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Figure 1: Main steps of the reconstruction. (a) Input model with boundary surfaces. (b) A set of direction vectors are prede-
termined as boundary constraints. (c) Corner points are manually selected to determine the domain structure. (d) In a frame
field optimization procedure, an as-smooth-as-possible frame field is generated while enforcing the given constraints. (e) A
volumetric parameterization.

Abstract
In this paper, we propose a novel approach that transforms discrete volumetric data directly acquired from scan-
ning devices into continuous spline representation with tensor-product regular structure. Our method is achieved
through three major steps as follows. First, in order to capture fine features, we construct an as-smooth-as-possible
frame field, satisfying a sparse set of directional constraints. Next, a globally smooth parameterization is com-
puted, with iso-parameter curves following the frame field directions. We utilize the parameterization to remesh
the data and construct a set of regular-structured volumetric patch layouts, consisting of a small number of volu-
metric patches while enforcing good feature alignment. Finally, we construct trivariate T-splines on all patches to
model geometry and density functions simultaneously. Compared with conventional discrete data, our data-spline-
conversion results are more efficient and compact, serving as a powerful toolkit with broader application appeal
in shape modeling, GPU computing, data reduction, scientific visualization, and physical analysis.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling —Curve, surface, solid, and object representations

1. Introduction

For volumetric scalar fields defined over discrete samples,
the reconstruction of the data is a fundamental problem
with very significant applications: For instance, the trend of
ever-increasing data size poses a great challenge in terms
of both storage and rendering costs; Meanwhile, a recon-

structed continuous representation is more desired in many
graphics applications such as physical analysis and simula-
tion.

An appropriate reconstruction should satisfy several
quality requirements: Accuracy. The reconstructed model
should faithfully preserve the density function; Feature
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alignment. In regions with well-identified feature direc-
tions, parametric lines should guide and follow the shape
feature; Compactness. The number of patch layout and the
degrees of freedom (e.g., control points/coefficents) should
be as few as possible; Structured regularity. Locally, each
3D patch is a subdivided cube-structured domain. Globally,
the gluing between patches should avoid singularity; As-
homogenous-as-possible. The density distribution in one
single patch should be smoothly varying in favor of approxi-
mation accuracy (material-aware); and Continuity. A con-
tinuous representation supports high-order derivatives for
high quality visualization and physical analysis [HCB05].

Unfortunately, existing reconstruction techniques rarely
respect to all above criteria. For example, [RZNS03] has de-
veloped super splines but only on irregular elements (tetra-
hedral mesh); The hierarchical bounding box techniques
[BNS01], [LHJ99] are not able to represent boundaries
and features accurately; The conventional hexahedral mesh
[She07] reconstruction includes a huge number of small
volumes without global structure at all, which sabotages
applications like subdivision, GPU computing, and tensor-
product NURBS approximation. All of these serious limi-
tations inspire us an ambitious goal: to create an integrated
structured hexahedral volume that combines all aforemen-
tioned requirements together.

Contributions and overview. We provide a novel frame-
work to reconstruct a discrete volume data into only a small
number of regular patches and spline representations. The
significant advantages include: Unlike bounding box, each
patch maps to a regular tensor-product (cube) domain while
maintaining the shape features. Thus applications like mul-
tiresolution editing, subdivision and spline approximation
can be applied efficiently and GPU friendly. Each patch is
as-homogenous-as-possible (material-aware) to simplify ap-
plications such as texturing and physical attributes modeling.
Meanwhile, our framework guarantees the geometric conti-
nuity between cube patches in favor of a global continuous
represention.

Our approach consists of the following major steps: (1)
Starting with local direction vectors as constraints, we gen-
erate an optimized frame field to respect the shape feature
(Section 2); (2) A regular structured parameterization of
(u,v,w) is generated, whose gradients align with the gener-
ated frame field everywhere. Then we produce a set of vol-
umetric patches through remeshing (Section 3); and (3) We
construct on each patch a trivariate T-spline to approximate
the shape and density function using as-few-as-possible con-
trol points (Section 4).

2. Frame Field

In order to generate the frame field, we start from selecting
the most important features as constraints, which our frame
field must respect. We introduce all the user interaction in
this step (Section 2.1). In the second step we compute the
optimization of a 3-direction frame field (Section 2.2).

2.1. Feature Constraints

In order to generate a feature aligned frame field, we must
pre-compute the most important features as the direction
constraints. Furthermore, in order to get a simple and reg-
ular parametric domain structure, we also need to determine
the domain shapes as well as alignment of each constraint
direction (i.e., along gradient ∇u, ∇v or ∇w direction, re-
spectively). Both tasks are detailed as follows:

Boundary surfaces and constraints. It is natural to con-
sider features on the boundaries of all segmentations as con-
straints, because the final parameterization result must re-
spect the shape of boundaries. Moreover, each sub-region
within a boundary always tends to be as-homogenous-as-
possible, which is an ideal property for final shape and den-
sity approximation. Therefore, we extract the boundary of
segmentation and take the normal directions as our direction
constraints.

Frequently, input datasets contain multiple structures and
segments that need to be differentiated. However, if those
features have the same density and gradient values, exist-
ing clustering methods are limited when trying to effectively
classify those similar features accurately. Thus, we apply the
texture-based classification method for the boundary surface
extraction. First, statistical attributes can be extracted fol-
lowing the metrics defined in [HSD73], and each attribute is
normalized into the range [0,1]. Then, in the interest of of
fast computation and easy implementation, we use k-mean
clustering in this texture-based high-dimensional parameter
space to automatically detect different volumetric compo-
nents as segments. Consequently, we choose the normal di-
rections on all boundary surfaces as the direction constraints.

Domain and direction alignment. After determining di-
rection constraints, we need to decide the alignment of each
direction. In particular, it means that we must choose one
parametric direction from ∇u, ∇v, or ∇w for each direction
constraint. This necessary pre-processing step has a huge
advantage in favor of generating parametric cube domain,
as demonstrated in Figure 2. We construct a 2D frame field
which respects the direction constraints on boundary edges.
In Figure 2(a), we do not have any alignment requirement
and the resulted frame field represents a complicated domain
with central singularity. In Figure 2(b), we use 4 corners to
divide the boundary into 4 segments and each segment cor-
responds to one boundary edge on the rectangular domain.
Naturally, we align the direction constraint orthogonal to the
iso-parameter on the boundary edge. Consequently, the re-
sulted frame field represents a rectangular domain.

Motivated by the above 2D illustration, our pre-
processing step includes the following interactive opera-
tions. (1) We predetermine the shape of the cube domain by
manually constructing a group of cube domain to approxi-
mate the boundary shape; (2) On the boundary surfaces, we
choose 8 corners for each cube domain. Figure 6 (Column 1)
shows our cube domain construction and corner selection for
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(a) (b)
Figure 2: Two frame fields: The boundary direction con-
straints are not aligned in (a), but are aligned (b).

every input. As a result, the shortest paths between corners
partition the boundary surfaces into patches, and each patch
corresponds to an iso-parametric cube face; (3) For each di-
rection constraint on one patch, we make a decision how it
is aligned with the parametric coordinate gradient, which is
orthogonal to the iso-parametric cube face.

2.2. Field Smoothing

[RVLL08] has studied the energy of a 2D cross field and
simplified it to a linear representation. In our 3D volume, the
challenge lies at smoothing 3 vectors in separate directions
while maintaining their orthogonality. Another huge chal-
lenge for smoothing is “jump matching”. It means that all
permutation cases of direction alignment. Figure 3(a) shows
all 4 “jump matching” cases for a 2-direction field. Similarly,
we can have 24 “jump matching” cases for a 3-direction
field. A “smart” optimization algorithm should dynamically
change direction alignment to arrive at the best result. Fig-
ure 3(b) shows a simple frame smoothing with two adja-
cent neighbors. It demonstrates that using jump matching we
are able to get a better smoothing result between neighbors,
while traditional methods would fail.

(a) (b)
Figure 3: (a) Jump matching: The smoothing energy be-
tween 4 cases should be zero ideally. (b) The smoothing re-
sults with/without considering period jump.

To overcome these problems, our key idea is to compute
the registration energy [BM92] between the central frame
and its neighboring frames (Figure 4). Each frame would in-
troduce 6 end positions {P(vi)} = {p0, . . . ,p5} at the end
of 3 frame lines.

Figure 4: Major steps of optimization: (1) Union of ending
points. (2) ICP-registration. (3) Compute rotation to get a
new frame.

1. Get the union of all frame end positions on neighboring
voxels: {S2}=

∪
v j∈N (vi)P(v j).

2. The original point set {S1}= {P(vi)} includes the frame
ending positions of vi. Using the ICP-based registra-
tion [BM92], we compute a matrix T that approximately
transforms voxels of {S1} to those of the approximated
set {S2}.

3. Decompose the transformation matrix T into a rotation
matrix R and a shear matrix S using polar decomposition.
Add the rotation R to the frame of vi.

The above algorithm is applied to each local frame itera-
tively until we obtain a satisfactorily smooth field. For any
frame with a predetermined direction constraint, we first
apply the above algorithm without considering constraints.
Then we search for the closest direction d⃗ in the updated
frame and rotate the frame to project d⃗ onto the direction
constraint.

3. Volumetric Parameterization

In order to follow the generated frame field, the parameteri-
zation is computed as a solution to the following energy min-
imization problem on each node:

E= ∑
vi∈V

||∇ui−u f
i ||

2+ ||∇v−v f
i ||

2+ ||∇wi−w f
i ||

2, (1)

where ui, vi, wi are the unknown parameters and u f
i ,v

f
i and

w f
i are 3 frame field directions on each node. In practice, our

parameterization algorithm has following steps:

1. Parameter constraints: Our previous pre-processing step
(Section 2.1) partitions boundary surfaces to iso-
parametric patches being mapped to cube faces. Now we
set parameter constraints to guarantee that the nodes on
each patch have the same parameter on u, v or w.

2. Energy minimization: Add these parameter constraints
into the energy minimization equation. Compute the min-
imization to get the final parameterization result.

3. Remeshing: Guided by the generated parameter, we trace
the iso-parametric lines and generate a small set of volu-
metric patches.
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3.1. Energy Minimization

In order to minimize Eq.( 1), we have to design a linear for-
mulation of the gradient operator ∇. Our strategy is to ap-
proximate this gradient operator using a local polynomial
function IH(u,v,w) around center voxel vi, we first assign a
local parameter value (u0,v0,w0) to vi. For each of its adja-
cent k-ring neighbor voxels v j ∈ N (vi), the local parameter
is (u j,v j,w j) = (u0+x j −xi,v0+y j −yi,w0+z j −zi). Then
our cubic polynomial can be fitted as:

IH(u,v,w) =
i+ j+k≤3

∑
i, j,k≥0

cmuiv jwk = P(u,v,w)CT , (2)

where C denotes the vector of unknown coefficients cm, and
P is the vector of uiv jwk. Similarly, we can also formulate
derivatives of u,v,w. For instance,

IH
u (u,v,w) =

i+ j+k≤3

∑
i, j,k≥0

cmiui−1v jwk = Pu(u,v,w)CT , (3)

where Pu is the vector of iui−1v jwk (we set um = 0 if m < 0).
In the same way, we can also formulate other derivatives IH

v
and IH

w .

In order to compute the currently unknown coefficients C,
we construct a fitting equation:

QCT = ID, (4)

where Q is the fitting matrix. Each row Q j in the matrix
depends on a voxel Q j = P(u j,v j,w j), j ∈ i

∪
N (i). And, ID

is the vector of discrete value ID
j on each voxel. Because the

size of unknown variables is very small, we can solve this
linear least-square problem through multiplying the matrix
Q by its transpose:

CT = (QT Q)−1QT ID. (5)

We observe that (QT Q)−1QT is constant for every local
function if we choose the same k for k-ring neighbors of each
voxel.

Eq.( 3) and Eq.( 5) together compute the gradient operator.
For instance, we represent ∇ui as:

∇ui =(PuCT ,PvCT ,PwCT )= (Pu,Pv,Pw)(QT Q)−1QT UD,
(6)

where UD represents the vector of unknown scalar value u
on vi and its neighboring voxels. Then, we substitute them
into the energy equation. for example, we can get from
∑vi∈V ||∇ui −u f

i ||
2 the following equation:

∑
vi∈V

||(Pu,Pv,Pw)(QT Q)−1QT UD −U f ||2, (7)

where U f is the vector of all u f
i . Eq.( 7) is a typical fit-

ting problem, which can be converted into a linear system
AUT = B through computing ∂E

∂u = 0, where UT is the vec-
tor of unknown value u on all voxels. We can simply solve it
by the least square method.

Modified norm. It is obvious that feature orientation is
more important than exact edge length. The orientation can
be further improved by less penalizing stretch which is in
the direction of the desired iso-lines. In order to achieve this,
[BZK09] has introduced an anisotropic norm and we extend
it to 3D vector computing:

||(u,v,w)||(α,β,γ) = αu2 +βv2 + γw2.

This norm penalizes the deviation along the major directions
with different weights. Then we modify the energy equation
to the new form:

∑
vi∈V

||∇ui−u f
i ||(ε,1,1)+||∇vi−v f

i ||(1,ε,1)+||∇wi−w f
i ||(1,1,ε),

(8)
with ε ≤ 1.

4. Spline Approximation and Experimental Results

The previous steps generate a set of regular structured para-
metric patches thus it is straightforward to define a regular
high-order representation to approximate the shape and the
density function of each patch. In our framework, we utilize
T-splines [SCF∗04] as a powerful approximation scheme. A
trivariate T-spline [WLL∗11] can be formulated as:

F(u,v,w) = ∑wipiBi(u,v,w)
∑wiBi(u,v,w)

, (9)

where (u,v,w) denotes parameter coordinates, pi =
(Xi,Yi,Zi, Ii) denotes each control point, wi and Bi are the
weight and blending function sets, respectively. Each pair
of < wi,Bi > is associated with a control point pi. Each
Bi(u,v,w) is a blending function given by Bi(u,v,w) =
N3

i0(u)N
3
i1(v)N

3
i2(w), where N3

i0(u), N3
i1(v), and N3

i2(w) are
cubic B-spline basis functions along u, v, and w, respec-
tively. The detailed approximation techniques are discussed
in [WLL∗11].

4.1. Experimental Results

Table 1 summarizes the statistics of the performance of our
reconstruction method on four models. It shows that our sys-
tem effectively reconstructs the models with lower number
of control points without sacrificing visual quality. Figure 5
visualizes the continuous representation results. It shows that
our reconstructed models are able to preserve the shape and
density information of the initial objects. Figure 6 illustrates
more details about our parameterization by showing: the cor-
ner points, parameter domain, surface parameterization, and
volumetric parametrization, respectively.

Limitation. It may be noted that, our framework may not
perform well for highly textured scenes, or over-partitioned
objects. Meanwhile, it may also encounter some difficul-
ties when being used to handle highly branched models and
fluid-like simulation. “Cracks” [PB06] may also occur when
adjacent object boundaries do not coincide precisely. We
have observed that, for rather complicated input, interactive
corner selection and domain construction tends to be very
time consuming.
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Figure 5: Left column: Volume visualization using input dis-
crete models. Right column: Reconstructed models.

5. Conclusion and Future Work

We have proposed a method that reconstructs the dis-
crete volumetric data into the regular continuous repre-
sentation. Our conversion promises many good properties
such as feature-alignment, compactness, regular structure,
high-order representation, and as-homogenous-as-possible.
These modeling advantages naturally prompt us to explore
its unchartered potential in the near future. We antici-
pate further novel GPU-accelerated visualization techniques
based on our high-order regular representations. Meanwhile,

Table 1: Statistics of various test examples: Nd, # of voxels;
RMS, root-mean-square fitting error (density only, 10−2);
Nc, # of corners; N′

c, # of control points.

Model Nd RMS Nc N′
c

Atom 2563 0.122 12 1.5∗104

Fuel 643 0.877 16 7.2∗104

Ankle 1283 0.422 12 1.6∗104

Tooth 2562 ×161 0.393 24 5.1∗104

the connections between material-sensitive physical analy-
sis/simulation and our continuous hyper-volume shape func-
tions are of great interest for potential physics-based appli-
cations.
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Figure 6: Left: Corner points and their cube structures are highlighted by curves projected onto the inputs. Middle: Surface
parameterization. Right: Interior volumetric parameterization. c⃝ The Eurographics Association 2011.
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