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Abstract

Indexing image data for content-based image search is an important area in Computer Vision. The state of the

art uses the 128-dimensional SIFT as low level descriptors. Indexing even a moderate collection involves several

millions of such vectors. The search performance depends on the quality of indexing and there is often a need to

interactively tune the process for better accuracy. In this paper, we propose a a visualization-based tool to tune

the indexing process for images and videos. We use a feature selection approach to improve the clustering of SIFT

vectors. Users can visualize the quality of clusters and interactively control the importance of individual or groups

of feature dimensions easily. The results of the process can be visualized quickly and the process can be repeated.

The user can use a filter or a wrapper model in our tool. We use input sampling, GPU-based processing, and visual

tools to analyze correlations to provide interactivity. We present results of tuning the indexing for a few standard

datasets. A few tuning iterations result in an improvement of over 4% in the final classification performance, which

is significant.

Categories and Subject Descriptors (according to ACM CCS): H.3.3 [Information Storage and Retrieval]: Informa-
tion search and retrieval—clustering H.5.2 [Information Interfaces and Presentation]: User Interfaces—graphical
user interfaces

1. Introduction

CBIR is the process of retrieving desired images from a large
collection based on syntactical image features. Recent ad-
vancements in computer vision has introduced several new
low-level features like Scale Invariant Feature Transform
(SIFT) [Low99] to describe images other than color, tex-
ture, shape, making it possible to achieve significant results
in image retrieval and classification. SIFT descriptors are
computed either at interest points [Low01] or in a uniform
grid [DT05] in a 128 dimensional space. A small image in
general is described by a few hundreds of such descriptors.
Hence, for a reasonably sized collection of a few thousands
of images, the volume of data points explodes to a few mil-
lion.

CBIR draws parallel with text search techniques. In docu-
ment retrieval, each document is represented by a vector us-
ing bag of words representation. Analogous to this approach,
for CBIR, each image is described by an image vector which
is a histogram of visual words. Since each SIFT descriptor
is a low-level feature, the entire set of descriptors extracted
from the image collection is divided into a fixed number
of clusters with each cluster center denoting a visual word

(For detailed explanation, refer to [SZ03]). SIFT descrip-
tors in each cluster are similar in some sense of objectiv-
ity. To improve the retrieval accuracy using image vectors,
Li et al. [LP05] incorporate learning methods like Support
Vector Machine [TC01]. How ever, retrieved results might
not always convey the information required to boost learn-
ing parameters. In such a case, there is a need to fall back on
information already available and organize it much better.

In this paper, we focus on overall indexing quality by en-
abling the user with an interface to analyze the match quality.
In contextual terms, clusters formed from SIFT vectors must
be judged if they form a relevant visual word. We believe
that there is a need to provide an interactive feedback based
interface to control the indexing process which can improve
the overall quality. We propose a visualization-based frame-
work and a tool to help tune indexing systems for CBIR. We
use a feature selection approach to improve the quality of
clustering of SIFT vectors by weighing each dimension dif-
ferently. Weights can be set interactively with automatic sug-
gestions. The tool supports both filter and wrapper model of
clustering. It also provides an interactive interface to analyze
the clusters formed, by using a graph visualization scheme
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for the cluster centres as well as the vectors in each cluster.
Relative cluster validity techniques are implemented and vi-
sualized as a line chart to assist a user understand the quality
of clusters formed. To make the process interactive, a GPU
is used for fast clustering as well as to compute the graph
layout. We observe a classification accuracy of 56.6% over-
all using our tool for UIUC dataset [03] consisting 15 dif-
ferent categories. Our main contribution is the combination
of interactive visualization techniques to improve the image
indexing problem. Though the tool is specifically tuned for
SIFT based indexing, it can be used for many learning-based
problems that use high dimensional vectors.

2. Background and Related Work

A variety of visualization schemes have been proposed to
display image result collections. Chen et al. [CGR00] clus-
ter images based on low level features like color, shape. Imo
et al. [IKH08] provide an interactive method to visualize
color histograms and texture features of images. Nakazato
et al. [NH01] visualize retrieved images in two or three di-
mensional space with each dimension denoting some char-
acteristic of feature space. To make characteristics of the fea-
ture space more apparent, some approaches map high dimen-
sional space down to a number of depictable dimensions, for
example, multidimensional scaling [RT01] or principal com-
ponent analysis [Jol02]. Though the information loss in these
approaches is apparent, they allow an abstract global view of
the information. These methods do not scale well for collec-
tions of thousands of images. More over, they allow only to
visualize retrieved results but provide no interface for user
feedback.

Interactive relevance feedback techniques incorporate hu-
man perception subjectivity into retrieval process. They pro-
vide users with an oppurtunity to evaluate retrieved results
and automatically refine queries on the basis of their per-
ception [RH99] [SZM00]. Zhong et al. [SLZ01] use PCA
to reduce the dimensionality of feature space and define a
method to extract features from positive images provided
by relevance feedback. Dimensionality reduction techniques
are used for two main reasons: better cluster quality and
reduced data size. Various methods have been proposed to
identify low dimensional subspaces, which can be broadly
classified into feature selection and feature transformation

algorithms. Methods based on variance (such as principal
components analysis) need not select good features for clus-
tering, as features with large variance can be independent
of the intrinsic grouping of the data. Feature selection algo-
rithms can be divided into two categories [BL97], [KJ97]:
filters and wrappers. Most of the dimensionality reduction
methods lack user interaction in deciding the final feature
space. The Weka system [HFH∗09] provides implementa-
tions to many of these techniques but the user is allowed only
to choose parameter values before executing the algorithms.
Previous investigations on automated feature selection for

unsupervised learning reveal that no single feature selection
criterion is best for every application. Dy et al. [DB00] in-
corporate scatterplots and user interaction to guide feature
subset search and enable a deeper understanding of the data.
But this is a very specific implementation of a wrapper tech-
nique and is not scalable to large datasets.

While we look to reduce the number of dimensions, it is
useful to analyze individual feature correlations. Relation-
ships between two dimensions can be best visualized in a
scatterplot. A Multidimensional dataset can be visualized us-
ing a scatterplot matrix [JMCT83]. But however, this tech-
nique has got its own disadvantages. Given the limited size
of plotting region in most display media, size of each panel
must be reduced accordingly. At some point, visual reso-
lution of point clouds within panels will degrade to an un-
acceptable degree. Further, it cannot really show multivari-
ate structure, because scatterplot within each panel is con-
structed completely independent of information in any other
panel. PCP [ID90] on the other hand provides support to
study geometry of the data. In this method, each dimen-
sion corresponds to an axis. N axes are organized as par-
allel lines, typically vertical with uniform spacing. A vec-
tor V with values (V1,V2, ...Vn) is visualized as a polyline
connecting points (U1,U2...,Un) on N vertical axes. A num-
ber of extensions to PCPs exist, like hierarchical [FWR99]
and multiresolution methods, 3D PCPs [JCJ05] and combi-
nations of clustering, binning [AdOL04] and other features
like outlier detection [JLJC05] to reduce visual clutter there
by supporting large datasets.

Since, there are no predefined classes and no examples
that would show what relations are valid among the data, the
final partition of a dataset requires some method of evalua-
tion to understand the underlying quality. Halkidi et. al. clas-
sify cluster validity methods into three categories, namely
internal, external and relative measures [HBV02]. Internal
and external approaches are based on statistical tests and
their major drawback is their high computational cost. More-
over, the indices related to these approaches aim at measur-
ing the degree to which a data set confirms an a-priori spec-
ified scheme.

3. SIFT Tuning Framework

Few attempts have been made to incorporate more user sub-
jectivity into the summarization of low-level features. One
of the key contributions of this paper is the redefinition of
CBIR process by incorporating a visual framework to gen-
erate user-favoured clusters of low-level features like SIFT
extracted from each of the images. A learning based CBIR
system relies on the quality of image vectors and relevance
feedback provided by the user to train the classifier. The vi-
sual words should be of high quality. Generating qualitative
clusters is possible if the user identifies the behaviour of un-
derlying data points and controls the entire process interac-
tively.
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Figure 1: Framework: Overview of the procedure

Visualization of large amounts of high dimensional data
has been an active research area in information visualization.
Keim [Kei02] gives a good overview and categorization
of relevant visualization techniques. Many of these meth-
ods aim at the identification of interesting formations in the
data, such as linear correlations. However, to analyze SIFT
descriptors extracted over a collection of images, these do
not apply directly. Thus, we aim at presenting a visualiza-
tion based framework with an implemented tool to tune the
entire process of indexing SIFT.

Interactive analysis of such huge abstract datasets is not
possible using individual traditional methods. We sample the
entire dataset to a manageable size using stratified sampling
method. We follow a feature selection approach and incor-
porate a rank-by-feature schema to identify subspaces. Dis-
tribution along each of the dimensions can be analyzed by
its corresponding histogram and box-plot. We use a Paral-
lel Coordinate Plot widget to enable a user identify two-
dimensional correlations. Once dimensions are analyzed,
suitable weights are chosen to generate visual words. As the
framework suggests, a user is free to choose either a filter
or a wrapper model of clustering which can incorporated as
a plugin in the tool. Whatever might be the method used to
compute visual words, it is necessary to analyze the cluster
structure formed. Graph layout provides an excellent means
of analyzing such high dimensional structures. Since it is
an unsupervised clustering process, users must be able to
evaluate the resulting clusters formed using some qualitative
measure. Relative index measures form an excellent choice.
User can interactively re-assign weights to each feature vec-
tor based on his observation of a clustering process. Some
automatic methods of suggesting weights have also been in-
cluded to aid the choice. The procedural framework after we
sample a dataset is described as follows.

3.1. Feature Selection and Weight Assignment

In an exploratory analysis, users do not know in advance
what they are looking for or what kind of projections are
interesting. In such a case, it is necessary to provide tools
to easily identify interesting projections. We incorporate a
rank-by-feature approach proposed by Seo et al. [SS05]. In
this framework, users can incorporate their interests into an
interactive exploratory analysis process by selecting a rank-
ing criterion among available ranking schemas. All possible
axis-parallel projections are ranked by the criterion function.

We integrate four ranking criteria into our tool, since they
are common and fundamental measures for distribution anal-
ysis.

• Entropy of the distribution (0 to ∞)
• Normality of the distribution (0 to ∞)
• Number of potential outliers (0 to N)
• Number of unique values (0 to N)

We use an entropy measure to compute uniformity. Given
k bins in a histogram H, its entropy E is defined as E(H)
= -∑k

i=1 Pi log2(Pi) where Pi is the probability that an item
belongs to i-th bin. We chose omnibus moments test for nor-
mality from several statistical tests available. Several outlier
detection algorithms have been proposed in the field of data
mining [Pet03]. We select an item of value d to be an outlier
if, d > (Q3 + 1.5*IQR) or d < (Q1 - 1.5*IQR) where IQR
is the interquartile range (defined as the difference between
the first quartile (Q1) and the third quartile (Q3)).

We can however notice that any filter model based feature
selection method can be incorporated instead of a ranking
schema and assign uniform weights to subset produced.

3.1.1. One-dimensional Distribution Analysis

Users may begin their exploratory analysis by scrutinizing
each dimension one by one. A mere look into the distri-
bution of values of a dimension gives useful insights. The
tool provides histograms and boxplots for graphical display
of 1D data as shown in Fig. 2. Histograms graphically re-
veal the skewness and scale of the data. Boxplots provide
a quick way of examining one or more sets of data graphi-
cally by showing a five-number summary (the minimum, the
first quartile, the median, the third quartile, and the maxi-
mum). These numbers provide an informative summary of
dimension’s center and spread and thus help in selecting di-
mensions for deriving a model. The sub-interface consists of
four coordinated parts: the rank box, the table view, the or-
der view and the histogram view. Users can select a ranking
criterion from the rank box, which is a combo box, and then
see the overview of scores for all dimensions in the table
view (Figure 2) according to the ranking schema selected.
All dimensions in the data table are sorted in decreasing
value of scores on default. The table view consists of three
columns. The first column denotes the dimension name, sec-
ond denotes the score of that dimension according to rank-
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Figure 2: Sift-visualizer: It consists of a 1D ranking framework providing details about distribution of each dimension as a

histogram combined with box plots. Weights can be assigned to each dimension either directly in the table view or selecting

appropriate orientation angle in the glyph view. User can select appropriate clustering schema and layout method. Its graph is

displayed in the Visualizer window. Dimensions which are assigned weights, are rendered in the PCP view denoting correlations

between two adjacent dimensions.

ing schema, and the third column in the table view displays
weight assigned to it by user.

The order view is a bar chart, where in the length of the
bar denotes the rank of that dimension. All dimensions are
aligned from top to bottom in the original order and each di-
mension is color coded by corresponding weight-value (third
column in the table view). Weight is directly proportional to
the color scale which is displayed below the order view. Its
mapping can be obtained by a simple mouse hover over the
display bar (Fig. 2). A mouse hover over a bar in the order
view displays the corresponding dimension id in a tooltip
window Thus, user can preattentively identify dimensions of
highest and lowest rank and observe the overall pattern. The
user is provided an option to interchange the parameters in

the order view such that color of each bar denotes the rank
and length, its weight. The histogram view is a combination
of one-dimensional histogram plot and box-plot to display
1D projections.

The mouseclick event in the rank view or a cellactivate
event in the table view is instantaneously relayed to other
views. The corresponding item is highlighted in the rank and
the table view, and its histogram and box plot is rendered in
the histogram view. In other words, a change of dimension in
focus in one of the rank or table view leads to instantaneous
change of dimension in focus in other component views.
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3.1.2. Identifying Correlations

For better exploration of unsupervised, multi-dimensional
data, after scrutinizing one-dimensional projections, it is nat-
ural to move on to two-dimensional projections where pair-
wise relationships can be identified. Based on our discussion
in section 2, we build on the idea of bin map and perform re-
finements to display the structure of SIFT descriptors.

PCPs have little to gain from high precision floating point
representation of data. When data values are rounded to a
lower precision representation, the maximum erroneous dis-
placement that a line in a plot will have is directly related to
the rounding error. The axes of PCP currently are less than
127 pixels. Hence, a quantization to 8-bit values will yield a
maximum displacement of a single pixel which doesn’t show
any effect in the current scenario. This step reduces the data
from 4 bytes to a single byte per point per attribute, greatly
reducing the necessary storage.

A PCP without any selections can be quickly generated
solely from the joint-histograms of the data. We make use
of binning approach proposed by Artero et. al. [AdOL04].
Only the joint histogram between each pair of neighbouring
axes is needed to build the parallel coordinate plot using this
technique. Fast exploration of data is made possible by com-
puting joint histograms over all pairs of axes. For N axes, we

get N(N−1)
2 histograms for all pairs.

We adopt the rendering approach of Philipp et. al.
[MKO∗08] where histogram bins form a direct basis for
drawing the primitives. Instead of having to draw a line for
each data point, only a single primitive is drawn for each his-
togram bin. We use additive blending to combine all drawn
primitives. We use a square-root intensity scale, as to pre-
vent over-saturation of high-density areas in the plot, while
keeping a good visual contrast in low intensity areas.

A value change event in the weight column in the table
view is instantaneously relayed to PCP display. We believe
that displaying joint histograms in the order of precedence of
selected dimensions will show correlations which might be
useful to re-define importance to each of the dimensions. If
a weight W (>0) is assigned to a dimension by the user, the
corresponding joint histogram is rendered in order of prece-
dence of selection. For example, from Figure 2, say dimen-
sion 113 is assigned a weight, then a joint histogram between
81 and 113 is rendered. Next, when dimension 17 is given
some weight, a bi-histogram between 113 and 17 is loaded
into memory and rendered in PCP display.

Thus, we provide a user with the power to analyze multi-
variate structure of interesting dimensions in 1D projections.
User might find 1D projection of a dimension to be interest-
ing, but it might not have any correlation with other dimen-
sions of significant interest. In such a case, user can revert
back to remaining dimensions by deselecting the uncorre-
lated dimension. De-selecting a dimension can be performed

simply by reassigning its corresponding weight W to zero in
the table view.

3.1.3. Weight Assignment Using Glyphs

Since we consider scale invariant feature transform descrip-
tors, the number of dimensions present are 128. If we ob-
serve how SIFT is computed, we notice that each interest
point (which is computed using some interest point detector
like [MS04]) is divided into a 4× 4 matrix where cell size
depends on the scale computed by interest point detector.
Eight orientation angles are chosen describing the infoma-
tion in each cell. Following a similar approach, we display a
4× 4 matrix of glyphs where each glyph is further divided
into eight orientations as shown in Figure 2. [vA02] use
glyphs to display information about k-dimensional data.

Figure 3: Orientation view: Visually assigning weights

to adjacent dimensions. Greater the inclination, more the

weight given to an orientation.

A Mouseclick event in the glyph view generates a
zoomed-in version of the corresponding cell in which
mouseclick event occured. User can visually assign weights
between neighbouring dimensions as shown in Figure 3. If a
weight is assigned to a dimension, its corresponding cell in
the 4× 4 cell matrix is highlighted in green. This mode of
assigning weights is very useful if two neighbouring dimen-
sions are of sufficent interest and user can visually approx-
imate priorities. A left mouseclick event in the orientation
view assigns a weight to each of the corresponding adjacent
dimensions with respect to the angle selected. One method is
to assign a weight relative to cosine of the angle of selection.
A right mouseclick deselects previously assigned weights in
the cell. The updated weights are relayed to the table view
on occurrence of either of the events.
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3.2. Data Clustering

After potentially identifying a weighted sub-space, user
clusters the set of data points. Since different users might
be interested in different clustering methods, it is desirable
to allow users to customize the available set of clustering
schemas. However, we have chosen the standard k-means
[JD88] as a starting point and implemented it on the GPU
using CUDA [06] to achieve significant speed up. A mod-
ified Euclidean distance schema is incorporated into com-
puting distance between cluster means and points. Distance
between a cluster mean P and a data point Q is computed

using the formula D(pq) =
√

∑128
i=1Wi ∗ (Pi −Qi)2, where Wi

(0≤Wi≤ 1) denotes weight assigned to dimension i in the ta-
ble view. After every iteration, we update cluster means as
in the standard procedure.

3.3. Visualization System for Cluster Analysis

3.3.1. Graph Layout

Often, clustering algorithms go hand in hand with graph
drawing methods providing important means of dealing with
increasingly large datasets. A good layout effectively con-
veys the key features of a complex structure or system to
a wide range of users. The primary goal of these types of
methods is to optimize the arrangement of nodes such that
strongly connected nodes appear close to each other.

The user is presented with a two-dimensional representa-
tion of multi-dimensional data, that is easy to understand and
can be further investigated. We make use of Euclidean Min-
imal Spanning Tree (EMST) proposed by Stuetzle [Stu03].
This skeleton forms the basic layout representation of the
data. In order to compute the EMST, we need the high-
dimensional point cloud in attribute space spanned by the en-
tire set of attributes. Hence, for each position in the data set,
an attribute vector that consists of individual multi-variate
values is computed. A spanning tree connects all points in at-
tribute space with line segments such that the resultant graph
is connected and has no cycles. For a graph with n nodes, we
end up with n−1 edges in the spanning tree. A spanning tree
is an EMST if the sum of the euclidean distances between
connected points is minimum. Since our graph layout fol-
lows a drill-down approach, each graph contains only a few
thousands to tens of thousand of nodes. We apply Prim’s al-
gorithm [CT76] to compute the minimal spanning tree. For

a graph with N nodes, N(N−1)
2 edges are chosen where each

edge is given a weight by finding the euclidean distance be-
tween the pair of points. Our current approach is based on
graph drawing, where the EMST is first projected to 2D by
assigning each node an arbitrary position. Afterwards, the
graph is laid out to achieve appropriate edge lengths and few
edge intersections.

We choose the Fast Multipole Multilevel Method (FM3)
method since it produces pleasing layouts and is relatively

fast [HJ05]. The basic approach of this algorithm tries to
coarsen recursively an input graph G0 to produce a series
of smaller graphs G1...Gk, until the size of coarsened graph
falls below some threshold. We use the GPU implementa-
tion of a modified version of this algorithm by Godiyal et.
al. [GHGH09]. Only the multipole expansion coefficients
are considered and not the local expansion coefficients to
approximate repulsive forces. These coefficients alone are
sufficient to produce a high quality layout.

3.3.2. Cluster Validity

Since we use an unsupervised approach of clustering, its of-
ten necessary to quantitatively evaluate the final partition.
Cluster validity approaches based on relative criteria aim
at finding the best clustering scheme that a clustering algo-
rithm can define under certain assumptions and parameters.
Here the basic idea is the evaluation of a clustering struc-
ture by comparing it to other clustering schemes which were
produced by the same algorithm using different weight as-
signments. In this framework, we provide user an option of
choosing from three indices. Namely,

• Davies-Bouldin index
• R-squared index
• SD validity index

For an in-depth description of indices, please refer
to [HBV02]. As these indices are relative, we plot each
of them as a line graph. Based on the index chosen, user
searches for an optimum value denoting the best quality of
clusters achieved over the process. Figure 4 denotes a plot of
Davies-Bouldin index obtained for one of the experimental
setups.

Figure 4: Davies-Bouldin index: With each iteration, the

value decreases meaning better cluster quality

3.3.3. Interaction for Cluster Analysis

A zoom user interface allows user to change the scale of the
viewer area. Holding the right mouse button down, a mouse
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left and a right makes the graphical display zoom out and
zoom in respectively. This helps user pin down to a point of
his/her interest.

User can rotate the display on either of the spatial axes (X,
Y or Z) to change the view point. This is achieved by hold-
ing down the left mouse button and moving in any direction.
User can translate the canvas by pressing middle mouse but-
ton and making a move in any direction. This provides great
flexibility to analyse the structure of the graph layout and pin
down to the interest area.

User can move the cursor over any valid data to browse
through the details. This is a drill-down approach where vi-
sual words are displayed initially according to a graph lay-
out algorithm. User can point the cursor over any node (each
node represents a visual word) and click on it to generate
a graph layout of underlying SIFT vectors assigned to that
particular visual word. Another click on any node denoting
a sift descriptor displays its interest region in an image as
shown in Figure 5.

Figure 5: Drill-down to a sift descriptor in a cluster. The

interest region is denoted by a black colored rectangle and

the selected node is highlighted with a wired mesh enclosing

it.

3.4. Automatic Weight Recommendation

It might often be tedious for a user to re-assign weights
to each dimension based on cluster analysis. An automatic
weight suggestion scheme proves handy in manual weight
assignments. There are different ways of suggesting weights
based on partition obtained from the clustering method. One
way is to choose

wj =







0 if Dj = 0
1

∑h
t=1 [

D j

Dt
]

1
β−1

if Dj 6= 0

Where wj is the attribute weight of j-th dimension, β ≤ 0
or β > 1, h is the number of variables where Dj 6= 0 and

Dj =
k

∑
l=1

n

∑
i=1

ui,ld(xi, j,zl, j)











ui,l = 1 if ∑
m
j=1 w

β
j d(xi, j,zl, j) ≤ ∑

m
j=1 wj

βd(xi, j,zt, j)

for 1 ≤ t ≤ k
ui,l = 0 for t 6= l

Z = {Z1,Z2, ...Zk} is a set of k vectors representing the cen-
troids of the k clusters, X = {X1,X2, ...Xn} is a set of n ob-
jects, each object Xi = (xi,1,xi,2, ...,xi,m) is characterized by
a set of m dimensions, U is a n× k partition matrix, ui,l is
a binary variable and uil = 1 indicates that object i is allo-
cated to cluster l, d(xi, j,zl, j) is the distance or dissimilarity
measure between object i and centroid of cluster l on the
j-th variable. This method of suggesting weights is a mod-
ified version from [HNRL05] where they aim to minimize
an objective function

P(U,Z,W ) =
k

∑
l=1

n

∑
i=1

m

∑
j=1

ui,lw
β
j d(xi, j,zl, j)

It is only a support process and the final decision to choose
weights for each dimension is left to the user.

4. Experimental Results

We show an application example of the framework with a
collection of image classification categories. This dataset
contains 4485 images with 15 different classes available
with UIUC [03]. We apply SIFT feature detector on all im-
ages using Vedaldi’s implementation [05]. We obtain close
to 1.1 million SIFT vectors for this collection. We imple-
mented the current tool using Qt, OpenSceneGraph [07] and
OpenCV. All computations are performed on a 2.4Ghz quad
core system with 2.5GB RAM and a GTX 280 graphics card.
We use intersection kernel based Support Vector Machine
(SVM) to build a classifier and a fast intersection kernel for
testing [MBM08]. We sample 60 SIFT descriptors from each
image resulting in a total sample size of 0.26 million vectors
approximately.

After a series of iterations of weight re-assignment and
clustering in tandem over sampled data with manual inter-
vention, we observe that clusters formed are relatively sta-
ble, backed by a cluster validity index (figure 4). Using the
observed weights, we run a weighted kmeans on the entire
dataset with respective K cluster centers.

Over several loops of above steps, we observe that di-
mensions, especially those belonging to the corner cells and
corresponding to orientations 135◦,215◦,270◦ are assigned
low weights by automatic suggestion schemas. Since we ob-
serve lower suggestive weights for a few dimensions in the
previous iterative process, we redo the entire process once
again. But this time, we discard a set of dimensions Ds = {4,
12, 22, 43, 44, 54, 55, 71, 78, 79, 83, 84, 110, 116} resulting
around 11% decrement in data size. The observed overall
classification accuracy in terms of percentage is shown in
table 1.

Our CUDA based k-means algorithm takes half a second
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Figure 6: 1D histogram corresponding to dimensions (a)84,

(b) 110, (c) 124

VWs EW IW IW-Ds

400 51.7 53.7 54.1
500 51.5 53.0 53.7
600 52.1 54.1 54.7
700 52.6 54.3 55.6
800 53.1 54.6 55.9
900 52.8 53.9 55.3
1000 53.4 55.2 56.6

Table 1: VW = Number of visual words, EW = K-means us-

ing uniform weights, IW = K-means with weights adjusted

interactively, IW-Ds = K-means with Ds dimensions given a

weight zero and weights of other dimensions adjusted inter-

actively.

for an iteration for above sampled data. k-means is run upto
convergence or 25 iterations, which ever is the earliest, there
by consuming just over 12 seconds in a user interaction loop.
Initial weight to each of the dimensions is assigned based
on the behaviour observed in the histogram and PCP views.
Once clusters are computed in a user interaction loop, au-
tomatic weights are suggested with β = 7 which takes less
than half a second using a CUDA based implementation of
method described in section 3.4. We consume about a minute
to analyze the cluster quality and interactively adjust weights
and proceed to the next round of clustering. In the above
experiments, we loop over weight re-adjustment and clus-
tering process eight times after which a considerable drop
in Davies-Bouldin index was not observed. After we con-
clude with a set of corresponding weights based on the sam-
ple data, our weighted k-means method is run over the en-
tire dataset as an offline process. In order to avoid incon-
sistency, we generate 5 random sample sets and notify the
mean classification accuracy obtained for entire dataset. Li
et al. report a classification accuracy of 52.5% for SIFT with
DoG [LP05] for the same dataset.

5. Conclusion

In this paper, we consider very high dimensional data which
is not spatially correlated and accounts for large storage

space. Traditional techniques do not scale well with these
kinds of datasets. Our attempt in the current case is to pro-
vide a framework for analyzing such datasets. We provide
a visualization based interactive tool to guide the process
of generating better clusters. We observed that distribution
along 0 degree orientations is uniform and spread over a
large range for several datasets. Though it takes consider-
able amount of time to analyze clusters, we can randomly
sample a set of areas in the graph layout and observe the re-
sults which gives an overall view about the current process.
We notice that though this framework has been designed for
analyzing SIFT vectors from a given set of images, we can
extend it to any high-dimensional dataset which requires a
cluster analysis schema.

As noted in section 3, the number of joint-histograms that
has to be pre-computed scales quadratically with the number
of dimensions of the dataset. This makes the pre-processing
time and used disk-space grow quadratically. We plan to in-
clude normalization method for PCP to further reduce the
clutter. We also plan to provide an interactive interface where
a user can re-order the dimensions displayed in PCP.
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