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Abstract
Monte Carlo based photorealistic image synthesis has proven to be one of the most flexible and powerful rendering
techniques, but is plagued with undesirable artifacts known as Monte Carlo noise. We present an adaptive filtering
method designed for Monte Carlo rendering systems that counteracts noise while respecting sharp features. The
filter operates as a post-process on a noisy image augmented with three screen-space geometric attribute buffers,
and by using a point-wise adaptive (varying window size) filtering kernel, this method is able to reinforce the
preservation of important scene reflected edges, in less time. Comparative results demonstrate the simplicity and
efficiency of our method, which makes it a feasible and robust solution for smoothing noisy images generated
by Monte Carlo rendering techniques. CUDA implementation also makes the algorithm potentially practical for
interactive Monte Carlo rendering in the near future.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—

1. Introduction

Monte Carlo techniques are widely used in global illumina-
tion, which calculate the image colors via randomly or quasi-
randomly sampling an integration domain covering all light
paths from a luminaire to the camera. Currently, only these
approaches can handle the wide range of surface geometries,
reflection models, and lighting effects that occur in the real
world. While conceptually simple, these techniques are com-
putationally expensive since a great number of samples are
required in order to create stunning visual phenomena with-
out noticeable noise. Monte Carlo noise is inevitable when
insufficient samples are provided. One effective way to tack-
le this problem is image denoising that uses a fairly low sam-
pling density to get a coarse image and then smooth out noise
by applying suitable filters in a post-processing stage.

Traditional image noise reduction algorithms, such as box
filters or Gaussian filters, can effectively average away un-
desired noise values, however they also blur the impor-
tant geometric details or illuminating discontinuity (e.g.
light spots on glossy surface or hard shadow boundaries)
[BCM05, PKTD08]. To preserve edges, bilateral filters [T-
M98], anisotropic diffusion [McC99], nonlocal means fil-
ter [BCM05] and other algorithms have been introduced.

Despite their impressive results, they are either poor in re-
taining subtle geometric and shading details or computation-
ally expensive due to their iterative nature.

In this paper, we present an adaptive smoothing approach
for noise removal and feature preservation of path traced 3D
scenes, especially the scenes containing mirror-reflected ob-
jects. This approach has the following characteristics:

• Feature-preserving: Similar to bilateral filter, our filter
is also a nonlinear filter with adaptive kernels. Howev-
er, we adopt second-bounce geometric information as the
guidance to achieve better filtering results, especially for
reflected edges. This auxiliary information can efficiently
identify the subtle geometric details such as tiny holes and
shape corners on reflected surfaces.

• Adaptive kernel: The filter’s window size is made to
adapt to the local characteristics of a noisy image. This
can efficiently reduce the filtering time when most parts
of the image only need small window size.

• Non-iterative and GPU acceleration: Unlike most of the
denoising approaches which update the images iteratively
until the noise has been diffused sufficiently, we have con-
centrated on a single-pass technique which makes it more
efficient than iterative schemes. In addition, since we have
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implemented the whole filtering procedure on the GPU
using CUDA, the performance has been greatly improved
compared with CPU version approaches.

2. Related Work

Almost all of the filters used in the early years of stochastic
rendering methods are linear filters [CPC84] that either lack
adequate samples to eliminate noise or produce excessive
samples to smear boundaries in the images. Lee and Red-
ner [LR90] firstly introduced the use of nonlinear filters such
as alpha trimmed filters to reduce speckled noise in stochas-
tically rendered images. This method only discards statisti-
cal outliers and averages the remaining samples, making this
a non-energy-preserving filter. DeCoro et al. [DWR10] al-
so removed low-probability yet high-energy outliers when
filtering noise in Monte Carlo rendering. Rushmeier and
Ward [RW94] proposed an energy-preserving nonlinear fil-
ter that spreads out the contribution of input sample values
into the output image depending on a variance estimate to
suppress the outliers and reduce the noise. Considering the
noise is mostly caused by the indirect illumination, filters
can be applied only to the low-frequency indirect illumina-
tion separated from the rest of the image in order not to blur
the important scene features caused by the other part of light
transport [JC95, BEM11].

Anisotropic diffusion [PM90] is a well-established tool in
early vision to accomplish edge-preserving smoothing. Mc-
Cool [McC99] developed an energy-preserving filter based
on anisotropic diffusion that averaged out noise using d-
iffusion equations but edges and textures could be main-
tained. However, the discrete diffusion nature and the iter-
ative solver make it a slow process. Bilateral filtering was
developed by Tomasi and Manduchi [TM98] as a fast al-
ternative to anisotropic diffusion. Unlike Gaussian filters,
the weight of a pixel depends not only on a spatial ker-
nel, but also on a function in the intensity domain which
decreases the weight of pixels with large intensity differ-
ences. Later, several fast versions of bilateral filter have been
proposed, e.g. [DD02, PD09]. Barash [Bar02] presented a
link between anisotropic diffusion and bilateral filtering us-
ing an extended definition of intensity that includes spatial
coordinates. Although simple, fast and effective for a vari-
ety of problems in computer vision and computer graphic-
s, bilateral filtering has certain difficulties, for instance, it
performs poor smoothing in high gradient regions. Trilater-
al filter [CT03] was introduced to smooth signals towards
a sharply-bounded, piecewise-linear approximation, which
provides stronger noise reduction and better performance.
Xu and Pattanaik [XP05] modified bilateral filter and built a
novel local adaptive noise reduction kernel in a non-iterative
way. To reinforce the preservation of discontinuity, more ge-
ometric information is introduced into the bilateral filtering,
such as position, normal or depth, forming the discontinu-
ity buffers. These buffers are widely used in real-time glob-

al illumination techniques to perform filtering or upsam-
pling of sparsely sampled-data [WKB∗02, LSK∗07, SGN-
S07]. For fast filtering, Dammertz et al. [DSHL10] derived
an edge-avoiding À-Trous filtering method that incorporates
a wavelet transformation into the bilateral filtering, and com-
bines edge-stopping functions from multiple input images
including noisy ray traced image, normal buffer and posi-
tion buffer. This method was further extended [HDL11] by
introducing a data-adaptive edge weight, which showed bet-
ter performance. Recently, Sen and Darabi [SD12] extend-
ed cross-(joint-) bilateral filter [ED04,PSA∗04] by introduc-
ing two terms that reduce the importance of features that are
functions of the random parameters when reducing the noise.
While this approach has demonstrated high-quality results
for a wide range of Monte Carlo effects from low input sam-
ple density, it comes at the price of additional complexity,
accompanied by higher computational cost.

Our method is also based on bilateral filtering, but it excel-
s in its simplicity both in concept and implementation, and
it is better in performance due to non-iterative nature and
GPU acceleration. Furthermore, since we employ additional
geometry information to guide the filtering, we achieve visu-
ally more satisfying results than traditional bilateral filters.

3. Theory

3.1. Feature-preserving Filtering

The principle of image filtering is combining samples of sev-
eral adjacent pixels into one integral estimate. Given an input
image I, the estimator is given by:

Î(X) =
∑ξ∈NS(X) w(X ,ξ)I(ξ)

∑ξ∈NS(X) w(X ,ξ)
(1)

where X is a 2D screen sample in the image, X = (i, j), and
I(ξ) is the pixel value of its neighbor ξ in neighboring set
NS(X). The weight w(X ,ξ) is the key component in this e-
quation that determines the quality and efficiency of the final
results.

Traditionally, the Gaussian low-pass filter is a linear filter,
since the filter action is independent of the image content and
only the distances between positions matter. Although it can
be implemented efficiently using fast Fourier transforms, it
fails at edges. Bilateral filtering can tackle this problem by
taking into consideration the variation of intensities as well.
The weight function of bilateral filtering can be defined in
Gaussian form:

w(X ,ξ) = Gp(X ,ξ)Gc(I(X), I(ξ)) (2)

with

Gp(X ,ξ) = exp{−1
2
(
‖X−ξ‖

σp
)2} (3)

Gc(I(X), I(ξ)) = exp{−1
2
(
‖I(X)− I(ξ)‖

σc
)2} (4)
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Here, Gp is the traditional domain Gaussian function mea-
suring the geometric closeness between X and ξ, while Gc is
the range function measuring the similarity in photometric
range. Both functions are controlled by the standard devia-
tion parameters (σp and σc). Unfortunately, the traditional
bilateral filter fails to deal with complex geometry details
and is also sensitive to outliers.

The cross-(joint-) bilateral filter [ED04, PSA∗04] extends
the basic idea of traditional bilateral filter by decoupling the
weight function from the input image. It is based on arbitrary
input images to compute the weighting terms. E.g. the edge-
avoiding À-Trous filter [DSHL10] uses normal and position
buffers to denoise a path traced image.

We draw our inspiration mainly from this approach, but
we incorporate three additional Gaussian functions into Eq.
2 to reinforce the preservation of subtle geometry details and
important lighting effects. The first function Gn identifies the
normal’s similarity between X and ξ:

Gn(n(X),n(ξ)) = exp{−1
2
(
‖n(X)−n(ξ)‖

σn
)2} (5)

which is similarly defined in [DSHL10]. In this function,
n returns the surface normal of the first intersection point
in the scene when shooting a ray from camera. Obviously,
a smooth surface can be described as one having smoothly
varying normals, whereas features such as corners and edges
appear as discontinuities in the normals. Thus, the normal
variations offer an intuitive geometric meaning in determin-
ing smoothness.

Instead of using position buffer, we adopt the information
of the second hitpoints of the paths. This is because when
specular reflections or glossy reflections occur in the scene,
the positional distribution and normal distribution of the sec-
ond intersection points are particularly useful. The second
position Gaussian function Gsp measures the positional dis-
tribution of the second hitpoints of the paths in a path tracer,
which is defined as:

Gsp(sp(X),sp(ξ)) = exp{−1
2
(
‖sp(X)− sp(ξ)‖

σsp
)2} (6)

The second normal Gaussian function Gsn is defined simi-
larly:

Gsn(sn(X),sn(ξ)) = exp{−1
2
(
‖sn(X)− sn(ξ)‖

σsn
)2} (7)

In these two functions, sp and sn return the world posi-
tion and the normal of the second hitpoint of a traced path,
respectively. The geometric information of the second hit-
point is utilized to detect high-frequency features on spec-
ular or glossy surface and prevent filtering across reflected
discontinuities.

Finally, the total weight of our filtering method is the in-
tegration of all the aforementioned Gaussian functions:

w(X ,ξ) = GpGcGnGspGsn (8)

3.2. Adaptive Size Selection

The filter’s window size influences the results, and it is usu-
ally hard to select one size that fits to all regions of an image.
The choice of a small size leads to the jaggy effect, whereas a
too large one increases filtering time, leading to performance
degradation. For a more efficient reconstruction, it is better
to compute a per-pixel size. We make use of adaptive varying
size for the filter according to the color distribution of pixels.
The color variance can be used to indicate diffuse or specular
reflected surfaces. Diffuse surface usually has high variance
since it is characterized by light being reflected in all direc-
tions and the reflected color varies widely, while for glossy
surface, light is reflected in a small cone around the mirror-
reflection direction, therefore, most of the samples will have
similar reflected colors and the variance will be low. In our
setting, the blur size of the pixel is made linear with its color
variance. If the sampling rate is low, clustering the samples
from the nearby pixels might be necessary to make the vari-
ance more smooth and reliable. Compared to the fixed sized
filter, variable sized filter shows better performance, since
the run time of the algorithm is directly related to the size of
the filter.

3.3. Outlier Suppression

When high dynamic range images are used, some samples
can be several orders of magnitude larger than their neigh-
bors, and this spiked noise cannot be easily eliminated due
to improper blending. To address this, we employ two mod-
ifications: One is an outlier replacing operator to detect and
replace “abnormal” data with the average, and the other is
based on [XP05] that we use an estimated range value of the
current pixel instead of the true value when determining the
range kernel.

3.4. Filtering Framework

Figure 1: A diagram showing our main building blocks.

A diagram showing our main building blocks is given in Fig-
ure 1. Our method takes a noisy Monte Carlo path traced im-
age and all the screen samples, augmented with three auxil-
iary input buffers: normal buffer, second position buffer and
second normal buffer, and generates a smooth output image
without disturbing noise. We store all data in linear device
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memory allocated via CUDA. We firstly perform outlier sup-
pression on the original noisy image and all screen samples
to eliminate spiked noise, and select window size for each
pixel using outlier suppressed data. All these procedures are
accelerated by GPU using CUDA. In our framework, we
simply filter the final path traced images, instead of filtering
direct and indirect illumination separately.

4. Implementation and Results

We have implemented our filtering method using nVidia
CUDA programming language, and integrated it as a post-
processing step into a CPU version path tracer. Currently,
the standard deviation parameters of the Gaussian function-
s are set manually. All results shown here are computed on
a PC with Intel Core 2 Quad at 2.5 GHz, 2G RAM, and a
GeForce GTS 250 graphics card supporting CUDA 3.2. All
images in this paper are generated using a final output reso-
lution of 5122 except where explicitly noted.

To validate our algorithm, we have run it on a variety of
complex scenes, and compared it with the state-of-the-art
filtering algorithms. Figure 2 compares our adaptive filter
with edge-avoiding À-Trous filter for a scene consisting of a
dragon model facing a mirror-reflected suface. The reference
image using 10000 spp (samples per pixel) is shown in Fig-
ure 2(d), and takes more than 5 hours to render. Although our
solution is several orders of magnitude faster, this is close to
the reference image. Note that our approach can effectively
capture the mirror-reflected scene features without notice-
able noise, while edge-avoiding À-Trous filter fails to do so.

Figure 3 shows the effects of adaptive varying blur size
and fixed size. This scene is illuminated by the high-
frequency Eucalyptus Grove environment map. Obviously,
for a narrow filter, the image is not sufficiently smoothed;
hence distracting light blotches are still evident. On the oth-
er hand, a wide filter tends to take a lot of filtering time,
as shown in table 1, since the filtering time grows with the
size of filter. Our point-wise adaptive filter can generate low-
er costs without losing image quality by diminishing size in
low variance regions.

Table 1: The illustrations and comparisons of timing perfor-
mance for Figure 3. The filtering time grows with the window
size of the filters, while the variable window size can lower
the filtering time without losing image quality. The reference
path traced image at 40000 spp takes more than one hour to
render.

Input
Filtering time (ms)

Ref.
4 8 16 vary

7s 145.6 255.2 654.7 187.0 >1h

In Figure 4, we show a Cornell Box scene containing a
mirror ball and a glossy bunny. The benefit of including OS

can be seen when comparing Figure 4(b) against Figure 4(c).
Note that visually disturbing noise still exists in Figure 4(b).
We also compare against À-Trous filter, as well as against the
reference image rendered at 10000 spp in 7 hours. Observe
that edge-avoiding À-Trous filter incorrectly blurs reflected
scene features on the mirror ball, while ours retains well s-
ince we consider information of both the first and second hit-
points. Close-ups presented in Figure 4 clearly demonstrate
the effectiveness of our method.

Table 2 provides the performance breakdown for different
scenes with different sampling rate (SPP). Each row contains
timings for: adaptive size selection (SS), outlier suppression
(OS), and feature-preserving filtering (FF). The final column
(Total) is the sum of each step’s timing. Note that the running
time of the outlier replacing operator is included in SS. From
the data, we can see that FF usually takes a significant ratio
of the running time. The running time of SS depends on the
sampling rate since we have to traverse all of the samples,
while the running time of FF depends mostly on the scene’s
structure. For instance, the scene in Figure 3 contains only a
small portion of diffuse surfaces which need large window
size, and therefore the running time of FF is comparatively
low. The variation of OS’s running time is very small since
we have used a fixed Gaussian filter in this step.

Table 2: Performance (in ms) breakdown for different scenes
using our filtering method.

Scene SPP SS OS FF Total
Figure 2 16 9.5 50.9 275.8 336.2
Figure 3 64 45.9 50.9 90.2 187.0
Figure 4 16 9.4 51.0 203.8 264.2

5. Conclusion and Future Work

In this paper, we have described a general framework for
performing feature-preserving filtering on Monte Carlo path
traced images from a given set of samples. One key point of
our method is the choice of three additional geometric prop-
erties as the guidance to retain high-frequency details in the
scene when smoothing out undesirable noise. A per-pixel fil-
ter size selection scheme is used to reduce the running time.
Moreover, our method can be easily integrated in any Monte
Carlo based rendering systems as a post-processing stage,
and it may also be useful for real-time global illumination
techniques to smooth out artifacts [RDGK12].

Several aspects of the proposed method can be improved
in future research. We would like to enrich our system by
supporting more lighting effects, such as caustics and par-
ticipating media. We also hope to find a suitable solution to
automatically set the standard deviation parameters in the
bilateral filter, without introducing too much computational
overhead.
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Figure 2: Visual comparison between edge-avoiding À-Trous filter and ours. This path traced scene contains a dragon model
facing a mirror-reflected surface. From left to right: input noisy image rendering at 16 spp (a), filtering results of edge-avoiding
À-Trous filter (b) and ours (c). The reference image is rendered at 10000 spp, and takes more than 5 hours (d).

Figure 3: Comparison between filters with fixed window size and with variable window size. The first row shows the noisy image
rendered at 64 spp (a), the filtering results of our variable window sized filter (b), and the reference image rendered at 40000
spp (> 1 hours) (c). The second row gives results of fixed window sized filters with size 4 (d), 8 (e), and 16 (f), respectively.
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