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Abstract
Advanced 3D microstructural analysis in natural sciences and engineering depends ever more on modern data
acquisition and imaging technologies such as micro-computed or synchrotron tomography and interactive visu-
alization. The acquired volume data sets are not only of high-resolution but in particular exhibit complex spatial
structures at different levels of scale (e.g. variable spatial expression of multiscale periodic growth structures in
tooth enamel). Such highly structured volume data sets represent a tough challenge to be analyzed and explored
by means of interactive visualization due to the amount of raw volume data to be processed and filtered for the
desired features. As an approach to address this bottleneck by multiscale feature preserving data reduction, we
propose higher-order tensor approximations (TAs). We demonstrate the power of TA to represent, and highlight
the structural features in volume data. We visually and quantitatively show that TA yields high data reduction and
that TA preserves volume features at multiple scales.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Viewing algorithms I.4.7 [Computer Graphics]: Feature Measurement—Feature representation

1. Introduction

Non-invasive analysis of organismic structures, tissue and
materials with microtomographic techniques has seen a
rapid development over the past few years. Micro-computed
X-ray tomography (µCT) has now become a standard tool,
e.g., in bio-medical research. As a relatively recent technol-
ogy, Synchrotron Tomography (ST) has opened up new areas
of research at the sub-micrometer level. The resulting struc-
tural volume data sets exhibit an increasing structural com-
plexity in space at different scales. The features we target in
bio-medical tissue analysis are multiscale periodic patterns
(e.g., of growth structures in tooth enamel).

Phase contrast Synchrotron Tomography (pcST) has be-
come of special interest to the analysis of growth struc-
tures in hard tissues of living and fossil species [TS08].
For example, patterns of daily enamel deposition in fos-
sil hominid teeth are imaged with pcST and counted to
estimate the age at death of a fossil specimen. However,
current approaches are restricted to the analysis of serial
2D cross sections through data volumes, while the ac-
tual growth microstructures have complex three-dimensional

shapes [JSM03, MJS03]. Hence there is a need for tools to
visualize 3D microstructural features at various scales.

The grand challenge today is thus to make the implicit
information contained in structural volume data explicitly
available. Since these internal structures are in the microm-
eter domain, the data size of one volume block typically
exceeds the limits for interactive visualization on modern
graphic systems. Therefore, preprocessing of the data sets
prior to rendering for visual exploration is needed. Meeting
this challenge not only requires solutions for large scale vol-
ume rendering, but more specifically a method to reduce the
data set size and a method to represent multiscale volume
features, which we investigate in this paper.

Contributions In this work, we demonstrate an application
of low-rank tensor approximations as a common mathemat-
ical framework to: (a) extract relevant features from a struc-
tural volume data set, (b) reduce the size of the data set,
and (c) visualize the internal 3D features at different spatial
scales.
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2. Related Work

In the context of visualization and exploration of large vol-
ume data there is an ongoing need to reduce and optimize
the amount of data to be processed and displayed. A fun-
damental concept of data reduction is to remove redundant
and irrelevant information while preserving the most rele-
vant features. Techniques of data reduction are thus directly
related to concepts of noise reduction and feature extraction.

Improving on the Fourier Transform (FT), the Wavelet
Transform (WT) decomposes any input signal into a lo-
calized frequency domain. Today, the WT is a standard
method for compressed volume data representation (e.g.
[IP98,Rod99,KS99,NS01,GWGS02,SW03]). However, the
bases retrieved from a classical WT multiresolution analysis
are unaware of the 3D structures within the data sets. Even
tough the basis coefficients of WT are adaptively obtained,
the (separable) WT results from convolutions along the three
major spatial axes xyz with predefined 1D filters, i.e., the data
reduction ratio as well as the bases are defined by these axes.
We therefore call these bases axis-aligned bases. However,
significant features in structural volume data are typically
not aligned along axes xyz, such that techniques are required
which rather produce feature-aware bases. In fact, the basis
functions, wavelet and scaling filters, are fixed for a given
type of WT.

Tensor-based approximations (TAs) have become a sig-
nificant research topic in data reduction and visualization
[VT04,WWS∗05,TS06,WA08,WXC∗08,YWT∗09]. TAs re-
duce the stored size of a data set, and simultaneously trans-
form it into a compact multilinear representation. In essence,
the TA represents an extension of the concept of princi-
pal components analysis (PCA) to multi-modal input data.
One mode refers to one axis of the data set, e.g., to one
of the xyz spatial axis in a volumetric data set. While the
PCA computes the data correlations in two modes (covari-
ances) the TA does it for N modes (covariances along each
mode). With a three-way [KDL80, Kro3c, TBDLK87] or N-
way [dLdMV00a, dLdMV00b] analysis, the input data set
is decomposed into multilinear components, the so called
Tucker model [Tuc66], which consists of a core tensor and
basis matrices along each mode. These components capture
the signal’s most important information in one corner of the
core tensor. As in PCA, matrix covariances in TA reveal sta-
tistically relevant features in the data set. We thus use the
term feature-aware bases. In contrast to WT, the basis func-
tions in TA are found adaptively based on the input data.

To illustrate the specific properties of the TA approach, let
us recall that recursive application of WT yields a multireso-
lution analysis of the input data set. As such, the WT defines
a multiresolution hierarchy of coefficients. Each coefficient
is responsible to improve the approximation of the original
data over a fixed area at a well defined location. Hence the
WT is designed to minimize the mean scalar differences be-
tween approximated and original data at different spatial res-

olutions, where higher-level coefficients generally are more
important (in energy terms). In contrast, the TA provides an
approximation of the original data at multiple scales of data
correlation, rather than at multiple spatial resolutions. This
property is termed here feature awareness.

Up to now, TA has mainly been applied to image ensem-
bles (e.g. [VT04, WA08, YWT∗09]). Here we focus on the
3D feature-preserving properties of the TA approach and
compare its performance with the WT approach. Features
contained in image data can be represented with modes of
increasing dimensionality. In PCA, features are expressed
as a vector (1st -order tensor); in image ensembles [WA08,
YWT∗09], features are expressed as a matrix (2nd-order ten-
sor). With the TA-approach, we express features in terms of
a 3rd-order tensor.

3. Tensor Decomposed Volume Representation

We review a mathematical framework, which we use in or-
der to define a compact feature-preserving data representa-
tion in the context of structural volume visualization. The TA
framework can achieve this goal through the decomposition
of the volume data into a reduced set of bases.

3.1. Tensor Decomposition and Approximation

A tensor is a mathematical concept for a higher-order gener-
alization of an array: A vector is a 1st -order tensor, a matrix
a 2nd-order tensor and a volume is a 3rd-order tensor. In ten-
sor approximation approaches, the input volume data set A
is represented as a 3rd-order tensor and is decomposed into
a multilinear data representation (here the Tucker model).
The data size is reduced on the Tucker model directly such
that irrelevant (uncorrelated) data is removed and important
features are preserved (truncation of bases). Based on this
truncated Tucker model, the original data set is then recon-
structed to its approximation Ã (see Figure 1).
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Figure 1: Volume data approximation with 3rd-order TA.

The multilinear data representation consists of one core
tensor B ∈ RN and N basis matrices U(1...N), where N

c© The Eurographics Association 2010.

204



S.K. Suter & C.P.E. Zollikofer & R. Pajarola / Application of Tensor Approximation to Multiscale Volume Feature Representations

is the number of modes. A core tensor consists of coef-
ficients, which show the level of interaction between dif-
ferent components; the basis matrices are usually orthogo-
nal and can be thought of as principal components for each
mode [KB09]. The maximum size of the decomposition is
one core tensor with the same data size as the original in-
put data A ∈ RI1×I2···×IN , i.e., ∏

N
n=1 In, and quadratic basis

matrices for each mode, e.g. In · In for U(n), where In is the
length of a mode. However, this would not result in any data
reduction. But since the core tensor is arranged such that it
has its highest energy in one corner (all-orthogonality prop-
erty of core, [dLdMV00a]), we can apply a rank reduction
on the complete multilinear data representation and work on
lower-rank-(R1,R2, . . .RN) tensor approximations (Rn ≤ In).
I.e., we always assume a lossy reconstruction.

3.2. Reduced Rank Tensor Decomposition

In the TA approach, a multi-modal data array or tensor A , is
approximated by a reduced-rank tensor decomposition, i.e.,
the ranks of the core and the basis matrices are truncated.
A tensor rank reduction is performed in a similar way like
a matrix rank reduction (see [dLdMV00a]). For a real Nth-
order tensor A ∈RI1×I2···×IN of size ∏

N
n=1 In, a reduced-rank

approximation can be defined as follows:

A rank-(R1,R2, . . .RN) approximation of A is formu-
lated as finding a lower-rank tensor Ã ∈ RI1×I2···×IN with
rankk(Ã ) = Rk ≤ rankk(A ), where rankk(A ) is the order
of the vector space of the n-mode vectors of A . The n-
mode product in tensor analysis is a special case of the inner
product in multilinear algebra (see [dLdMV00a]), i.e., the
n-mode vectors of a tensor correspond to the row-vectors or
column-vectors of a matrix. In general, a reduced-rank ap-
proximation is sought such that the least-squares difference
is minimized:

Ã = argmin(Ã ) ‖A − Ã ‖2.

The approximated tensor can be represented as Ã =
B×1 U(1)×2 U(2) · · ·×N U(N) from the n-mode product ×n
of the basis matrices and the core tensor in a given reduced
rank space. Given that (R1, . . .RN) are sufficiently smaller
than the initial data dimensions (I1, . . . IN), the core tensor
B ∈RR1×R2···×RN and the basis matrices U(n) ∈RIn×Rn lead
to a compact approximation Ã of the original tensor A .

In Figure 2 we illustrate this tensor decomposition for a
3rd-order tensor, or 3D volume data set. Note that the three
basis matrices U(n=1...3) represent a set of Rn column vectors
each of length In, and the core tensor B is a 3rd-order tensor
of size R1×R2×R3, where Rn ≤ In.

3.3. Reconstruction

As mentioned before, the goal is to find a reduced-rank ten-
sor Ã that approximates a given input data set A with as
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Figure 2: Visualization of Ã = B×1 U(1)×2 U(2)×3 U(3).

little error ε =‖ A − Ã ‖2 as possible. We can interpret
Ã = B×1 U(1)×2 U(2) · · ·×N U(N) as a weighted sum over
outer vector products

Ã = ∑
rk

B[r1, . . . ,rN ] ·U
(1)
(r1)
⊗U(2)

(r2)
· · ·⊗U(N)

(rN)
, (1)

with U(r) indicating the r-th column vector of basis ma-
trix U and the indices rk going from 1 to RN respectively.
Intuitively, for every index combination r1, . . . ,rN a Nth-
order volume of original size is reconstructed by the outer-
products, which is weighted for summation by the corre-
sponding entry in the core tensor.

Time and Space Cost The basic formulation to reconstruct
a 3D volume Ã from its decomposition B and U(1..3) is
given in Equation 1, with N = 3. Given an original volume
of size I1 · I2 · I3 this equals to a weighted summation of
R1 ·R2 ·R3 such volumes. Instead of performing a naive re-
construction using O(R1 ·R2 ·R3 · I1 · I2 · I3) time, however, in
practice an improved reconstruction is implemented, which
computes the outer-products incrementally by rearranging
the summation as follows,

Ã = ∑
r

U(1)
(r) ⊗∑

s
U(2)
(s) ⊗∑

t
B[r,s, t] ·U(3)

(t) , (2)

resulting in a significantly reduced time cost of only O(R1 ·
I1 · I2 · I3). The order of the modes can be permuted such
that R1 has in fact the smallest rank, for overall best per-
formance. The reduced-rank representation, consisting of
the core tensor B and basis matrices U(1..3), consumes
O(R1 ·R2 ·R3 +R1 · I1 +R2 · I2 +R3 · I3) space, in contrast
to the O(I1 · I2 · I3) values of the original volume.

3.4. Multiscale and Progressive Reconstruction

With different rank-(R1,R2, . . .RN) approximations of the
original data volume A , we achieve a progressive recon-
struction. More precisely, we start with a tensor decompo-
sition at a certain rank. By eliminating the least significant
columns of the basis matrices and the corresponding data en-
tries in the core tensor (= matrices, slices), reconstructions at
a coarser respectively finer resolutions can be generated. The
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tensor decomposition according to Equation 1 exhibits in its
rank-space a natural order, where the ranks with a higher im-
pact on the data set are generally ordered first. I.e., an initial
high-quality tensor approximation with large rank dimen-
sions (R1, . . .RN) allows variable rank reconstruction using
any index subranges rk ∈ 1 . . .≤ Rk, and hence it holds that:

ÃRk =
Rk

∑
rk=1

B[r1, . . . ,rN ] ·U
(1)
(r1)
⊗U(2)

(r2)
· · ·⊗U(N)

(rN)

= ÃRk−1 +
Rk

∑
rk=Rk−1

B[r1, . . . ,rN ] ·U
(1)
(r1)
· · ·⊗U(N)

(rN)

With the concept of the rank reduction in the tensor decom-
position, we have implicitly given a model for progressive
reconstruction with one single tensor decomposition.

4. Implementation

For the application of TA to structural 3D volume data,
there are three phases: (1) definition of the initial ranks
(R1,R2,R3), (2) decomposition of the volume A into a core
tensor B and three basis matrices U(1),U(2), and U(3), and
(3) reconstruction of the volume Ã from the reduced-rank
tensor decomposition.

The progressive TA does not need to define a fixed set
of reduced rank levels but can generate any lower rank re-
construction from a given initial rank-reduced starting point.
We have chosen the ranks according to the scheme used
in [WXC∗08]: For the first approximation level, the ranks
(R1,R2,R3) were chosen at half of the original dimensions
I1×I2×I3, i.e., the tensor decomposition is computed for the
ranks Rn = In

2 . This level achieves virtually accurate recon-
struction, see also Section 5.3. For each subsequent step of
rank reduction, the Rn were further divided by 2 in a progres-
sive way as described in Section 3.4. However, sometimes
further refinements of the ranks can be performed since the
choice of ranks is often done by comparing the approxima-
tions visually.

The tensor decomposition is usually implemented as an
alternating least squares (ALS) algorithm on a higher-order
singular value decomposition (HOSVD) [dLdMV00a] or a
higher-order orthogonal iteration (HOOI) [dLdMV00b]. For
the decomposition stage (2) in this work, the tensor decom-
position is generated by the HOOI algorithm. The initial
guess for the ALS was computed on eigenvalues.

For the reconstruction stage (3), outer-products of vectors
and matrices according to Equations1 and 2 are used. Mul-
tiscale reconstructions at different rank-(R1,R2,R3) settings
are computed incrementally as outlined in Section 3.4.

Readers interested in more details on the reduced-rank
tensor approximations we refer to [dLdMV00a,dLdMV00b,
Kro08, DLCM08, KB09].

5. Structural Volume Visualization

As outlined in the introduction, we searched for an approach
to capture and identify the essential features of complex vol-
umetric structures such as periodic growth patterns in tooth
enamel in µCT or pcST imaging. In the following we de-
fine our multiscale features, compare the feature expressive-
ness of WT and TA, and demonstrate the effective feature-
preserving reconstruction from TA.

5.1. Volume Features

Our structural volume features are defined by certain in-
tensity regions, i.e., voxel elements (i, j,k) for which their
value A [i, j,k] is in a given interval, in the volume data set.
The features we look at can manifest different characteris-
tics at different scales. We interpret the feature scale-space
in a traditional way such that at coarser scales only the larger
and more prominent structural components should be main-
tained as features, and more detailed features are identified
on finer scales. The scale in this context is given by the rank-
(R1,R2,R3) reduction or number of coefficients used in the
approximation Ã .

Feature expressiveness was evaluated visually as well as
numerically. Visually, the coarsening and structural simplifi-
cation of features can be verified by comparing the display of
the original data set A to its approximation Ã . Numerically,
we compared different approximations Ãi by their RMSE
with respect to A . Note however, that we are interested in
the feature difference at a certain scale and thus the RMSE
E =

√
m−1 ∑i, j,k(A [i, j,k]− Ã [i, j,k])2 is computed one-

sided, evaluated only for the m voxels where Ã [i, j,k] is
within a given intensity range of interest.

5.2. Feature Expressiveness

To demonstrate the ability of TA to capture oriented patterns,
we have applied the TA and the WT methods to various
structural volume data sets containing multiscale features,
and compared the performance of the two methods at corre-
sponding approximation levels. For each approximation, the
same number of non-zero coefficients (NNC) has been cho-
sen for both the WT and TA method. For TA, NNC is given
by the rank reduction as R1 ·R2 ·R3+R1 · I1+R2 · I2+R3 · I3,
representing the number of coefficients in the tensor decom-
position. Correspondingly, we selected the NNC most sig-
nificant wavelet coefficients (WCs). Unless specified other-
wise, we used the multilevel biorthogonal 9/7 wavelet trans-
form, which is also used in JPEG-2000 and in [WXC∗08].

5.2.1. Periodic Microstructures

The dental enamel data set is interesting since it represents
periodic growth structures that occur at different levels of
scale, and exhibit different spatial orientations. Human tooth
enamel has a microstructure that is roughly comparable to
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a bunch of densely packed fibers (so-called prisms, see Fig-
ure 4). During dental enamel formation, each dental enamel
prism elongates in centrifugal direction through the daily
apposition of a small segment of enamel. Daily growth in-
crements are visible as surfaces perpendicular to the longi-
tudinal direction of the prisms. In addition, approximately
weekly growth halts are visible as so-called Retzius lines. As
shown in Figure 3, the spatial scale and orientation of these
structures is highly characteristic for each feature. This vol-
ume data set thus represents an ideal test case to assess the
performance of TA as a feature-aware method compared to
WT as an axis-aligend method.

Retzius line at t

Retzius line at t-n

n daily

increments

Figure 3: Cross-sectional image of tooth enamel (pcST
scan; scale = 50 microns) [TS08]. Small arrows: cross stri-
ations; large arrows: Retzius lines. The direction of the
growth prisms is orthogonal to the cross striations.

The images in Figure 4 demonstrate the reconstruc-
tion differences between WT and TA for simulated dental
growth patterns (generated after [JSM03, MJS03]). The first
and second row show approximated volumes with NNC =
2′195′500 and 958′500 coefficients, corresponding to the
size of rank-(128,128,128) and rank-(96,96,96) TAs respec-
tively (Figure 4(e)). As can be seen in Figure 4(b), the simple
Haar wavelet was able to reconstruct the original structures
with 2′195′500 NNCs, however, with 958′500 NNCs, the
structures dissolve. Besides that, Figure 4(b) shows that axis-
aligned structures like e.g. the middle part of the simulated
growth structure can be reconstructed with fewer coefficients
than the curved structures. Other more complex wavelets
like the biorthogonal 9/7 or Daubechies3 wavelets, have dif-
ficulties to reconstruct the original structures with 2′195′500
NNCs (see Figures 4(c) and 4(d)). The third row, Figure 4(f-
j), shows lower-rank TAs. As can be seen in Figure 4(g), TA
still achieves to reconstruct the simulated growth structures
faithfully with a low-rank-(32,32,32) TA, which is equal to

1
300 of the original data elements (using 57′344 NNCs).

Results of TA application to real microstructural data of
tooth enamel are shown in Figures 5 and 6. Figure 5 demon-
strates that a compact TA (rank-(8,8,8) with 2’048 coeffi-
cients) permits to highlight features (growth prisms) that are
difficult to identify and visualize in the original data set, or
on finer approximation scales. At corresponding number of
coefficients, the Haar or biorthogonal 9/7 WT approaches
show difficulties in reconstructing the characteristic features.

original 2′195′500 coefficients

original 958′500 coefficients

(a) (b) (c) (d) (e)

(f) TA-64 (g) TA-32 (h) TA-16 (i) TA-8 (j) TA-4

Figure 4: (a) Original. Reconstruction using (b) Haar WT,
(c) Biorthogonal 9/7 WT, (d) Daubechies3 WT and (e) TA.
(f-j) Low-rank-(Rk,Rk,Rk) TAs, for Rk = 64,32,16,8 and 4.

Figure 6 visualizes 3D dental enamel growth patterns as
discussed previously and illustrated in Figure 3. The periodic
halts along growth prisms cause the formation of surface lay-
ers, which can be identified and visualized using TA at dif-
ferent scales using progressive rank-reduction. In particular,
the weekly growth markers (Retzius lines) can better be ana-
lyzed using 3D visualization and variation of reconstruction
scale. The WT based approach fails to extract the growth-
halt layers and continuously transforms into a blobby recon-
struction at progressively reduced approximation level.

5.2.2. Multiscale Features

The bonsai tree volume represents a complex object struc-
ture with conspicuous features at multiple scales: trunk,
branches, and leaves. An effective multiscale approach
should be able to characterize these object parts as a func-
tion of the data reduction level. Ideally, the specific features
should turn on and off on their adequate respective levels.
Figure 7 shows the comparison of TA and a seven-level WT
at corresponding numbers of coefficients. A high-quality ap-
proximation at half of the original ranks for TA and corre-
sponding number of WCs, shows similar reconstructions in
Figures 7(a) and 7(b). At lower rank reconstructions, how-
ever, the TA captures features of increasingly larger scale
(Figures 7(d) and 7(f)), removing smaller variations in the
data, while the WT rather approximates features at all scales
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(a) Rank-(128,128,128) TA (b) Rank-(64,64,64) TA (c) Rank-(32,32,32) TA (d) Rank-(16,16,16) TA

(e) 2’195’456 WCs (f) 311’296 WCs (g) 57’344WCs (h) 16’384 WCs

Figure 6: Periodic microstructures in tooth enamel (2563, 16bit voxel depth, 0.75 microns per voxel). (a-d) Feature visualization
using different rank-(R1,R2,R3) TAs. Showing on the front side, horizontal growth prisms oriented left-to-right and diagonal
Retzius lines oriented bottom-left to top-right. (e-n) Reconstructions from corresponding numbers of biorthogonal 9/7 WCs.

but at lower spatial resolution (Figures 7(c) and 7(e)). For
pure visual approximation of objects, e.g. viewed from far,
WT may be the optimal choice, but for structural analysis of
features at different scales the TA may offer the better scale
selectivity.

5.3. Rate-Distortion

Above we have presented a qualitative evaluation of the
feature-preserving reconstruction performance of TA in
comparison to state-of-the-art WT based approaches. In ad-
dition to the visual assessment of feature-expressiveness, a
quantitative numerical approximation analysis is required to
fully establish the capability and potential of the proposed
TA based feature extraction and visualization framework.
Our numerical evaluation analyzes the performance of TA
versus WT in terms of its rate-distortion (Figure 8). As ex-
plained in Section 5.1, we measure the one-sided RMSE E
over all voxels in the intensity ranges indicating the selected
features, and put E in relation to the number of (non-zero)
coefficients NNC used for different approximation levels.

As can be seen in Figure 8, for the Bonsai tree and the
2563 mictrostructure volume, the rate-distortion curves of
TA and WT are close, with a slight advantage for the WT.
On the other hand, for the 643 microstructure volumes, the
TA maintains a better rate-distortion in particular at lower
reconstruction scales. Hence TA is as good in least-squares
data approximation as WT.

6. Discussion and Conclusion

In [WWS∗05, WXC∗08], it has been shown that TA could
generate higher quality images at larger data reduction ra-
tios than WT or PCA. In our work, we went one step further
and we have shown that the mathematical framework of TA
permits to highlight features, which were difficult to see in
the original data set (Figures 6(b) and 6(c)). This is in partic-
ular applicable for features at multiple scales, which can be
brought out with TA at corresponding approximation levels
(Figure 6). Notably at low-ranks, i.e., at high data reduction
ratios, TA showed higher quality reconstructions of internal
structures compared to WT.

While WT showed reconstructions with a closer visual
resemblance to the overall original appearance, TA identi-
fies specific structural features at different scales (e.g., Fig-
ures 6(b) or 6(d)). Wavelets focus on optimal data reduction
over the complete volume. That is, WT is beneficial when
the overall statistical distribution of the data set is intended
to be reconstructed with a coarser resolution (Figure 7(e)).
In contrast, we follow an approach that extracts specific fea-
tures based on statistical properties like the major direction
or a periodicity. TA, similar to PCA, which extracts the ma-
jor direction of a data set, is more powerful regarding this
latter aspect since it finds appropriate bases for reconstruc-
tion rather than assuming fixed basis functions as the WT.
An approach like TA extracts components with more impor-
tance and neglects irrelevant areas within the data set. Hence
TA is in advantage when we want to analyze features, e.g.,
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(a) Rank-(16,16,16) TA (b) Rank-(8,8,8) TA

(c) 7’168 Haar WCs (d) 2’048 Haar WCs

(e) 7’168 bior. WCs (f) 2’048 bior. WCs

Figure 5: Structural volume data set of tooth enamel ac-
quired with pcST (643 voxels, 16bit voxel depth, 0.75 mi-
crons resolution per voxel). Reconstructions from three dif-
ferent approximation levels: (a,b) TAs; (c,d) Haar WT, and
(e,f) biorthogonal 9/7 WT.

count the number of major branches of the tree (Figure 7(d))
or the Retzius lines in Figure 6(d).

Compared to wavelets, where different wavelets need to
be evaluated in order to find out which wavelet fits best a
data set, with the TA approach, we do not have to take such a
decision, there is one mathematical tool, a rank-(R1,R2,R3)
TA. However, higher computational cost need to be consid-
ered for TA (HOSVD/HOII), especially for large data sets,
for which we need to consider bricking or similar data de-
composition steps during volume processing and rendering.

We have also shown that classical measures of data reduc-
tion quality, such as rate-distortion, do not sufficiently cap-
ture the feature-expressiveness of a numerical approxima-
tion method. New procedures need to be developed, which
permit the quantitative analysis of feature selectivity in lossy
data reconstruction methods.

In summary, TA is powerful when we are not interested
in the complete appearance of a data set, but rather want
to highlight or count features at a certain scale. Since new

(a) 1’122’304 WCs (b) Rank-(128,128,64) TA

(c) 34’816 WCs (d) Rank-(32,32,16) TA

(e) 4’864 WCs (f) Rank-(8,8,4) TA

Figure 7: The 2562× 128 bonsai tree approximated at dif-
ferent numbers of coefficients with WT (a,c,e) and TA (b,d,f).

data acquisition techniques lead to volume data sets of ever-
increasing size, which tend to be one step ahead of the avail-
able graphics resources for interactive visualization, there is
thus an ongoing need to develop new data reduction and fea-
ture extraction methods to tackle the resulting performance
bottlenecks. This paper demonstrates that TA is a powerful
approach to (a) represent microstructural volume data sets at
high data reduction ratios, and (b) simultaneously highlight
relevant features at different spatial scales.
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