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Abstract

DNA microarray technology has enabled researchers to simultaneously investigate thousands of genes over hun-
dreds of samples. Automatic classification of such data faces the challenge of dealing with smaller number of
samples compared to a larger dimensionality. Dimension reduction techniques are often applied to overcome this.
Recently, a number of supervised dimension reduction techniques have been developed. We present a novel super-
vised dimension reduction technique called supervised kernel principal component analysis and demonstrate its
effectiveness for visual representation and visual analysis of gene expression data.

1. Introduction reduction technique, which is an extension of the unsuper-
vised kernel principal component analysis (KPCA), which
itself is an extension of PCA considering non-linear projec-
tions. We show that our new method, which we call super-
vised kernel principal component analysis (SKPCA), clearly
separates the classes. Thus, it is an effective method to visu-
ally represent clustered gene expression data. Moreover, we
also apply our method to new samples that have not been
categorized. We show that the samples are dragged towards
the respective class, which allows for visual analysis of gene
expression data.

In genomic research, DNA microarray technologies can
monitor expression levels for large number of genes (up to
106) simultaneously, while the number of samples is usually
in the range of hundreds. The small number of samples when
compared to the high number of genes makes it challenging
to understand and interpret the gene expression data. To ex-
plore microarray gene expression data, the data need to be
analyzed and presented in a way that biologists can easily
understand them. Multivariate data analysis and visualiza-
tion techniques support this endeavor.

One important aspect is the assigning of samples into dif-
ferent disjoint classes (or categories), such as different types 2. Related work
of cancer or healthy vs. non-healthy. Reducing the data di-
mensionality Zha0g ZKLO08] is considered as one of the
most promising directions of research in this context. Prin-
cipal component analysis (PCA) is the most commonly used
technique for unsupervised dimension reduction. PCA lin-
early projects data onto a set of new coordinates (principal
components) that preserve the variance of the data set as
much as possible. Linear discriminant analysis (LDA) is one
of the most common techniques for supervised dimensional-

ity reduction. LDA is also a linear technique and tries to pre- to use a supervised technique to overcome this issue. Our

serve classes while generating maximal separability between oo . . . ; .
work is in line with recent advances in supervised dimension

c[asses. However, it has been shown that both c?\pproachesreduction KDCZH05, Agg06,KBH11, YL11, AMDSCD12
did not successfully separate classes when applied to gene

expression datBKR* 10] SSDJ12 We present a new method and show its suitabil-
P ' ity for sample-based gene expression analysis. The main ad-
In this paper, we propose a novel supervised dimension vantage of our approach is that we use the similarity dy-

Within the last decade, non-linear dimension reduction tech-
nigues such as KPCA, ISOMAP, Locally Linear Embed-
ding (LLE), Laplacian Eigenmaps (LE), Diffusion maps, and
Maximum Variance Unfolding (MVU) have gained much
attention JALO7]. These techniques can be considered as
unsupervised dimension reduction methods. The main prob-
lem for applying non-linear dimension reduction techniques
to gene expression data is the lack of meaning of the dis-
tance in a high-dimensional spad@GRS99. We propose
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namically, i.e., we change the similarity measurements by space is always less thanSo, we can define the first princi-
assigning supervised kernel matrix. More precisely, we use pal components as a linear combinatiorxgfxo, ..., Xn, i.€.,
! : ) Do n
the class label |nfqrmat|9n to define the similarity through ,, _ S aix; with [|v||2 = 1.
the scalar product in a Hilbert space. i=1

A data pointx; is presented byx;, v) on the principal com-
ponent. We find the principal componenthat maximizes

3. Problem Specification S0 (6.2 Let Kij = (6,Xj), K = (K”) — XTX, then,
A gene expression data set from a microarray experiment we can conclude thaZ. 1{Xi, v) = a"K2a with HVH2
can be expressed as a gene expression mafixJ4 a"Ka. So we find the first principal componemtby find-
ing vectora = (01,02,...,0n) that maximizesx TK2a un-
X1 X1 ... XaL der constraint' Ka = 1.
X12 X2 ... Xn2
X = . . ) . For visual representation we find tHdargest eigenvalues
: : ' : A1 > A2 > - > g of matrixK and corresponding eigenvec-
Xip Xgp ... Xnp torsaq,dy, ..., 04 by the power method:{VL96]T. The data

where each column represents the expressions of al genes setX Is presented by Y12, .. yn] in ad-dimensional

for one sample, i.e., one patient, and each row represents the"P2c€ wherg; = (v/A101;, . v/AgOlai)-
expressions of one gene for all samples, i.e., each eptry
is the measurement of expression of g¢mesamplei. Typ- 4.2. Kernel PCA

ically, the number of samplesis in the range of hundreds,
while the number of genes is in the range of thousands. Gene KPCA [SS01 defines a kernel is on an input spaXeéy K :
expression data analysis can be classify in two categories: X X X — R. The kerneK(x, x) is satisfying the property
gene-based and sample-based. In the gene-based analysis wef being positive definite. Based on Mercer’s theorem, we
can consider each gene as a point imatimensional space  ¢an define a Hilbert spadé and a feature map : X — H
(largen, smallp). In the sample-based analysis we consider such that

each sample as a point indimensional space (large, , ,

smalln). In this paper we focus on sample-based analysis. K(xx) = _Zl)‘iwi(x)w X

In sample-based analysis of gene expression data, one typi- =

cally investigates diseased vs. normal samples. The goals towhereA; and Wj(x) are eigenvalues and eigenvectors of a
find the structures or substructures of the sampl@Z04. linear operatoﬁ'( (x) = fK(X x)f(xX')dX. Then, the fea-
The challenging of sample-based analysis we have a small

. ; . . ture map is®(x) = (\/Aj lP ) and the scalar product in
data size in a high-dimensional space. P P

the Hilbert spacéﬂ is deflned a$¢(x),d>(x’)) =K(x,X).

Consideringn observationsX = [Xq,X2,...,Xa] in a p-
4. Unsupervised dimension reduction dimensional space. We define a m@p x — ®(x) in an
infinite Hilbert space with an inner product that define by the

In the following we describe the problem of sample- kernel functiorK (x;, ;) = Kij = (®(x), ®(x})). We denote
based gene expression analysis using unsupervised PCA anqhe set of data pomts in the Hilbert spacedaw q)( )i =

KPCA, which will be extended to a supervised version after-

wards. 1,2,...,n. Centering by the mean vectdr = 1 5 Z ®;, we

define®; = @, — ® and K., = K(x.,x,) = <<D,,¢v,>. Then,
we proceed as for the PCA method to find the principal com-

4.1. PCA ) noo. o )
ponent in the formV = 3 a;®; that maximizes the vari-
PCA can be considered as an orthogonal projection into a . 5L 5
lower dimensional linear space, such that the variance of gnce Z v, qp) s ( Z aj (x. x,)) — a'K2a with
i=

the projected data is maximized or, equivalently, the mean- i=1

squared distance between data points and their projections (V.V) = a'Ka = 1. The data are presented by vector
is minimized. Consider a data S¢t= [x1, X2, ...,Xn] in ap- with the ith elementy; = (V, q)|> - Z KJIQJ (Kq)h —
dimensional space. Without loss of general, we can assume

! s
the data set to be centered, ixe= & 5 x =0. 12...,nory=Ka.
i£1

For visual representation we find tlklelargest eigenval-
Frequently, PCA is applied to the case of a large number uesAi,\s,...,Aq and the corresponding unit eigenvectors
of samples and a lower number of dimensions. When consid-
ering it the other way round, the data set lies in a linear space
spanned byy, X2, ..., X and the dimensionality of this linear 1 llail?=1i=12,...,d
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01,02,...,04. To each given point; we display the respec-  proposed method is that we can modify paramgtand ob-

tive point serve the changes in the visual representation, which can
help improving the decision making in the classification pro-
Vi = (\/Xlalh \/Xz(lzi, ey \/Xpadi>. cess.
5. Supervised Kernel PCA 6. Results
5.1. Visual representation First, we want to investigate the visual representation of clas-

sified data. For a proof of concept, we start with the in-
dtenswely studied Iris data set that includes= 150 data

points with p = 4 features, which are classified into three

classes (each class containing 50 points). Fidushows

We propose a supervised version of the KPCA. We as-
sume a classified training set, i.e., the data are classifie
into k classes with a labeling functioht X — {1,2,...,k}
such that two points; andx; belong to the same class if . _ ]
((x) = £(x;). For visualizing the classes well separated in thg result of visually representing the data_ in a 2D space
a lower dimensional space, we need to incorporate the class!SiNg KPCA and SKPCA. We use a Gaussian kernel func-
information into the kernel function (or matrix). Withoutloss  tion K(x;, Xj) = exp(— M) The three classes are en-
of generality, we can assume the range of the kernel function coded using different colors. We can observe that the KPCA
to be[0, 1]. Then, we define a supervised kernel function that method (leftimage) produces a layout where two of the class
involves the label information classes as follows: are severely overlapping. Our SKPCA approach with param-

. eterp = 1 manages to clearly separate the three classes.
Ks(Xi,Xj) = KO, X))+l if £0x5) = £(x;), H g y sep
b K (%, Xj) otherwise

wherepis a positive parameter. In the cgse- 0, we obtain ;‘ '..r- ~ 5
the unsupervised version of KPCA. [if= +oc0, each class i \ i
degenerates to a single point, i.e., the data set is visualized 2
ask points. i P —

The algorithm can be summarize as a.
1. Compute kernel matrik = (K(x;, Xj)). .3.._._ LI

2. Compute supervised kernel matix.

3. Center kernel matrix biX = (I — te€’ )Ks(I — Lee').

4. Find d largest eigenvalued; and corresponding eigen-  Figure 1: Iris data set: KPCA (left) produces overlap-
vectorsa; of matrixK using power method. ping classes, while SKPCA (right) manages to separate all

5. Computey; = (x/Xlali,\/Xzaz,...,\/Xdadi>. classes.

The second data set we consider is the Colon Cancer data
set [ABN*99] containingn = 62 samples withp = 2,000
In addition to achieve a visual representation with highly genes. The samples are categorized into two classes, namely
separated classes, SKPCA can also be applied for classifi-40 tumor tissues and 22 normal tissues. For sample-based
cation purposes. Here, we assume a classified training setgene expression data we use the Pearson coefficient to re-
that is used to compute the coefficienfsand a testing set,  place Euclidean distance. The Pearson coefficient can be
where the classes are unknown. More precisely, assuming considered as the scalar product kernel function. The data
that data pointx; gets assigned locatioy in the lower- set is centered and normalized. We use the Pearson coeffi-
dimensional space, then coefficientsare chosen such that  cient kernel function

5.2. Classification

K(x,xj)aj =vy; for all data pointsx in the trainin P P P
Z 04, xj)aj =i pointsx; 9 p 5 X~ 5 Xk 3 Xi

data set. Hence, the coefficients are determined by a lin- p(x;, X)) =

ear equatiorKa =y, where kernel matriXX can have full P, P \2 P, P 2’
rank [SS03 such that we can find unique coefficielats pkzlxik B (kélx'k) pkzlxik B (kglx"‘)

_ qu the testlng'data se we can, _then, find the loca-  4nd the scalar kernel functicki(x, ;) = [p(x,x})]™ with
ton in the lower-dimensional space via the map f(x) = m = 2 (default value). We again compare the results of
z K(x,x)ai. Then, a visual analysis step is involved, where KPCA with SKPCA in Figure2. Again, KPCA produces a
layout with overlapping classes, while SKPCA clearly sepa-

the location of the pointy of the testing set are compared rates the two classes.

with the positionsy; of the training data set to induce a clas-
sification of testing data point One helpful feature of our The third data set we considered is the MLL Leukemia
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Figure 2: Sample-based gene expression data (Colon Can-
cer data set): KPCA (left) produces overlapping classes,
while SKPCA (right) manages to separate the two classes.

data set comprised af = 72 leukemia samples, which can
be grouped into the three classes with ALL (24 samples),
MLL (20 samples), and AML (28 samples). The number of
genes igp= 12 582. Here, the dimensionality is really high,
while the number of samples is rather low. Again, KPCA
produces mixed classes, while SPKCA clearly displays the
three classes well separated, see Figure
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Figure 3: High-dimensional sample-based gene expres-
sion data (MLL Leukemia data set): KPCA (left) produces

mixed classes, while SKPCA (right) displays three separated
classes.

Next, we are going to investigate the usefulness of
SKPCA for classification in a visual analysis process. We
use the Leukemia ALL-AML cancer data set [GSH). It
that containg = 72 samples withp = 7129 genes. The sam-
ples are classified as ALL or AML. We perform SKPCA
with a training data set that includes 38 samples (27 ALL
and 11 AML). The testing data set contains 34 samples (20
ALL and 14 AML). Figure4 shows the results by dispalying
both training and testing data set with different choices of the
parametept (L= 0.0, 001, 01, and 02). The smaller dots
represent the training data set (blue for AML and red for
ALL). The larger dots represent the testing data set (green
for AML and pink for ALL). It can be observed that the
samples are mixed for KPCAu= 0.0), but for increasing
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the training data. Hence when increasin@ne can observe
that the testing data start moving in opposite direction, which
can be exploited to classify the data.

. w l'
hl " u I.. = :..
fet = l..'lh:... " .Il'.-"T“.‘.
'E' (11 "a .n-'.
.'l.-:.. i.ln.'.

f o v aE %

Figure 4: Classification with SKPCA: training data shown
in blue (AML) and red (ALL), testing data shown in green
(AML) and pink (ALL). (upper left) KPCA; (upper right)
SKPCA with p= 0.01; (lower left) SKPCA with p= 0.1;
(lower right) SKPCA with j&= 0.2;

7. Conclusions

We proposed a novel supervised dimension reduction tech-
nique called supervised kernel principal component analysis
(SKPCA) for visualizing classes of data sets with a relatively
small number of samples when compared to a large number
of dimensions. We applied our method to the visual repre-
sentation of classified sample-based gene expression data.
All experiments show that SKPCA gets better separation of
clusters than the standard KPCA. The method contains a
control parametep, that can be used to control the spread
or shrinkage of clusters. We also applied our method to sup-
port the classification of new samples based on a training set
(known classification) and a testing set (to be classified). We
have shown that our method can also be useful in this regard.

The performance of our methods is reduced when the
classes differ much in size. In future work, we want to in-
vestigate how this can be addressed. Also, we want to ex-
tend our approach to handle hierarchical representation of
classes.
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