
Instant Texture Synthesis by Numbers

P. Panareda Busto1,2, C. Eisenacher1, S. Lefebvre3 and M. Stamminger1

1FAU Erlangen-Nürnberg, Germany
2Technical University of Catalonia, Spain 3INRIA Nancy, France

Abstract
Appearance Space Texture Synthesis (ASTS) provides fast texture synthesis by example. Unfortunately, speed is
only achieved at the cost of a long pre-processing step. This is tedious for artists and limits the input resolution.
In addition, the aggressively pruned search space results in strong artifacts when synthesizing multiple textures
under user guidance (Texture-By-Numbers, TBN). In this paper, we replace the k-coherence search step used
by most modern synthesis algorithms with a new parallel, coherent random walk. We show that this drastically
improves the synthesis quality with TBN, while maintaining the parallel nature, speed, and flexibility of the original
ASTS runtime. Since it removes the expensive pre-computation of k-coherent candidates, we are able to use larger
inputs, and start synthesis much faster. This is essential for artists designing high-quality exemplars.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Texture Synthesis

1. Introduction

Texture synthesis by example is a convenient way for artists
to create a large amount of similar looking texture. The ideal
algorithm synthesizes gigatexels of high quality texture onto
arbitrary surfaces. It does it in a short time, and with a max-
imum of optional artist control. By separating synthesis into
careful pre-processing and parallel k-coherence search on a
GPU, Appearance Space Texture Synthesis (ASTS) [LH06]
is able to meet most of these requirements.

However, it has two drawbacks, limiting its practical use.
First, while the synthesis runtime is incredibly fast, we
need to pre-compute k-coherent candidates. This takes con-
siderable time, and using tree-based acceleration structures
[AMN∗98, ML09], we quickly run out of memory as the
size of the exemplar increases. This is common for TBN
as the input accommodates multiple textures and the tran-
sitions between them. Second, the severely pruned search
space of k-coherence does not provide enough variation for
Texture-By-Numbers (TBN) [HJO∗01]. This leads to strong
transition artifacts as shown in Figure 1(b).

Inspired by Barnes et al. [BSFG09] we design a new
parallel, coherent random walk, that nicely integrates into
the ASTS synthesis step. It requires no pre-processing and
improves the image quality with TBN considerably over

k-coherence search. Our algorithm provides artists with
greater control over the result than plain ASTS, and allows
them to try different ideas in shorter time, increasing their
productivity greatly.

2. Related Work

There is a large body of excellent texture synthesis al-
gorithms, catering different needs [WLKT09]. They can
be roughly categorized into pixel-based [EL99], patch-
based [EF01] and optimization based [KEBK05, RB07] ap-
proaches. The latter two are very successful synthesizing 2D
images, and frequently used for image-editing applications.

Synthesizing large amounts of texture onto virtual objects,
however, is an area where pixel-based synthesis algorithms
excel [LH06]. Their basic operation is to repeatedly replace
each synthesis pixel with the most similar exemplar pixel,
where similarity is generally the Euclidean distance between
the neighborhood vectors around each pixel. With each such
correction pass the synthesized image becomes more similar
to the exemplar.

To guide synthesis [Ash01], the neighborhoods are sup-
plemented by information from a label map [HJO∗01]. In
addition to similar texture, the exemplar neighborhood now
has to carry similar labels or numbers in order to be chosen.

c© The Eurographics Association 2010.

Vision, Modeling, and Visualization (2010)

DOI: 10.2312/PE/VMV/VMV10/081-085

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/PE/VMV/VMV10/081-085


P. Panareda Busto & C. Eisenacher & S. Lefebvre & M. Stamminger / Instant Texture Synthesis by Numbers

(a) input exemplar with annotation (b) k-coherence search (c) parallel randomized correspondence

Figure 1: Texture by Numbers takes an exemplar with a source label (left), and synthesizes a texture following a target label.
K-coherence search fails due to excessive pruning of the search space, especially at the transitions between textures (middle).
Our parallel, coherent random walk drastically improves the result and avoids costly pre-processing (right).

To speed up the frequent and expensive search for similar
neighborhoods, most algorithms employ hierarchical syn-
thesis [WL00], local propagation [Ash01], or dimensional-
ity reduction [HJO∗01]. Lefebvre and Hoppe combine all
three strategies for an extremely fast, parallel GPU imple-
mentation [LH05]. One of their key ideas is to synthesize
coordinates into the exemplar instead of colors. This allows
them to naturally propagate good matches to adjacent pix-
els and the next level of the synthesis hierarchy, resulting in
excellent synthesis quality.

To further improve speed and quality, they gather neigh-
borhoods for each exemplar pixel and PCA compress them
to create the Appearance Space [LH06]. Its higher informa-
tion density allows to define a synthesis neighborhood with
only four appearance space points and use it instead of the
traditional color neighborhoods to synthesize exemplar co-
ordinates. While it contains information about a very large
area of the input, it is considerably faster and the small spa-
tial extent allows anisometric synthesis into a texture atlas.

3. Searching Neighborhoods Efficiently

Most successful search strategies locally propagate good
matches, and then add some additional candidates into the
mix to avoid the creation of texture seams.

Coherence search: Ashikhmin [Ash01] limits the search
space to the coherent candidates, i.e. the coordinates of the
adjacent pixels plus the respective offset, as shown in Fig-
ure 2(a). This requires only 4 comparisons per pixel, and
the scanline order propagates good matches, resulting in the
growth of coherent patches. While this is beneficial for im-
age quality, it produces disturbing seams where two patches
join, especially if the exemplar does not contain enough high
frequencies to visually mask those seams.

K-coherence search: To relax the restricted search space,
Tong et al. pre-compute the k most similar neighborhoods
for each exemplar pixel [TZL∗02]. During synthesis they
choose from the coherent candidates and their similarity sets.
This requires 4× k comparisons, but is able to recover from
seams. For k = 1 it is equal to coherence search. Lefeb-
vre and Hoppe [LH05, LH06] use parallel k-coherence, as
shown in Figure 2(b). This requires 9× k comparisons, but
improves quality for small k without additional memory or
pre-computation cost. Typically k = 2 suffices.

Patch Match: Barnes et al. [BSFG09] use a simple coher-
ence search in scanline order, and replace the similarity sets
by a random search with contracting radius around the best
coherent candidate, as shown in Figure 2(c). The basic idea
is that while good matches can be anywhere in the exem-
plar, the probability to find a good one is higher nearby. This
avoids pre-computation and provides very good image qual-
ity, as it is able to escape from local minima given enough
iterations. The number of comparisons per pixel is depen-
dent on the initial search radius and the rate of contraction.

4. Instant Texture Synthesis by Numbers

Our goal is to provide fast, high quality guided texture syn-
thesis within the ASTS framework. To archive this we de-
sign an equally efficient, but less restrictive replacement for
the k-coherence search.

4.1. Parallel Coherent Random Walk

As shown in Figure 2(d) we determine the best coherent can-
didate using parallel k-coherence with k = 1. This provides
an excellent initial guess for a random search. However, we
then perform a random search with decreasing radius around
the currently best matching neighborhood.

c© The Eurographics Association 2010.

82



P. Panareda Busto & C. Eisenacher & S. Lefebvre & M. Stamminger / Instant Texture Synthesis by Numbers

synthesized
pixels

input
exemplar

(a) coherence search (b) parallel k-coherence (c) PatchMatch (d) our strategy

Figure 2: Comparison of successful strategies for searching the most similar neighborhood for a synthesized pixel (yellow):
Coherence search only tests the coherent candidates suggested by adjacent pixels (a). (Parallel) k-coherence also considers
the pre-computed similarity set of each coherent candidate (b). PatchMatch performs a random search with decreasing radius
around the best coherent candidate (c). We perform a random walk, updating the search center while decreasing the radius (d).

I.e., in contrast to PatchMatch we update the center of the
search, if we found a better match. We thus in fact perform a
random walk with a fixed number of steps, seeking a region
of the exemplar that is a better source of candidates. This
improves the convergence speed without additional cost, and
is especially useful for TBN, as it provides opportunities to
walk toward proper transition areas. All examples in this pa-
per use only two iterations of our random walk.

As shown in Algorithm 1, we half the search radius for
each step. This is fast, simple, and provides a very good
speed-quality tradeoff for a wide range of inputs.

4.2. Analysis

As our search strategy does not require k-coherent candi-
dates, the only task left from the original ASTS analysis
stage is to gather 5x5 neighborhoods from the exemplar, and
PCA project them to 8D appearance space. If the input size is
larger than a certain threshold, we only use a pseudo-random
subset of the neighborhoods to compute the principal com-
ponents. This limits memory and computational cost. For all
shown examples we use a threshold of 1282 and a simple
linear congruentional random number generator [PTVF07].

The source and target label maps are treated similarly, but
are projected to 4D, as they tend to contain less information
than the exemplar. Further we add a small Gaussian blur to
the labels. This is only a rough approximation of feature dis-
tance, but generally improves synthesis quality.

Finally, we construct the 4-point runtime neighborhood,
append the projected label, and project the result to 8D.

Algorithm 1 randomWalk(coordbest )
1: radius = resolution / 2
2: while (radius >= 2) do
3: candr = getRandomAround(coordbest , radius)
4: NBHr = getExNeighborhood(candr)
5: if (isMoreSimilar(NBHr)) then
6: coordbest = candr
7: end if
8: radius /= 2
9: end while

4.3. Synthesis

Due to the hierarchical nature of ASTS we already have a
good propagation mechanism, so we require only minimal
changes: as shown in Algorithm 2 we simply perform our
random walk instead of comparing k-coherent candidates.

Algorithm 2 parallelCorrectionPass()
1: Sin = getPreviouslySynthesizedCoordinates()
2: Sout = allocNextSynthesizedCoordinates()
3: for each x, y of Sout in parallel do
4: NBHsyn = gatherSynNeighborhood(x, y, Sin)
5: coordbest = coherenceSearch(x, y, Sin)
6: coordbest = randomWalk(coordbest )
7: Sout (x, y) = coordbest
8: end for

As neighborhoods are ill defined near the edges of non-
tilable exemplars, we ensure that candidates are from within
the interval [2lvl ,resolution − 2lvl ]2. To further improve

c© The Eurographics Association 2010.

83



P. Panareda Busto & C. Eisenacher & S. Lefebvre & M. Stamminger / Instant Texture Synthesis by Numbers

quality with TBN, we give more weight to the label map
at coarse levels: at these levels the actual textures are hardly
discernible, and candidates are thus preferably selected due
to matching labels. With coordinate upsampling their chil-
dren naturally inherit that label, and at finer levels the coher-
ent candidates match the target label more frequently.

5. Results and Discussion

We compare k-coherence to our approach using a multi-
threaded CPU implementation of ASTS derived from the tu-
torial code of Lefebvre [Lef09]. We cannot hope to reach the
absolute timings of the original, highly optimized GPU im-
plementation of the ASTS synthesis runtime, but it allows us
to experiment with different strategies quickly.

5.1. Quality

As Figure 3 illustrates, both k-coherence search and our par-
allel, coherent random walk produce excellent results for un-
guided synthesis. As the exemplar only contains one texture,
the assumption that nearby pixels provide good matches
holds, and the 9 coherent candidates often suffice. The k-
coherent or random candidates rarely need to override them.

However, as Figures 1, 4 and 5 demonstrate, our strat-
egy clearly outperforms k-coherence for TBN. The problem
is that coherence search only tests exemplar pixels that are
compatible with adjacent synthesis pixels. I.e., in a transition
area a stone pixel will mostly suggest coherent candidates
from a stone area, and a grass pixel is likely to suggest pixels
from a grass area. As k-coherence only prepares candidates
that are similar to the pixels making the poor coherent sug-
gestions, transition pixels – or even pixels from a different
label – will rarely be introduced. In contrast to this, our ran-
dom walk searches through the complete image. It can find
a transition pixel and suggest it to adjacent pixels.

As our strategy can ”switch labels“ during the random
walk, it converges faster for TBN than the concentric search
of PatchMatch. Figures 4(c) and 4(d) compare the results af-
ter only two iterations.

5.2. Performance

Analysis: For the pre-computation of k-coherence search,
we use ANN [AMN∗98] and one thread for each level of the
exemplar stack. The latter trades memory for time, and is an
interesting test for multicore systems. As Table 1 illustrates,
searching the k best matching 7x7 neighborhoods [LH05]
is prohibitively expensive, and runs out of memory quickly.
Using 5x5 neighborhoods is faster, but still runs out of mem-
ory. Using the 8D appearance space vectors eases memory
consumption, but also becomes expensive for large inputs.
Our search strategy does not need pre-processing at all, and
hence exhibits none of the memory, performance, or quality
problems resulting from small and projected vectors.

input PCA k-coh pre-process Synthesis
size 7x7 5x5 8D k-coh we
642 <1 <1 <1 <1 12.1 10.6

1282 2 37 7 <1 12.6 11.3
2562 2 413 97 1 12.9 12.0
5122 3 (-) (-) 7 13.9 13.1

10242 7 (-) (-) 28 16.6 16.1

Table 1: Synthesizing a 10242 image with varying exemplar
size. Time in seconds, (-) means not enough memory.

Synthesis: The timings in Table 1 also show, that both
search strategies have comparable cost during synthesis.
Synthesis times for both increase with exemplar size, as
larger exemplars can perform correction on more levels of
the synthesis pyramid. For small exemplars we have a slight
advantage, as the random walk starts with a smaller search
radius, and we have less neighborhood comparisons in total.

6. Conclusion and Future Work

We have presented a simple modification to Appearance
Space Texture Synthesis that maintains the speed and quality
of the original synthesis runtime, but drops most of the pre-
process and allows it to be used with the Texture-By-Number
control metaphor. This gives artists greater control over the
synthesized textures and allows them to design interesting
exemplars much more quickly.

Since k-coherence is used in many texture synthesis algo-
rithms, we believe our approach will benefit several state-of-
the-art techniques. As it only requires small code changes, it
allows to update existing implementations easily. We intend
to map our algorithm to a GPU, to give more meaningful per-
formance comparisons to the original ASTS. We will further
investigate local updates to the appearance space, in order to
allow the truly interactive design of exemplars.

References
[AMN∗98] ARYA S., MOUNT D., NETANYAHU N., SILVER-

MAN R., WU A.: An optimal algorithm for approximate near-
est neighbor searching fixed dimensions. Journal of the ACM
(JACM) 45, 6 (1998), 891–923.

[Ash01] ASHIKHMIN M.: Synthesizing natural textures. In Pro-
ceedings of ACM Symposium on Interactive 3D Graphics (2001),
pp. 217–226.

[BSFG09] BARNES C., SHECHTMAN E., FINKELSTEIN A.,
GOLDMAN D. B.: Patchmatch: A randomized correspondence
algorithm for structural image editing. ACM Trans. on Graphics
28, 3 (2009), 24:1–24:11.

[EF01] EFROS A. A., FREEMAN W. T.: Image quilting for tex-
ture synthesis and transfer. In SIGGRAPH (2001), pp. 341–346.

[EL99] EFROS A. A., LEUNG T. K.: Texture synthesis by non-
parametric sampling. In IEEE International Conference on Com-
puter Vision (1999), pp. 1033–1038.

c© The Eurographics Association 2010.

84



P. Panareda Busto & C. Eisenacher & S. Lefebvre & M. Stamminger / Instant Texture Synthesis by Numbers

(a) exemplar (b) k-coherence (c) our strategy (d) exemplar (e) k-coherence (f) our strategy

Figure 3: For unguided synthesis our parallel, coherent random walk produces similar quality without pre-processing.

(a) exemplar (b) k-coherence (c) concentric search (d) random walk

Figure 4: For guided synthesis random search strategies (c, d) clearly beat the quality of k-coherence. At identical cost our
strategy (d) converges faster than the concentric search of PatchMatch. Generally we see good quality after only two iterations.

(a) exemplar (b) k-coherence (c) our strategy (d) original TBN [HJO∗01]

Figure 5: Our quality is close to that of Hertzmann [HJO∗01], but does not have the size restrictions imposed by a search tree.

[HJO∗01] HERTZMANN A., JACOBS C. E., OLIVER N., CUR-
LESS B., SALESIN D. H.: Image analogies. In SIGGRAPH
(2001), pp. 327–340.

[KEBK05] KWATRA V., ESSA I., BOBICK A., KWATRA N.:
Texture optimization for example-based synthesis. ACM Trans.
on Graphics 24, 3 (2005), 795–802.

[Lef09] LEFEBVRE S.: Tutorial code. http://www-sop.inria.fr/
members/Sylvain.Lefebvre/wiki/Main/TSynEx, June 2009.

[LH05] LEFEBVRE S., HOPPE H.: Parallel controllable texture
synthesis. ACM Trans. on Graphics 24, 3 (2005), 777–786.

[LH06] LEFEBVRE S., HOPPE H.: Appearance-space texture
synthesis. ACM Trans. on Graphics 25, 3 (2006), 541–548.

[ML09] MUJA M., LOWE D. G.: Fast approximate nearest neigh-
bors with automatic algorithm configuration. In Proceedings of
VISSAPP (2009), pp. 331–340.

[PTVF07] PRESS W. H., TEUKOLSKY S. A., VETTERLING
W. T., FLANNERY B. P.: Numerical Recipes 3rd Edition: The
Art of Scientific Computing. Cambridge University Press, New
York, NY, USA, 2007.

[RB07] RAMANARAYANAN G., BALA K.: Constrained texture
synthesis via energy minimization. IEEE Trans. on Visualization
and Computer Graphics 13 (2007), 167–178.

[TZL∗02] TONG X., ZHANG J., LIU L., WANG X., GUO B.,
SHUM H.-Y.: Synthesis of bidirectional texture functions on ar-
bitrary surfaces. In SIGGRAPH (2002), pp. 665–672.

[WL00] WEI L.-Y., LEVOY M.: Fast texture synthesis using tree-
structured vector quantization. In SIGGRAPH (2000), pp. 479–
488.

[WLKT09] WEI L.-Y., LEFEBVRE S., KWATRA V., TURK G.:
State of the art in example-based texture synthesis. In Eurograph-
ics 2009, State of the Art Report (2009), EG Association.

c© The Eurographics Association 2010.

85


