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Abstract

Probabilistic segmentation algorithms compute for each voxel and each segment of a medical imaging data set
a probability that the voxel belongs to the segment. These per-voxel probability vectors are commonly used to
estimate uncertainties and produce respective visualizations. It can be observed that one obtains high uncertainties
along the border of two adjacent tissues, even in case of high gradients. This is due to the partial volume effect
(PVE). PVE, however, is not a source of uncertainty. In case of high-gradient borders, one can be very certain
that respective voxels partially belong to one and partially to the other voxel. We correct this misconception by
modeling PVE using local statistics within a probabilistic segmentation approach. As a result we obtain corrected
uncertainties and we even have been able to significantly improve the probabilistic segmentation approach itself.

1. Introduction

Medical visualization is concerned with the visual repre-
sentation and interactive visual analysis of medical data.
As medical examinations and diagnoses need to be based
on patient-specific data, medical imaging techniques are the
typical starting point for medical visualization approaches.
The imaging techniques provide the means to acquire im-
ages of the human body for clinical purposes or medical sci-
ence. Different medical imaging techniques have been de-
veloped to capture different parts of the human body or their
function. However, the imaging techniques are not free of ar-
tifacts such as noise, shadows, or bias fields, which introduce
some error in the data. This error also includes resolution is-
sues leading to the partial volume effect (PVE). PVE refers
to the fact that one voxel may comprise information from
multiple tissues, which typically leads to averaged intensi-
ties values.

A crucial step in the medical visualization pipeline is im-
age segmentation. To account for the imaging issues men-
tioned above, probabilistic segmentation algorithms that out-
put for each voxel the likelihoods that the voxel belongs
to each of the segments can be used. Lundström et al.
[LLPY07] reported that a falsely detected stenosis coming
from a misleading transfer function in the direct volume ren-
dering of a computed tomography (CT) scan led to an un-

necessary surgical intervention. The realization of how im-
portant uncertainty estimation and visualization is in order to
have less misdiagnoses motivated a great deal of researchers
to work in this area. When considering probabilistic seg-
mentation approaches, uncertainties can be computed from
the respective probabilities. However, when doing so in a
straight-forward manner, one observes high uncertainties at
the tissues’ borders because of the PVE. While there can be
high uncertainties in case of a smooth transition between two
tissues, there should be no high uncertainty reported in case
of a high-gradient border. For the affected voxels, it is well-
known that they partially belong to one tissue and partially
to the other. Hence, there is a certain interpretation.

We are presenting an approach that uses local statistics to
detect and analyze PVE. We embed our approach within a
probabilistic segmentation approach that makes use of the
modified fuzzy c-means approach [MAF99b]. We show that
we can avoid detection of uncertainties because of PVE,
which leads to an improved uncertainty estimation result.
Moreover, we also use the local statistics to improve the
modified fuzzy c-means approach. We do not only model
the PVE correctly, but we can also remove noise more effec-
tively.
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2. Related Work

Probabilistic Segmentation. Fuzzy c-means and its exten-
sions [MAF99a, Pha02, ZC04, CTC∗06, CCZ07, AYM∗02,
YWC∗05] are the most commonly used algorithms for
probabilistic image segmentation. Their main advantages
include the straightforward implementation, no need for
prior knowledge, and the applicability to multichannel data.
Among all extensions, we want to point out the modi-
fied fuzzy c-means algorithm proposed by Mohamed et
al. [MAF99b], as it models the PVE by computing the clus-
ter’s membership value for a given pixel based on the rela-
tive effect of neighboring pixel’s cluster. We build upon this
approach by using it in conjunction with our local statistics
analysis. We can show that we can significantly improve the
performance.

PVE Modeling. There exists a lot of work in the direction
of PVE detection and modeling. Of relevance are the meth-
ods described by Santago and Gage [SG95]. The use finite
mixture density models and end up quantifying distinct ma-
terials in the image. However, while the material identifi-
cation is very accurate in the simulated data presented, they
have a different goal than ours, since we try to find out which
pixels are affected by the PVE of which tissues using local
neighborhood information, whereas they just identify the tis-
sues by looking at the global distribution of values within
the image. Some methods, such as the ones by Rousset et
al. [RME98] and Müller-Gärtner et al. [MLP∗92] rely on
specific type of scans (PET) and combine this information
with another modality. Others, such as the one by Tang et
al. [TBP] assume a specific type of measurement. In this
case, a geometrical model is based on flow rate measure-
ments. Unlike these, our method is general.

Uncertainty Visualization. Saad et al. [SMH10] developed
interactive visualization tools for probabilistic segmentation
results in medical imaging to highlight the PVE and correct
it. While their goal was to interactively explore local statis-
tics, we use the statistics to automatically detect PVE and
correct uncertainty estimates. Praßni et al. [PRH10] assess
uncertainty of a random-walker-based segmentation in order
to detect regions with high ambiguity. Their approach does
not explicitly model PVE, but the described problems are re-
duced here by using accessibility by the random-walker al-
gorithm. However, this approach is limited to two segments
(inside-outside decision).

3. Probabilistic Segmentation with Local Statistics

When trying to classify a pixel or voxel, there are different
cases that can occur. First of all, a voxel may lie in the in-
side of a segment, i.e., it is surrounded by other voxels that
belong to the same segment. If we draw local statistics about
the intensity values of close-by voxels, we expect the investi-
gated voxel’s intensity to fall within two standard deviations

of the segment’s normal distribution and the voxel’s inten-
sity value shall be close to the mean. The other main case
is that the voxel lies at the border between two segment.
It may be affected by PVE. However, when drawing local
statistics, a histogram would exhibit two values of highest
frequency that correspond to the intensity values of the two
adjacent segments. Hence, the PVE case can be robustly de-
tected in case of high-gradient borders. The intensity value
of the PVE-affected voxel shall lie between the two detected
highest frequency-values.

The overall approach proceeds as follows: First, we col-
lect information about the values of the local neighborhood
of the voxel in question and put them in a histogram. When
building the histogram, we put more weight on the voxels
in the immediate neighborhood and we decrease the weight
with increasing distance. This is in order to account for the
fact that the voxels in the immediate neighborhood are more
likely to be in the same segment as the voxel we observe.
Depending on the size of the neighborhood we have chosen
and in order to remove outliers, we disregard the histogram
values smaller than a certain threshold which appear due to
noise so that we do not have unnecessary small peaks in the
later process. Figure 1 (left) shows a typical histogram. It can
be observed that the histogram has many local extrema. This
can be compensated for by applying some averaging steps
on the histogram. It turned out that 2-3 steps work best, as
they remove most of the local extrema while maintaining
the overall characteristics of the histogram. Figure 1 (right)
shows the smoothened histogram with the extracted minima
(blue) and maxima (red).

Figure 1: (left) Histogram computed from neighborhood of
a voxel. (right) Smoothened histogram after two averaging
steps with local minima (blue) and maxima (red).

In the next step, we fit a normal distribution, i.e., we calcu-
late mean and standard deviation for all the sections between
two minima. We need this information to find out whether
the voxel in question belongs to one specific segment or is
affected by the PVE and lies between two of them. To detect
PVE, we compare the voxel’s value v against the calculated
normal distributions. Since about 95% of the data lies within
two standard deviations and 5% is a common cut-off thresh-
old in statistical analyses, we check whether a voxel belongs
to a segment by checking whether its value is within a dis-
tance of two standard deviations for any of the means, see
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Figure 2 (left). If this is true, then we move the voxel value
to the mean of the distribution it belongs to. The voxel in
Figure 2 (left) has been affected by noise, which can be seen
by the large distance from v to vnew.

In case the voxel’s value v does not lie within a distance
of two standard deviations for any of the means, see Figure
2 (right), the voxel does not belong to a definite segment and
is affected by the PVE. When re-sampling intensities for this
voxel, we have to take into consideration the normal distri-
butions whose means are closest to the left and to the right
of the voxel. Moreover, we have to account for the fact that
if the voxel is closer to one of the distributions, then that
segment has a greater coverage in the voxel’s value com-
position. So, if the voxel has a value v and is position be-
tween normal distributions N1(µ1,σ1) and N2(µ2,σ2), we
calculate how far it is from one of the means when com-
pared to the whole distance between the means by comput-
ing dist = (v−µ1)/(µ2−µ1) ∈ [0,1].

After having detected the PVE cases, we observe that de-
pending on the distance calculated, the voxel can either be-
long to the first or the second identified distribution. There-
fore, in our current implementation, we store two copies of
the image. The first copy stores the new value of one adjacent
segment, vnew1, while the second copy stores the new value
vnew2 of the other adjacent segment, see Figure 2 (right). The
weights that determine how those images would be blended
are stored in the α-channel. vnew1 and vnew2 correspond to
the means of the adjacent segments, and the weight stored is
dist and 1−dist respectively.

Figure 2: (left) Old (v) and new (vnew) intensity values of a
denoised voxel (no PVE) in relation to the local histogram.
(right) Old (v) and new (vnew1, vnew2) intensity values of a
voxel affected by PVE in relation to the local histogram.

When the local statistics process is done, the blended
image of the two images represents a denoised version of
the starting image, where the partial volume information is
stored in the two copies of the image. Afterwards, we can
apply the modified fuzzy-c-means approach to this image to
obtain a probabilistic segmentation. Uncertainty values are
computed from the two copies. The simplest estimation of
uncertainty would be to compute the uncertainty in the non-
PVE case as 1− p1, where p1 is the reported probability of
the most likely segment. In the PVE case, the uncertainty

would be estimated by 1− (p1 + p2), where p1 and p2 are
the reported probabilities of the two most likely segments.

4. Results

To test our approach, we show how we run our methods on
a synthetic example, which allows us to judge the results
best. The considered image consists of four plain rectangles
to which Gaussian noise has been added. Moreover, we sim-
ulate PVE by having the rectangles cover the border pix-
els only partially. These assumptions are chosen to model
typical artifacts in medical imaging. Figure 3 (left) shows
the final input image. In Figure 3 (right), we show the seg-
mentation result of the modified fuzzy C-Means approach
[MAF99b] applied on this image. The algorithm resulted in
completely misclassifying two separated segments (red) as
belonging together and instead classifying the noise in the
image as a separate entity even though it is using neighbor-
hood information for making the decision. The edges of the
rectangles are also largely misclassified due to the inability
to recognize the partial volume effect that occurs there. This
supports our previous observation about the common classi-
fication mistakes of widely used algorithms. Figure 5 (left)
shows a visualization of the uncertainty, where uncertainty
in each voxel is calculated inversely proportional to the high-
est probability value in the resulting vector of the modified
fuzzy c-means algorithm. The darker the voxel is, the more
uncertain it is. It can be seen that there are plenty of voxels
with high uncertainty, especially the one where the noise is
high or the ones affected by PVE.

Figure 3: (left) Synthetic image with Gaussian noise and
PVE. (right) Result of modified fuzzy c-means algorithm with
5 clusters.

Figure 4 (a) and (c) shows the two images we generate
with our local statistics approach. It can be observed that
the noise is removed in both images. Figure 4 (b) and (d)
shows what we would obtain when running modified fuzzy
c-means independently on both images. The segmentation
has significantly improved. All the rectangles are now seg-
mented separately, and the background has none (in Figure
4 b) ) or very few (in Figure 4 d) ) misclassified pixels.

One can also observe that we successfully detected voxels
that are affected by two different segments, i.e., at the edges
of the rectangles. For example, consider the left edge of the
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Figure 4: (a), (c) Results after running local statistics method delivers two denoised images. (b), (d) Applying modified fuzzy
c-means to the two denoised images. (e) Final result after blending the two denoised images and segmenting the blended image.

rectangle segmented with green color: In Figure 4 b), it is
segmented as part of the background, and inFigure 4 d) it is
segmented as part of the rectangle. This is expected because
this row of voxels have their values partially coming from
the background and partially coming from the rectangle’s
values. Hence, we successfully model PVE.

From the images in Figure 4 (b) and (d) we composite
the final result by blending with the stored α-weights. After-
wards, we segment the blended image using modified fuzzy
c-means. The final segmentation result is shown in Figure 4
(e), which is a great improvement when compared to Figure
3 (right).

The uncertainty visualization of the segmentation result
(computed as described in the previous section) exhibits only
negligible uncertainty values throughout the image. This is
shown in Figure 5 (right). This has two reasons: First, our
method successfully removed all noise. Second, all segment
borders in the image were high-gradient borders, i.e., bor-
ders of no uncertainty. Our method successfully modeled the
PVE and, consequently, led to a certain result.

Figure 5: Side by side comparison of the uncertainty de-
tected and visualized in (left) initial data (right) data after
local neighborhood has been investigated and partial vol-
ume information has been reliably modeled.

We have also run our algorithm on real medical data, a
slice of which can be seen in Figure 6 (left). We aimed at
segmenting the vessels, and since their values are very sim-
ilar to the other tissues, we used the mFCM algorithm to
distinguish two clusters. The result of the algorithm on the
initial data is given in Figure 6 (middle), while the result on

the data after applying PVE correction can be seen in Figure
6 (right). The segmentation result improved, as previously
unidentified vessels were successfully segmented.

Figure 6: Segmentation results on medical data (left) before
detecting PVE (middle) and after its correction (right).

5. Conclusion and Future Work

We have developed a method for efficient detection of vox-
els affected by the PVE which reduces the uncertainty in
their classification by storing them in two separate files with
values corresponding to the nearby areas. This is achieved
by automatic investigation of the histogram built by the val-
ues in the local neighborhood of each voxel. We have also
largely removed the noise from the files using the same pro-
cess. We compared segmentation results and resulting un-
certainties using the modified fuzzy c-means approach and
obtained significantly better results.

One major limitation of the current implementation of our
work is the restriction to focus on two adjacent segments.
In case the voxel is close to a third segment, local statistics
can deliver the wrong conclusion. For example, in our re-
sults the lower-left part of the green rectangle is classified
as blue instead of white (background) and green (rectan-
gle). By construction, these pixels are partially in the back-
ground (value 0) and partially part of the rectangle classified
as green (value 100). So, their values are around (50). How-
ever, the blue rectangle is chosen to have values 50, as well.
When we investigate the local neighborhood of these pixels,
one can see peaks coming from the background and both
rectangles. Therefore, the algorithm decides that the pixels
belong to the blue segment. We plan to investigate this issue
in future work. We also want to research how we can handle
two distributions with overlapping standard deviations.
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