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Abstract

We present an algorithm for scene flow reconstruction from multi-view data. The main contribution is its ability
to cope with asynchronously captured videos. Our holistic approach simultaneously estimates depth, orientation
and 3D motion, as a result we obtain a quasi-dense surface patch representation of the dynamic scene. The
reconstruction starts with the generation of a sparse set of patches from the input views which are then iteratively
expanded along the object surfaces. We show that the approach performs well for scenes ranging from single
objects to cluttered real world scenarios.

Categories and Subject Descriptors (according to ACM CCS): I.4.8 [Image Processing and Computer Vision]: Scene
Analysis—Stereo, Time-varying imagery

1. Introduction

With the wide availability of consumer video cameras and
their ever increasing quality at lower prices, multi-view
video acquisition has become a widely popular research
topic. Together with the large amount of processing power
readily available today, multiple views are used as input data
for high quality reconstructions. While the traditional two-
view stereo reconstruction extends well to a multi-view sce-
nario for static scenes, the complexity increases for scenes
with moving objects. The most common way of approaching
this problem is the use of synchronized image acquisition.

To loose the limitations that synchronized acquisition se-
tups impose, we present our multi-view reconstruction ap-
proach that takes asynchronous video as input. Hence, no
custom and potentially costly hardware with synchronized
shutters is needed.

Traditional reconstruction algorithms rely on synchronous
image acquisition, so that they can exploit the epipolar con-
straint. We eliminate this limitation and furthermore bene-
fit from the potentially higher temporal sampling due to the
different shutter times. With our approach, scene flow re-
construction with rolling shutters as well as heterogeneous
temporal sampling, i.e. cameras with different framerates, is
possible.

In Sect. 2 we give a short overview of the current research.
Sect. 3 then gives an overview our algorithm. A detailed de-
scription of our approach is then given in Sect. 5-8, followed
by our experimental results in Sect. 9, before we conclude in
Sect. 10.

2. Related Work

When evaluating static multi-view stereo (MVS) algorithms,
Seitz et al. [SCD∗06] differentiated the algorithms by their
basic assumptions. Grouping algorithms by their underlying
model provides four categories: The volumetric approaches
using discrete voxels in 3D space [KKBC07, SZB∗07], the
algorithms that evolute a surface [FP09b], reconstructions
based on depth map merges [MAW∗07, BBH08] and algo-
rithms are based on the recovery of 3D points that are then
used to build a scene model [FP09a, GSC∗07].

While all the MVS approaches recover a scene model
from multiple images, the limitations on the scene shown on
the images vary. Algorithms that are based on visual hulls
or require a bounding volume are more suited for multiple
views of a single object. The mentioned point based meth-
ods on the other hand perform well on single objects and
cluttered scenes.

Regarding the objective of scene motion recovery, the
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term scene flow was coined by Vedula [VBR∗99]. The 3D
scene flow associates a motion vector with each input im-
age point, corresponding to its velocity in scene space. The
existing approaches to recover scene flow can be split into
three groups based in their input data. The first group uti-
lizes multiple precomputed optical flow fields to compute
the scene flow [ZK01, VBR∗05]. The second uses static 3D
reconstructions at discrete timesteps and recovers the mo-
tion by registering the data [ZCS03,PKF05,PKF07]. A third
family of algorithms uses spatio-temporal image derivatives
as input data [NA02, CK02].

Besides the obvious connection between the structure and
its motion, in current research the recovery largely remains
split into two disjunct tasks. Wang et al. [WSY07] pro-
posed an approach to cope with asynchronously captured
data. However, their two-step algorithm relies on synthesiz-
ing synchronized intermediate images, which are then pro-
cessed in a traditional way.

Our holistic approach simultaneously recovers geometry
and motion without resampling the input images. We base
the pipeline of our approach on the patch-based MVS by Fu-
rukawa et al. [FP09a], which showed impressive results for
the reconstruction of static scenes. While Furukawa et al. ex-
plicitly remove non-static objects, i.e., spatially inconsistent
scene parts, from scene reconstruction, we create a dynamic
scene model where both object geometry and motion are re-
covered. Although we adapt the basic pipeline design, our
requirement to cope with dynamic scenes and to reconstruct
motion make fundamental changes necessary. E.g., our ini-
tialization and optimization algorithms have to take individ-
ual motion of a patch into account.

3. Overview

We assume that the input video streams show multiple views
of the same scene. Since we aim to reconstruct a geometric
model, we expect the scene to consist of opaque objects with
mostly diffuse reflective properties.

In a preprocessing step the in- and extrinsic camera pa-
rameters for all images are estimated by sparse bundle ad-
justment [SSS06]. Additionally the sub-frame time offsets
between the cameras have to be determined. Different meth-
ods have been explored in recent research to automatically
obtain the sub-frame offset [MSMP08, HRT∗09].

The algorithm starts by creating a sparse set of seed points
in an initialization phase, and grows the seeds to cover the
visible surface by iterating expansion, optimization and filter
steps.

Our scene model represents the scene geometry as a set
of small tangent plane patches. The goal is to reconstruct
a tangent patch for the entire visible surface. Each patch is
described by its position, normal and velocity vector.

The presented algorithm processes an image group at a

time, which consists of images chosen by their respective
temporal and spatial parameters. All patches extracted from
an image group collectively form a dynamic model of the
scene, that is valid for the timespan of the image group. The
image group timespan is the time interval ranging from the
acquisition of the first image of the group to the time the last
selected image was recorded.

Since the scene model has a three dimensional velocity
vector for each surface patch, linear motion in the scene
space is reconstructed. The motion only needs to be linear
for the image group timespan.

The result of our processing pipeline is a patch cloud.
Each patch is described by its position, orientation and (lin-
ear) motion. While it is unordered in scene space, each pixel
in image space (of each reference image) is assigned to a
single patch or no patch. A visualization of our quasi-dense
scene reconstruction is shown in Fig. 1.

4. Image Selection and Processing Order

To reconstruct the scene for a given time t′ a group of im-
ages is selected from the input images. The image group G
contains three consecutive images I−1,0,1 from each cam-
era, where the middle image I0 is the image from the camera
taken closest to t′ in time.

The acquisition time t(I) = coffset + n
cfps

of an image from
the camera c is determined by the camera time offset coffset,
the camera framerate cfps and the frame number n.

During the initialization step of the algorithm, the pro-
cessing order of the images is important and it is favorable
to use the center images first. For camera setups where the
cameras roughly point at the same scene center the following
heuristic is used to sort the image group in ascending order:

s(I) = ∑
I′∈G
|Φ(I)−Φ(I′)| (1)

Where Φ(I) is the position of the camera that acquired the
image I. When at least one camera is static, s(I) can evaluate
to identical values for different images I. These the images
with identical values s(I) are ordered by the distance of their
acquisition time from t′.

5. Initialization

To reconstruct the initial set of patches it is necessary to find
pixel correspondences within the image group. In classical
stereo vision, two pixel coordinates in two images are suffi-
cient to triangulate the 3D position. Since our reconstruction
process does not only determine the position, but also the
velocity of a point in the scene, more correspondences are
needed.

The search for correspondences is further complicated by
the nature of our input data. One of the implications of the
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Figure 1: Visualization of reconstructed scenes. The patches are textured according to their reference image. Motion is visual-
ized by red arrows.

asynchronous cameras is, that no epipolar geometry con-
straints can be used to reduce the search region for the pixel
correspondence search.

We compute a list of interest points for each image I′ ∈G.
An Harris Corner detector is used to select the points of in-
terest. The intention is to select points which can be identi-
fied across multiple images. A local maximum suppression
is performed, i.e., only the strongest response within a small
radius is considered. Every interest point is then described
by a SURF [BETG08] descriptor. In the following, an inter-
est point and its descriptor is referred to as a feature.

For each image I′, every feature f extracted from that
image is serially processed. A given feature f0 is matched
against all features from the other images. The best match
for each image is added into a candidate set C.

The candidate set C may contain outliers. This is due to
wrong matchings and the fact, that the object on which f0 is
located may not be visible in all camera images. A subset for
reconstructing the surface patch has to be selected. To find
such a subset a RANSAC based method is used:

First a set S of Θ− 1 features is randomly sampled from
C. Then the currently processed feature f0 is added to the set
S. The value of |S|= Θ can be varied depending on the input
data. For all our experiments we chose Θ = 6.

The sampled features in S are assumed to be evidence of
a single surface. Using the constraints from feature positions
and camera parameters and assuming a linear motion model,
a center position~c and a velocity~v are calculated. The details
of the geometric reconstruction are given later (section 5.1).

The vectors~c and~v represent the first two parameters of a
new patch P. The next RANSAC step is to determine which
features from the original candidate set C consent to the re-
constructed patch P. The patch is reprojected into the images
I′ ∈ G and the distance from the projected position to the
feature position in I′ is evaluated. After multiple RANSAC
iterations the largest set T ⊂C of consenting features found
is selected.

Although the reconstruction equation system is already
overdetermined by the |T | matched features, the data tends

to be degenerated and leads to unsatisfying results. The de-
generation is caused by too small baselines along one or
multiple of the spatial axes of the camera positions, as well
as the temporal axis. As a result of the insufficient informa-
tion in the input data, patches with erroneous position and
velocity are reconstructed.

Under the assumption that sufficient information is
present in the candidate set C to find the correct patch, the
initialization algorithm enriches the set T , using a greedy
approach.

To find more information that is coherent with the current
reconstruction more features f ′ ∈ C \ T need to be added
to T . Each feature f ′ is accepted into T if the patch recon-
structed from T ′ = T ∪ { f ′} has at least T ′ as consenting
feature set.

After the enrichment of T the final set of consenting fea-
tures is used to calculate the position and velocity for the
patch P′. To fully initialize P′, two more parameters need to
be set. The first is the reference image of the patch, which
has two different uses. If I is the reference image of P′ than
the acquisition time tr = t(I) marks the point when the patch
P′ is observed at the reconstructed center position ~c. As a
result the scene position pos(P′, t′) of P′ at any given time
t′ is:

pos(P′, t′) =~c+(t′− tr) ·~v. (2)

Furthermore, the reference image is used in visibility calcu-
lations, where a normalized cross correlation is used. The
correlation template for a patch P′ is extracted from its ref-
erence image. The reference image for P′ is the image the
original feature f0 was taken from. The last parameter for P′

is the surface orientation represented by the patch normal.
The normal of P′ is coarsely approximated by the vector
pointing from ~c to the center of the reference image cam-
era. When the patch has been fully initialized, it is added to
the initial patch generation.

After all image features have been processed the initial
patch generation is optimized and filtered once before the
expand and filter iterations start.
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5.1. Geometric Patch Reconstruction

Input for the geometric patch reconstruction is a list of corre-
sponding pixel positions in multiple images combined with
the temporal and spatial position of the cameras. The result
is a patch center~c and velocity~v.

Assuming a linear movement of the scene point, its posi-
tion~x(t) at the time t is specified by a line

~x(t) =~c+ t ·~v. (3)

To determine ~c and ~v, a linear equation system is formu-
lated. The line of movement (3) must intersect the viewing
rays ~qi that originate from the camera center Φ(Ii) and are
cast through the image plane at the pixel position where the
patch was observed in image ti = t(Ii):


Id3×3 Id3×3 · t0 −~q T

0 0 0
...

...
. . .

Id3×3 Id3×3 · ti 0 0 −~q T
i

 ·


~cT

~vT

a0

...
a j

 =


Φ(I0)T

...
Φ(Ii)T


(4)

The variables a0 to a j give the scene depth in respect to
the camera center Φ(Ib

j
3 c) and are not further needed. The

overdetermined linear system is solved with a SVD solver.

5.2. Patch Visibility Model

There are two sets of visibilities associated with every patch
P. The set of images where P might be visible V (P) and the
set of images where P is considered truly visible Vt(P) ⊂
V (P). The two different sets exist to deal with specular high-
lights or not yet reconstructed occluders.

During the initialization process the visibilities are de-
termined by thresholding a normalized cross correlation. If
ν(P, I) is the normalized cross correlation calculated from
the reference image of P to the image I, then V (P) =
{I|ν(P, I) > α} and Vt(P) = {I|ν(P, I) > β}. The thresh-
old parameters used in all our experiments are α = 0.45 and
β = 0.8. The correlation function ν takes the patch normal
into account when determining the correlation windows.

In order to have a efficient lookup structure for patches
later on, we overlay a grid of cells over every image. In ev-
ery grid cell all patches are listed, that when projected to
the image plane, fall into the given cell and are considered
possibly or truly visible in the given image.

The size of the grid cells λ and the resulting resolution
determines the final resolution of our scene reconstruction
as only one truly visible patch in each cell in every image
is calculated. We experienced that it is a valid strategy to
start with a higher λ (e.g. λ ≥ 2) for an initial quasi-dense
reconstruction, followed by a reconstruction at pixel level
(λ = 1).

Ir

~c
P

(a)

Ir

P

(b)

I′Ir

P (t′− tr) ·~v~c

(c)

Figure 2: Computing cross correlation of moving patches.
(a) A patch P is described by its position ~c, orientation,
recording time tr and its reference image Ir. (b) Positions
of sampling points are obtained by casting rays through the
image plane (red) of Ir and intersecting with plane P. (c) Ac-
cording to the difference in recording times (t′− tr) and the
motion~v of the patch, the sampling points are translated, be-
fore they are projected back to the image plane of I′. Cross
correlation is computed using the obtained coordinates in
image space of I′.

The grid structure is also used to perform the visibility
tests during the expand and filter iterations.

The visibility of P is estimated by a depth comparison
within the grid cells. All images, for which P is closer to the
camera than the currently closest patch in the cell, are added
to V (P). The images I′ ∈Vt(P′), where the patch is consid-
ered truly visible, are determined using the same method of
comparing ν against β as before, except that the threshold is
lowered with increasing expansion iteration count to cover
poorly textured regions.

6. Expansion phase

The initial set of patches is usually very sparse. To incre-
mentally cover the entire visible surface, the existing patches
are expanded along the object surfaces. The expansion algo-
rithm processes each patch from the current generation.

In order to verify if a given patch P should be expanded,
all images I ∈Vt(P) where P is truly visible are considered.
Given the patch P and a single image I, the patch is pro-
jected into the image plane and the surrounding grid cells
are inspected. If a cell is found where no truly visible patch
exists yet, a surface expansion of P to the cell is calculated.

A viewing ray is cast through the center of the empty cell
and intersected with the plane defined by the patches posi-
tion at t(I) and its normal. The intersection point is the cen-
ter position for the newly created patch P′. The velocity and
normal of the new patch are initialized with the values from
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the source patch P. At this stage, P′ is compared to all other
patches listed in its grid cell and is discarded if another sim-
ilar patch is found. To determine whether two patches are
similar in a given image, their position ~x0,~x1 and normals
~n0,~n1 are used to evaluate the inequality

(~x0~x1) ·~n0 +(~x1~x0) ·~n1 < κ. (5)

The comparison value κ is calculated from the pixel dis-
placement of λ pixels in image I and corresponds to the
depth displacement which can arise within one grid cell. If
the inequality holds, the two patches are similar.

Patches that are not discarded are processed further. The
reference image of the new patch P′ is set to be the image I
in which the empty grid cell was found. The visibility of P′

is estimated by a depth comparison as described in 5.2. Be-
cause the presence of outliers may result in a too conserva-
tive estimation of V (P′), the visibility information from the
original patch is added V (P′) = V (P′)∪V (P) before calcu-
lating Vt(P′).

After the new patch is fully initialized, it is handed into
the optimization process. Finally, the new patch is accepted
into the current patch generation, if |Vt(P′)| ≥ φ. The least
number of images to accept a patch is dependent on the cam-
era setup and image type. With increasing φ less surface can
be covered with patches on the outer cameras, since each
surface has to be observed multiple times. Choosing φ too
small may result in unreliable reconstruction results.

7. Patch Optimization

The patch parameters calculated from the initial reconstruc-
tion or the expansion are the starting point for a conjugate
gradient based optimization. The function ρ maximized is a
visibility score of the patch. To determine the visibility score
a normalized cross correlation ν(P, I) is calculated from the
reference image of P to all images I ∈ V (P) where P is ex-
pected to be visible:

ρ(P) =
1

|V (P)|+ a · |V t(P)|

(
∑

I∈V (P)
ν(P, I)+ ∑

I∈V t (P)
a ·ν(P, I)

)
(6)

The weighting factor a accounts for the fact that images
from Vt(P) are considered reliable information, while im-
ages from V (P) \Vt(P) might not actually show the scene
point corresponding to P. The visibility function ρ(P) is then
maximized with a conjugate gradient method.

To constrain the optimization, the position of P is not
changed in three dimensions, but in a single dimension rep-
resenting the depth of P in the reference image. The variation
of the normal is specified by two rotation angles and at last
the velocity is left as three dimensional vector. The resulting
problem has six dimensions.

8. Filtering

After the expansion step the set of surface patches possibly
contains visual inconsistencies. These inconsistencies can be
put in three groups. The outliers outside the surface, outliers
that lie inside the actual surface and patches that do not sat-
isfy a regularization criterion. Three distinct filters are used
to eliminate the different types of inconsistencies.

The first filter deals with outliers outside the surface. To
detect an outlier a support value s and a doubt value d is
computed for each patch P. The support is the patch score
Eq. (6) multiplied by the number of images where P is truly
visible s = ρ(P) · |Vt(P)|. Summing the score of all patches
P′ that are occluded by P gives a measure for visual incon-
sistency introduced by P and is the doubt d. If the doubt out-
weighs the support d > s the patch is considered an outlier
and removed.

Patches lying inside the surface will be occluded by the
patch representing the real surface, therefore the visibilities
of all patches are recalculated as described in 5.2. After-
wards, all patches that are not visible in at least φ images
are discarded as outliers.

The regularization is done with the help of the patch sim-
ilarity defined in Eq. (5). In the images where a patch P is
visible all surrounding c patches are evaluated. The quotient
of the number c′ of patches similar to P in relation to the total
surrounding patches c is the regularization criterion: c′

c < z.
The quotient of the similarly aligned patches was z = 0.25
in all our experiments.

9. Results

To test the capabilities of our algorithm we used the synthetic
scene shown in Fig. 3 (top row). The scene is a textured
model of a windmill with rotating wings. As input we gener-
ated images from six viewpoints at a resolution of 480×270
pixels. The time offset between the six cameras is spread
equally over one frame. The grid cell size is set to λ = 2 for
the first 18 iterations and then decreased to λ = 1 for the next
50 iterations. The total runtime on the test machine a AMD
Athlon 64 X2 6400+ was 12 hours. In the resulting depth
map Fig. 3b), continuous depth changes as the floor plane or
the walls are remarkably smooth while the discontinuities on
the wing edges are retained. The small irregularities where
no patch was created stem from the conservative filtering
step. How well the motion of the wings is reconstructed can
be seen in the flow visualization Fig. 3c). The outline of the
wings is clearly visible and the motion decreases towards the
rotation center.

In addition the synthetic test scene, we used two outdoor
sequences. The resolution for both scenes was 960× 540
pixels. The skateboarder scene, Fig. 3 (middle row), was
filmed with six unsynchronized cameras and chosen because
it has a large depth range and fast motion. The skateboarder
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(a) (b) (c)

Figure 3: (a) Input views, (b) quasi-dense depth recon-
struction and (c) optical flow to the next frame. For the
synthetic windmill scene, high-quality results are obtained.
When applied to the more challenging real-world scenes
(skateboarder scene, middle, parkours scene, bottom), ro-
bust and accurate results are still obtained. The conservative
filtering prevents the expansion to ambiguous regions. E.g.,
most pixels in the asphalt region in the skateboarder scene
are not recovered. All moving regions except the untextured
body of the parkours runner were densely reconstructed,
while some motion outliers remain in the background.

and the ramp in the foreground as well as the trees in the
background are reconstructed in great detail, Fig. 3b). The
asphalt area offers very little texture. Due to our restrictive
filtering, it is not fully covered with patches. The motion of
the skater and that of his shadow moving on the ramp is vis-
ible in 3c). The shown results were obtained after 58 itera-
tions starting with λ = 2 and using λ = 1 from iteration 55
onward. The total computation time was 95 hours.

The second real world scene Fig. 3 (bottom row) features
a setup of 16 cameras showing a parkours runner jumping
into a handstand. The scene has a highly cluttered back-
ground geometry. Similar to the skateboard scene, regions
with low texture are not covered with patches. However, de-
tails of the scene are clearly visible in the depth map and the
motion reconstructed for the legs and the back of the person
is estimated very well. Due to the cluttered geometry and the
large number of expansion steps, the reconstruction took 160
hours. For visual assessment of our approach, we would like
to refer to our accompanying video.

To demonstrate the static reconstruction capabilities we
show the results obtained from the Middlebury ”ring”

(a) (b) (c)

Figure 4: Reconstruction results from the Middlebury MVS
evaluation datasets. (a) Input views. (b) Closed meshes from
reconstructed patch clouds. (c) Textured patches. While al-
lowing the reconstruction of all six degrees of freedom (in-
cluding 3D motion), our approach still reconstructs the
static geometry faithfully.

datasets [Mid] in Fig. 4. We used the Poisson surface recon-
struction [KBH06] to create the closed meshes. The static
object is retrieved, although no prior knowledge about the
dynamics of the scene was given, i.e., we used all six de-
grees of freedom for reconstruction. Computation time for
these datasets was 24 hours each.

10. Conclusion

The results produced by our algorithm show promising po-
tential. We successfully reconstructed depth, orientation and
motion in several challenging scenes. To stimulate further
research, we plan to publish our synthetic data along with
ground truth information on-line.

We do not yet use the temporal coherence within a video
or a dynamic regularization. Both concepts are expected to
further improve the robustness of our approach. Sophisti-
cated regularization techniques could also help to recon-
struct texture-less areas, e.g., the asphalt area in the skate-
boarder sequence.

The conceivable applications reach from free viewpoint
applications over markerless motion capture to image seg-
mentation tasks, that can distinguish foreground from back-
ground by using depth and velocity cues. One obstacle for
most application are the long run-times of our approach. A
fully GPU-based implementation might help to reduce this
problem significantly.
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