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Abstract

Electrical Impedance Tomography (EIT) visualizes conductivity changes inside the thorax, which correlate with
breathing and cardiac activity. While featuring high temporal resolution, no patient risks and bedside application,
EIT has a very low spatial resolution, and its anatomical correspondence depends crucially on the choice of body
model for image reconstruction. In contrast to the state of the art simplified or averaged 2D body models, we
propose a workflow to generate patient-specific 3D models from Computed Tomography (CT) segmentations. This
method acknowledges the 3D characteristics of EIT-induced currents in the body, while measurements are only
performed in 2D. The workflow was designed in collaboration with medical experts such that its applicability in the
clinical context becomes feasible. This is in contrast to most other works that only consider isolated algorithms and
neglect the clinical demands and tasks. Our approach generates CT segmentations using another novel workflow
based on interactive sketching, computes a tetrahedral multi-material mesh and creates a forward model with
these results. The GREIT reconstruction algorithm is used to generate EIT images using the 3D model, while
its parameters are tuned to the 3D properties of the mesh. We present results from two pigs, with three EIT
datasets each, including mechanical ventilation, ventilation under the influence of lung injury, and ventilation-
free regional perfusion analysis. We discovered three anatomical phenomena in the improved EIT images that
could be visualized and explained using our workflow, while they caused some confusion in image interpretation
using the state of the art techniques. These results, though not yet quantitatively measured, show the improved
image quality and better anatomical significance, and stress the importance of accurate body models for EIT
application in clinical research and patient treatment.

1. Introduction EIT imaging is an inverse problem, where conductivity
changes inside the body affect voltage measurements on the
body surface. A forward model is used to compute the recon-
struction matrix that maps a set of measurements to image
pixels, taking into account the body geometry, electrodes,
known conductivity priors, and other factors. This forward
model consists of a Finite Element Mesh with certain con-
ductivity values for each element and other properties. Once
the reconstruction matrix for this setup is known, EIT im-
ages can be generated using an inverse model that is usu-
ally very simplified (i.e. 2D and homogeneous). Instead of
absolute conductivity measurements, most medical applica-
tions use differential measurements with respect to a base-
line, which remedies some of the severe problems that are
caused by inaccurate body models. Therefore, EIT image

EIT is a promising imaging technology to visualize con-
ductivity changes in the body. These have been shown to
correlate with lung ventilation, regional lung perfusion and
cardiac activity. For patients with severe lung injury, this
method has the potential to diagnose, observe and evalu-
ate lung damages before, during and after medical treatment.
The main advantages of EIT are its high temporal resolution
(currently up to 50 images per second), lack of ionizing radi-
ation, inexpensive devices and usage and application at bed-
side. Most EIT images are functional without direct infor-
mation about anatomical structures such as the lung bound-
ary. They suffer from low spatial resolution (currently up to
64x64 pixels), severe artifacts and noise, and image quality
depends crucially on the model.
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resolution is mostly limited to about 20% of the thorax di-
ameter [AAB*09].

Related Work

While a 2D circular and homogeneous body model was used
for a long time, the Driger PulmoVista 500 device features
a forward model generated from a variety of human lung
data, and a 2D elliptical inverse model for image reconstruc-
tion [TI11]. Ferrario et al. present a quantitative assessment
of lung overlap between 2D CT data and EIT images from
their 2.5D extruded forward model [FGA*12], which is con-
sidered state of the art. These models are easy to generate
since only the segmentation of a single CT slice is needed,
but they suffer from over- or under-segmentation of the lung
and heart, depending on the vertical placement of the elec-
trode plane. Also, true organ shapes are not precisely cov-
ered since their appearance is usually not vertically homo-
geneous.

Fan and Wang use a 3D forward model, but they do not
present a practically relevant method of generating them
[FW10]. Moreover, they do not show results from EIT data,
but merely simulations on the forward model. In contrast,
Yang et al. demonstrate a very sophisticated 3D forward
model generated from an MRI scan [YZP13]. While this
precise model is useful for impedance simulations, its signif-
icance for a patient-oriented workflow in the clinical context
is quite limited. This is due to the very large number of dif-
ferent materials, the manual segmentation of the MRI data
(which takes many hours or days), and the unclear genera-
tion of a tetrahedral mesh.

Large efforts are taken in clinical research to study the
usefulness of EIT in medical treatment, especially moni-
toring lung recruitment maneuvers, deducing quantitative
characteristics from EIT data, and comparison to CT im-
ages [WZM*08,RRH* 11,MLZ*12].

Finally, the EIDORS framework [AL06] and the in-
cluded Graz concensus EIT reconstruction algorithm GREIT
[AAB*09] provide a very good base for EIT experiments
and are therefore used and extended in our work. GREIT is
a novel approach to EIT imaging since it optimizes the re-
construction matrix regarding several figures of merit using
virtual conductivity targets that are placed inside the forward
model.

Data

Our medical collaborators provided two pig datasets, con-
taining CT and EIT data. The CT scans have an in-plane
resolution of about 0.6 mm and a vertical resolution of 5
mm. They also show the 16 electrodes attached to the tho-
rax, which is not common in medical treatment, but suitable
for animal studies.

The EIT data is recorded with the Driager PulmoVista 500

mentioned above, at a temporal resolution of 20 Hz for the
first pig, and 50 Hz for the second pig. We have data avail-
able before and after application of lung damage, as well as
a dataset featuring apnea and injection of a saline bolus in
the blood flow to study regional lung perfusion.

2. Method

The EIT community agrees that a patient-specific 3D model
would be very useful, but is considered difficult to gener-
ate [AAB*09, AAA™12]. Also, availability of patient data is
an important issue. Our workflow starts with the segmenta-
tion of a CT scan of the patient, which is acquired in clin-
ical routine. A 3D tetrahedral mesh is generated from the
segmentation and converted to a forward model. The most
important contribution of our workflow is its focus on the
clinical context. It was designed in collaboration with med-
ical experts and always keeps the applicability for medical
research and clinical tasks in mind.

CT Segmentation

Our semi-automatic segmentation workflow (presented by
Salz et al. [SRW™*12] and submitted for publication) uses
the medical expert’s knowledge about the lung shape and
other anatomical properties in an interactive and fast way. Its
central element is the sketch-based selection of pathological
lung tissue. It is much faster than the state of the art (manual
contouring), and has the potential to be used in practice, in
contrast to most other algorithms, which are quite isolated
and not ready for clinical application.

The output of this step is a set of 3D masks for the differ-
ent materials of interest, namely thorax shape, lung, heart,
and electrode locations.

3D Model Generation

We first reconstruct the electrode shapes from the posi-
tions and known dimensions such that they touch the tho-
rax in each slice. This step is necessary because the elec-
trodes cannot be segmented from the CT data directly due
to partial volume effects and other metal-induced artifacts.
From the segmentation we generate a multi-material tetra-
hedral mesh using BioMesh 3D [SCI]. This includes a tight-
ening step to smooth boundaries and a particle-based seed
point placement on material junctions. The particles are dis-
tributed along the boundaries by an advection process and
serve as input for the meshing process. The meshing is done
with a Delaunay tetrahedralization. The output of this step
is a mesh with about 500000 elements and 250000 vertices,
which is a moderate mesh size, while maintaining very high
mesh quality and adaptivity.

To comply with the EIDORS specification for forward
models, we compute the boundary surface of the thorax and
contact surfaces of the electrodes and the boundary. To find
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the correct ordering of the electrodes, we project the elec-
trode vertices in the electrode plane and use a kernel den-
sity estimation to get their centroids. These are used as seed
points for a k-means clustering (with kK = 16). Each elec-
trode vertex now has the corresponding cluster (i.e. elec-
trode) number, which can be assigned to the 3D vertex. The
ordering is then done by sorting the polar angles of the elec-
trodes.

EIT Image Reconstruction

The GREIT reconstruction algorithm is designed to work
with 3D meshes. The reconstruction matrix is computed by
training conductivity targets inside the mesh according to
the GREIT specifications. With a forward simulation of this
setup and an intermediate image reconstruction, GREIT op-
timizes certain figures of merit which results in very good
EIT images. According to the specifications, targets are dis-
tributed randomly and are vertically displaced with an offset
of up to 25% of the thorax diameter. A mapping from the 3D
mesh to the 2D inverse model is computed automatically by
EIDORS.

3. Results

Three EIT datasets are used for each of the two pigs: The
first features mechanical ventilation without lung damage.
The second is recorded after application of the lung dam-
age (which affects mostly dorsal tissue due to gravity), so
some of the lung tissue is non-ventilated or collapsed. The
last dataset is from a state of apnea with injection of a saline
bolus in the blood flow to study regional lung perfusion.

CT Visualization

The CT data indicates a low electrode placement in one pig,
so we should expect the EIT images to show more activity of
the lower lung and less cardiac activity. Moreover, the 2.5D
extruded models (see below) suffer from an oversegmented
lung shape because the heart is quite small in the respective
CT slice.

As an indicator of lung overlap between EIT and CT data
we mimic the EIT characteristics by projecting the CT seg-
mentation into the electrode plane (in contrast to Ferrario et
al. who use the respective CT slice [FGA™12] ). Each slice is
weighted with decreasing weights for increasing distance to
the plane. A color-coding for the red, green and blue chan-
nels is done for the lung, non-lung and electrode materials.
Note that for the perfusion dataset, we changed the color-
coding due to a different color map in the EIT data. The
lung shape in the CT projection is extracted by thresholding
all pixels that feature a contribution of the lung of more than
two thirds. EIT images are resized and interpolated to match
the much larger CT image resolution (512x512 compared to
64x64 pixels).
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EIT Models

The 3D model is cropped around an offset of 30% of the
thorax diameter above and below the electrode plane to re-
move barely contributing regions. To compare our method to
the state of the art we generated two 2.5D models by extrud-
ing a single slice segmentation, one without and one with
explicit lung shape. The first model is used by Ferrario et
al. [FGA™12], while the second is available in the EIDORS
package. For the second 2.5D model and the 3D model a
different conductivity prior value for the lung than for the
thorax was used. For comparison, we put the real size EIT
image in the top left of each image to show the large differ-
ence in resolution.

Fig. 1 and Fig. 2 show our results for two pigs. In the
top row, an overview of the data is given, with a visualiza-
tion of the thorax mesh on the left, a projection of the CT
segmentation into the electrode plane with highlighted lung
shape in the middle, and a sample EIT timestep on the right.
The other rows show the different EIT datasets. The images
in the left column are from the 2.5D approach without lung
shape consideration. The middle column shows results from
the 2.5D model with lung shape, and the right column shows
our results using the proposed individualized 3D model with
lung shape and electrode positions.

4. Discussion

We observed that our EIT images show a better overlap with
the real lung shape in the projected CT image compared
to the 2.5D models. There is no general consensus on how
to quantitatively assess EIT image quality, but Ferrario et
al. [FGA*12] propose to compute this overlap, which we
will do in the future. Instead we demonstrate how our EIT
images revealed three important phenomena that can cause
confusion during image interpretation.

From the 3D model of the first pig (Fig. 1a) we noticed
that the electrode belt was placed slightly tilted. Since the
2.5D models (Fig. 1b left and middle) assume a symmetric
placement of the electrodes, the images feature an asymme-
try that is directly related to the belt shift. Our model con-
siders the exact electrode locations, and therefore the EIT
images show the healthy and symmetric lung, as expected
(Fig. 1b right).

In the second pig dataset (see Fig. 2b) we note a lower
lung boundary in the dorsal area of one lung. A compari-
son with the CT data reveals that this pig has some non-
ventilated lung tissue on this side of the lower lung, and since
we know that the electrode belt is placed lower than usual,
we expect the EIT images to show more activity of the lower
lung. Without this knowledge, one might relate this asym-
metry to the aforementioned electrode belt shift.

The results using our model for the dataset featuring car-
diac and perfusion activity of the second pig not only show
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(a) Data overview for the first pig.
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(b) No lung damage. The circled regions show an artifact caused by
an electrode belt shift.

(c) With lung damage (circled regions).

Figure 1: Results for the first pig dataset. Left: From 2.5D
model without lung. Middle: 2.5D with lung. Right: From
our 3D model.

a better correspondence to how the regional blood flow pro-
jected into the electrode plane would look like, but the saline
bolus was also applied during a state of lung injury in the
dorsal region (Fig. 2d). As the circled region in our image re-
veals, it seems that some of the dorsal lung tissue is not only
non-aerated, but also non-perfused. This is a very important
characteristic for regional lung perfusion analysis and fur-
ther investigations will be done in the future to confirm this
finding.

5. Conclusion

We presented a workflow to construct individualized 3D for-
ward models for EIT image reconstruction, based on the
availability of a CT segmentation approach. We showed EIT
images from the 3D model and compared them visually to
the 2.5D state of the art models. We visually noted a moder-
ate increase in image quality, while we could discover and
explain three anatomical phenomena (electrode belt shift,
prior lung injury, non-perfused lung tissue), which was not
possible before. In fact, these phenomena caused a notable
confusion when interpreting the state of the art images. We
are confident that our workflow is useful for assessing the

(a) Data overview for the second pig.
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(b) With prior lung damage (circled region).
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(c) With additional lung damage. The circled region shows how our
method reveals this injury properly.
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(d) Apnea and perfusion. The circled region shows (probably) non-
perfused, non-aerated lung tissue.

Figure 2: Results for the second pig dataset. Left: From 2.5D
model without lung. Middle: 2.5D with lung. Right: From
our 3D model.

lung boundary and non-ventilated lung tissue from EIT im-
ages before and after medical treatment.

6. Future Work

Our next steps include the explicit modeling of the heart and
pathological lung tissue in the 3D model. These structures
are already available form the segmentation. We also plan to
perform the quantitative assessment of the overlap of CT and
EIT lung shape as done by Ferrario et al. [FGA* 12]. Finally,
we have much more pig data available to conduct a large
comparison study and we also plan to test our approach on
human EIT data.
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