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Abstract
DNA microarray technology has enabled researchers to simultaneously investigate thousands of genes over hun-
dreds of samples. Automatic classification of such data faces the challenge of dealing with smaller number of
samples compared to a larger dimensionality. Dimension reduction techniques are often applied to overcome this.
Recently, a number of supervised dimension reduction techniques have been developed. We present a novel super-
vised dimension reduction technique called supervised kernel principal component analysis and demonstrate its
effectiveness for visual representation and visual analysis of gene expression data.

1. Introduction

In genomic research, DNA microarray technologies can
monitor expression levels for large number of genes (up to
106) simultaneously, while the number of samples is usually
in the range of hundreds. The small number of samples when
compared to the high number of genes makes it challenging
to understand and interpret the gene expression data. To ex-
plore microarray gene expression data, the data need to be
analyzed and presented in a way that biologists can easily
understand them. Multivariate data analysis and visualiza-
tion techniques support this endeavor.

One important aspect is the assigning of samples into dif-
ferent disjoint classes (or categories), such as different types
of cancer or healthy vs. non-healthy. Reducing the data di-
mensionality [Zha06, ZKL08] is considered as one of the
most promising directions of research in this context. Prin-
cipal component analysis (PCA) is the most commonly used
technique for unsupervised dimension reduction. PCA lin-
early projects data onto a set of new coordinates (principal
components) that preserve the variance of the data set as
much as possible. Linear discriminant analysis (LDA) is one
of the most common techniques for supervised dimensional-
ity reduction. LDA is also a linear technique and tries to pre-
serve classes while generating maximal separability between
classes. However, it has been shown that both approaches
did not successfully separate classes when applied to gene
expression data [BKR∗10].

In this paper, we propose a novel supervised dimension

reduction technique, which is an extension of the unsuper-
vised kernel principal component analysis (KPCA), which
itself is an extension of PCA considering non-linear projec-
tions. We show that our new method, which we call super-
vised kernel principal component analysis (SKPCA), clearly
separates the classes. Thus, it is an effective method to visu-
ally represent clustered gene expression data. Moreover, we
also apply our method to new samples that have not been
categorized. We show that the samples are dragged towards
the respective class, which allows for visual analysis of gene
expression data.

2. Related work

Within the last decade, non-linear dimension reduction tech-
niques such as KPCA, ISOMAP, Locally Linear Embed-
ding (LLE), Laplacian Eigenmaps (LE), Diffusion maps, and
Maximum Variance Unfolding (MVU) have gained much
attention [JAL07]. These techniques can be considered as
unsupervised dimension reduction methods. The main prob-
lem for applying non-linear dimension reduction techniques
to gene expression data is the lack of meaning of the dis-
tance in a high-dimensional space [BGRS99]. We propose
to use a supervised technique to overcome this issue. Our
work is in line with recent advances in supervised dimension
reduction [XDCZH05,Agg06,KBH11,YL11,AMDSCD12,
SSDJ12]. We present a new method and show its suitabil-
ity for sample-based gene expression analysis. The main ad-
vantage of our approach is that we use the similarity dy-
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namically, i.e., we change the similarity measurements by
assigning supervised kernel matrix. More precisely, we use
the class label information to define the similarity through
the scalar product in a Hilbert space.

3. Problem Specification

A gene expression data set from a microarray experiment
can be expressed as a gene expression matrix [JTZ04]

X =











x11 x21 . . . xn1
x12 x22 . . . xn2
...

...
...

...
x1p x2p . . . xnp











where each column represents the expressions of al genes
for one sample, i.e., one patient, and each row represents the
expressions of one gene for all samples, i.e., each entryxi j
is the measurement of expression of genej in samplei. Typ-
ically, the number of samplesn is in the range of hundreds,
while the number of genes is in the range of thousands. Gene
expression data analysis can be classify in two categories:
gene-based and sample-based. In the gene-based analysis we
can consider each gene as a point in ann-dimensional space
(largen, small p). In the sample-based analysis we consider
each sample as a point in ap-dimensional space (largep,
small n). In this paper we focus on sample-based analysis.
In sample-based analysis of gene expression data, one typi-
cally investigates diseased vs. normal samples. The goals to
find the structures or substructures of the samples [JTZ04].
The challenging of sample-based analysis we have a small
data size in a high-dimensional space.

4. Unsupervised dimension reduction

In the following we describe the problem of sample-
based gene expression analysis using unsupervised PCA and
KPCA, which will be extended to a supervised version after-
wards.

4.1. PCA

PCA can be considered as an orthogonal projection into a
lower dimensional linear space, such that the variance of
the projected data is maximized or, equivalently, the mean-
squared distance between data points and their projections
is minimized. Consider a data setX = [x1,x2, . . . ,xn] in a p-
dimensional space. Without loss of general, we can assume

the data set to be centered, i.e., ¯x= 1
n

n
∑

i=1
xi = 0.

Frequently, PCA is applied to the case of a large number
of samples and a lower number of dimensions. When consid-
ering it the other way round, the data set lies in a linear space
spanned byx1,x2, . . . ,xn and the dimensionality of this linear

space is always less thann. So, we can define the first princi-
pal components as a linear combination ofx1,x2, . . .,xn, i.e.,

v=
n
∑

i=1
αixi with ||v||2 = 1.

A data pointxi is presented by〈xi ,v〉 on the principal com-
ponent. We find the principal componentv that maximizes
∑n

i=1〈xi ,v〉2. Let Ki j = 〈xi ,xj〉, K = (Ki j ) = XTX, then,
we can conclude that∑n

i=1〈xi ,v〉2 = αTK2α with ||v||2 =
αTKα. So we find the first principal componentv by find-
ing vectorα = (α1,α2, . . .,αn) that maximizesαTK2α un-
der constraintαTKα = 1.

For visual representation we find thed largest eigenvalues
λ1 ≥ λ2 ≥ ·· · ≥ λd of matrixK and corresponding eigenvec-
torsα1,α2, . . . ,αd by the power method [GVL96]†. The data
setX is presented byY = [y1,y2, . . .,yn] in a d-dimensional
space whereyi = (

√

λ1α1i , . . . ,
√

λdαdi).

4.2. Kernel PCA

KPCA [SS01] defines a kernel is on an input spaceX by K :
X×X −→ R. The kernelK(x,x′) is satisfying the property
of being positive definite. Based on Mercer’s theorem, we
can define a Hilbert spaceH and a feature mapΦ : X −→H

such that

K(x,x′) =
∞

∑
i=1

λ j Ψ j (x)Ψ j (x
′),

whereλ j andΨ j(x) are eigenvalues and eigenvectors of a
linear operatorT( f (x)) =

∫

X
K(x,x′) f (x′)dx′. Then, the fea-

ture map isΦ(x) = (
√

λ j Ψ j (x)) and the scalar product in
the Hilbert spaceH is defined as〈Φ(x),Φ(x′)〉= K(x,x′).

Consideringn observationsX = [x1,x2, . . . ,xn] in a p-
dimensional space. We define a mapΦ : x 7−→ Φ(x) in an
infinite Hilbert space with an inner product that define by the
kernel functionK(xi ,xj) = Ki j = 〈Φ(xi),Φ(xj)〉. We denote
the set of data points in the Hilbert space byΦi = Φ(xi), i =

1,2, . . .,n. Centering by the mean vector̄Φ = 1
n

n
∑

i=1
Φi , we

defineΦ̂i = Φi − Φ̄ and K̂i j = K̂(xi ,xj) = 〈Φ̂i , Φ̂ j〉. Then,
we proceed as for the PCA method to find the principal com-

ponent in the formV =
n
∑

i=1
αiΦ̂i that maximizes the vari-

ance
n
∑

i=1
〈V, Φ̂i〉2 =

n
∑

i=1

( n
∑

i=1
α j K̂(xi ,xj)

)2
= αTK̂2α with

〈V,V〉 = αTK̂α = 1. The data are presented by vectory

with the ith elementyi = 〈V, Φ̂i〉 =
n
∑
j=1

K̂ ji α j = (K̂α)i , i =

1,2, . . .,n or y= K̂α.

For visual representation we find thed largest eigenval-
uesλ1,λ2, . . . ,λd and the corresponding unit eigenvectors

† ||αi ||2 = 1, i = 1,2, . . . ,d
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α1,α2, . . . ,αd. To each given pointxi we display the respec-
tive point

yi =
(√

λ1α1i ,
√

λ2α2i , . . . ,
√

λpαdi

)

.

5. Supervised Kernel PCA

5.1. Visual representation

We propose a supervised version of the KPCA. We as-
sume a classified training set, i.e., the data are classified
into k classes with a labeling functionℓ : X −→ {1,2, . . . ,k}
such that two pointsxi and xj belong to the same class if
ℓ(xi) = ℓ(xj ). For visualizing the classes well separated in
a lower dimensional space, we need to incorporate the class
information into the kernel function (or matrix). Without loss
of generality, we can assume the range of the kernel function
to be[0,1]. Then, we define a supervised kernel function that
involves the label information classes as follows:

Ks(xi ,xj) =

{

K(xi ,xj)+µ if ℓ(xi) = ℓ(xj ),

K(xi ,xj) otherwise

whereµ is a positive parameter. In the caseµ= 0, we obtain
the unsupervised version of KPCA. Ifµ= +∞, each class
degenerates to a single point, i.e., the data set is visualized
ask points.

The algorithm can be summarize as

1. Compute kernel matrixK = (K(xi ,xj)).
2. Compute supervised kernel matrixKs.
3. Center kernel matrix bŷK = (I − 1

neeT)Ks(I − 1
neeT).

4. Find d largest eigenvaluesλi and corresponding eigen-
vectorsαi of matrix K̂ using power method.

5. Computeyi =
(√

λ1α1i ,
√

λ2α2i , . . . ,
√

λdαdi

)

.

5.2. Classification

In addition to achieve a visual representation with highly
separated classes, SKPCA can also be applied for classifi-
cation purposes. Here, we assume a classified training set
that is used to compute the coefficientsαi and a testing set,
where the classes are unknown. More precisely, assuming
that data pointxi gets assigned locationyi in the lower-
dimensional space, then coefficientsαi are chosen such that
n
∑

i=1
K(xi ,xj)α j = yi for all data pointsxi in the training

data set. Hence, the coefficients are determined by a lin-
ear equationKα = y, where kernel matrixK can have full
rank [SS01] such that we can find unique coefficientsα.

For the testing data setx, we can, then, find the loca-
tion in the lower-dimensional space via the mapy= f (x) =
n
∑

i=1
K(x,xi)αi . Then, a visual analysis step is involved, where

the location of the pointsy of the testing set are compared
with the positionsyi of the training data set to induce a clas-
sification of testing data pointx. One helpful feature of our

proposed method is that we can modify parameterµ and ob-
serve the changes in the visual representation, which can
help improving the decision making in the classification pro-
cess.

6. Results

First, we want to investigate the visual representation of clas-
sified data. For a proof of concept, we start with the in-
tensively studied Iris data set that includesn = 150 data
points with p = 4 features, which are classified into three
classes (each class containing 50 points). Figure1 shows
the result of visually representing the data in a 2D space
using KPCA and SKPCA. We use a Gaussian kernel func-

tion K(xi ,xj) = exp(− ||xi−xj ||
2

2 ). The three classes are en-
coded using different colors. We can observe that the KPCA
method (left image) produces a layout where two of the class
are severely overlapping. Our SKPCA approach with param-
eterµ= 1 manages to clearly separate the three classes.

Figure 1: Iris data set: KPCA (left) produces overlap-
ping classes, while SKPCA (right) manages to separate all
classes.

The second data set we consider is the Colon Cancer data
set [ABN∗99] containingn = 62 samples withp = 2,000
genes. The samples are categorized into two classes, namely
40 tumor tissues and 22 normal tissues. For sample-based
gene expression data we use the Pearson coefficient to re-
place Euclidean distance. The Pearson coefficient can be
considered as the scalar product kernel function. The data
set is centered and normalized. We use the Pearson coeffi-
cient kernel function

ρ(xi ,xj)=

p
p
∑

k=1
xikxjk −

p
∑

k=1
xik

p
∑

k=1
xjk

√

p
p
∑

k=1
x2

ik −
( p

∑
k=1

xik

)2
√

p
p
∑

k=1
x2

jk −
( p

∑
k=1

xjk

)2
,

and the scalar kernel functionK(xi ,xj) = [ρ(xi ,xj)]
m with

m = 2 (default value). We again compare the results of
KPCA with SKPCA in Figure2. Again, KPCA produces a
layout with overlapping classes, while SKPCA clearly sepa-
rates the two classes.

The third data set we considered is the MLL Leukemia
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Figure 2: Sample-based gene expression data (Colon Can-
cer data set): KPCA (left) produces overlapping classes,
while SKPCA (right) manages to separate the two classes.

data set comprised ofn = 72 leukemia samples, which can
be grouped into the three classes with ALL (24 samples),
MLL (20 samples), and AML (28 samples). The number of
genes isp= 12,582. Here, the dimensionality is really high,
while the number of samples is rather low. Again, KPCA
produces mixed classes, while SPKCA clearly displays the
three classes well separated, see Figure3.

Figure 3: High-dimensional sample-based gene expres-
sion data (MLL Leukemia data set): KPCA (left) produces
mixed classes, while SKPCA (right) displays three separated
classes.

Next, we are going to investigate the usefulness of
SKPCA for classification in a visual analysis process. We
use the Leukemia ALL-AML cancer data set [GST∗99]. It
that containsn= 72 samples withp= 7129 genes. The sam-
ples are classified as ALL or AML. We perform SKPCA
with a training data set that includes 38 samples (27 ALL
and 11 AML). The testing data set contains 34 samples (20
ALL and 14 AML). Figure4 shows the results by dispalying
both training and testing data set with different choices of the
parameterµ (µ= 0.0, 0.01, 0.1, and 0.2). The smaller dots
represent the training data set (blue for AML and red for
ALL). The larger dots represent the testing data set (green
for AML and pink for ALL). It can be observed that the
samples are mixed for KPCA (µ = 0.0), but for increasing
µ the training data gets clearly separated and the respective
training data is dragged towards those separated clusters of

the training data. Hence when increasingµ, one can observe
that the testing data start moving in opposite direction, which
can be exploited to classify the data.

Figure 4: Classification with SKPCA: training data shown
in blue (AML) and red (ALL), testing data shown in green
(AML) and pink (ALL). (upper left) KPCA; (upper right)
SKPCA with µ= 0.01; (lower left) SKPCA with µ= 0.1;
(lower right) SKPCA with µ= 0.2;

7. Conclusions

We proposed a novel supervised dimension reduction tech-
nique called supervised kernel principal component analysis
(SKPCA) for visualizing classes of data sets with a relatively
small number of samples when compared to a large number
of dimensions. We applied our method to the visual repre-
sentation of classified sample-based gene expression data.
All experiments show that SKPCA gets better separation of
clusters than the standard KPCA. The method contains a
control parameterµ, that can be used to control the spread
or shrinkage of clusters. We also applied our method to sup-
port the classification of new samples based on a training set
(known classification) and a testing set (to be classified). We
have shown that our method can also be useful in this regard.

The performance of our methods is reduced when the
classes differ much in size. In future work, we want to in-
vestigate how this can be addressed. Also, we want to ex-
tend our approach to handle hierarchical representation of
classes.
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