead of testing for all texels whether the cor-
responding surface point is below the brush or not. All this
leads to interactive frame rates (more than 60 fps) on a mod-
est Nvidia 9600 GT Mobile graphics card and is basically
independent of the mesh complexity (number of vertices and
triangles) and both the size of the brush texture and the tex-
ture atlas.

A nice feature of our method is that we can also handle the
case where the user wants to draw onto more than one mesh,
each with its own texture atlas. Using the MultiDrawBuffer-
extension of FBOs, we can easily have the texture FBO con-
tain more than one colour buffer, and the fragment program
that manages the copying of the brush texture into the tex-
ture atlas can decide into which texture to map, depending
on the mesh which is currently being painted. It receives this
information from the geometry program.

4.1. Limitations

Despite the advantages of our method, it also has two limita-
tions. So far, we do not handle the situation where more than
three mesh patches meet in a common mesh vertex. This
could in principle be handled by adding further colour at-
tachments to the TexBuffer, but would require a much more
complex (and slower) geometry program for distinguishing
all the different situations that can occur in the case that a
brush triangle overlaps this common mesh vertex. Moreover,
our method of choosing the brush resolution adaptively may
fail, if the mesh triangles are very non-uniform in size, so
that a cluster of very small triangles resides next to a very
large triangle on opposite sides of a seam. Then, adding
any fixed number of VTC rings around the chart boundaries
might not be enough to ensure that every brush vertex of a
seam-overlapping brush triangle can read the required VTC
from the TexBuffer.

218 R. Schiirfig & K. Hormann / Hardware Accelerated 3D Mesh Painting

Figure 7: Two views (top and bottom row) of a mesh that
has been painted with our method. The left side shows the
content of the first layer of the TexBuffer, the right side shows
the textured model as displayed to the user.

4.2. Future Work

We would like to extend our technique for “surface aware”
painting, in which the geometry program would not project
the brush triangles onto the mesh but rather unfold them onto
the real mesh surface. This would add a naturally looking
distortion to the painted texture and might be very useful in
certain drawing situations, for example when painting on a
surface that models a folded cloth.

References

[ABL95] AGRAWALA M., BEERS A. C., LEvoy M.: 3D
painting on scanned surfaces. In 13D ’95: Proceedings of
the 1995 Symposium on Interactive 3D graphics (1995),
pp. 145-150. 3

[FCO8] Fu Y., CHEN Y.: Haptic 3D-mesh painting based
on dynamic subdivision. Computer-Aided Design and Ap-
plications 5 (2008), 131-141. 3

Figure 8: Texture atlas for the mesh in Fig. 7.

[HH90] HANRAHAN P., HAEBERLI P.: Direct WYSI-
WYG painting and texturing on 3D shapes. SIGGRAPH
Computer Graphics 24, 4 (1990), 215-223. 3

[HLS07] HORMANN K., LEVY B., SHEFFER A.: Mesh
parameterization: Theory and practice. In SIGGRAPH
2007 Course Notes (San Diego, CA, Aug. 2007), no. 2,
ACM Press, pp. vi+115. 3

[ICO1] IGARASHI T., COSGROVE D.: Adaptive unwrap-
ping for interactive texture painting. In 13D ’01: Proceed-
ings of the 2001 Symposium on Interactive 3D graphics
(2001), pp. 209-216. 3

[LHNO5] LEFEBVRE S., HORNUS S., NEYRET F.: Octree
textures on the GPU. In GPU Gems 2, Pharr M., (Ed.).
Addison-Wesley, 2005, ch. 37, pp. 595-613. 3

[LowO1] Low K.-L.: Simulated 3D painting. Tech. Rep.
TRO01-022, Department of Computer Science, University
of North Carolina at Chapel Hill, June 2001. 1

[LPRMO02] LEVY B., PETITIEAN S., RAY N., MAILLOT
J.: Least squares conformal maps for automatic texture
atlas generation. ACM Transactions on Graphics 21, 3
(2002), 362-371. 1,3

[LZX*08] Liu L., ZHANG L., XU Y., GOTSMAN C.,
GORTLER S. J.: A local/global approach to mesh pa-

rameterization. Computer Graphics Forum 27, 5 (2008),
1495-1504. 1,7

[RBMO6] RITSCHEL T., BOTSCH M., MULLER S.: Mul-
tiresolution GPU mesh painting. In Eurographics 2006
Short Papers (Sept. 2006), pp. 17-20. 3

(© The Eurographics Association 2010.

