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Abstract

Overlaid plots of iso-contours in individual members of a scalar ensemble field are a popular concept to visualize
the data uncertainty. However, such plots do not allow inferring on the spatial cumulative probability distribution
of the iso-contours, and they cannot reveal distribution characteristics like spread and topology for very large
amounts of contours. In this paper, we propose a new visualization technique for iso-contours in ensemble data
sets to overcome these limitations. Our technique makes no assumption about a stochastic uncertainty model,
rendering it suitable for arbitrary ensemble distributions. It computes a statistical summary of the ensemble over
the spatial domain, including probability density values for arbitrary domain points. From this information, the
uncertainty and topology of iso-contours can be determined, as well as the variations in gradient magnitude
around these contours. Since the visualization is carried out on the GPU, our approach allows analyzing even
very large ensemble data sets at interactive rates.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms, Viewing algorithms

1. Introduction

Analyzing ensemble data sets is important, because they give
insight about the uncertainty in the data. Such insight is of-
ten derived by assuming a multivariate Gaussian probability
distribution. In this case, a number of techniques can effec-
tively visualize the possible variations of specific data fea-
tures like iso-contours. For arbitrary distributions, however,
a methodology is necessary to estimate this variability.

The variability of iso-contours is often visualized via so-
called spaghetti-plots. They show the iso-contours for an
iso-value θ in all members of a scalar 2D ensemble simul-
taneously. See Fig. 1 (a) and (b) for an example, in which
the plots do not reveal any difference between the two en-
sembles. In Fig. 1 (c) and (d), a member of each ensem-
ble is shown. The data is color-coded from blue (< θ) over
white (= θ) to red (> θ). As indicated, while in one ensem-
ble the iso-contour is positioned either in the left or the right
branch, in the other ensemble it occurs simultaneously in
both branches. These examples clarify that visualizing fea-
tures in individual ensemble members in one image can be
greatly misleading and does not allow for a reliable estima-
tion of the feature uncertainty in general.

This paper presents a study to shed light on the visualiza-

tion of iso-contour distributions in scalar ensemble fields. It
makes no assumption about a stochastic uncertainty model,
yet, by computing a statistical summary of the ensemble over
the spatial domain, it generates point-wise measures for the
positional likelihood of occurrence of iso-contours.

2. Related Work

An overview and taxonomy of uncertainty visualization
techniques is given in [PWL97, JS03, THM∗05, GS06, Pot].
A variety of general techniques for visually representing
data uncertainty have been proposed in [WPL02, DKLP02,
RLB∗03,LLPY07]. Other approaches address the visualiza-
tion of the positional variations of specific features in scalar
and vector fields [PWL97,ZWK10,KWTM03,GR04,Bro04,
PRW11, PWH11, PH10, PPH12, OT12, OGT11b, OGT11a,
OGHT10]. Structural variations of salient features in scalar
fields have been addressed in [PW12b, PW12a] by vi-
sualizing positive and inverse global and local correla-
tion structures. Underlying all these approaches is a Gaus-
sian uncertainty model. The visualization of uncertain iso-
contours in 2D ensemble data sets was explicitly addressed
in [PWB∗09] using spaghetti-plots. The use of spaghetti-
plots in combination with glyphs and confidence ribbons
was proposed in [SZD∗10].
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Figure 1: (a), (b) Spaghetti plots of iso-contours in two different ensembles. (c), (d) Members of the respective ensembles.

3. Spatial Probability Distribution

We first develop stochastic distribution functions for char-
acterizing the spatial variability of iso-contours in uncer-
tain scalar fields, i.e., the spatial cumulative distribution
function (CDF) and the spatial probability density function
(PDF) of iso-contours. We assume a discrete sampling of
a 2D domain on a Cartesian grid structure with grid points
Sa,b = {xi, j : 1≤ i≤ a,1≤ j≤ b}. An ensemble has n mem-
bers, the k-th member containing scalar values yk(xi, j) and
gradients∇yk(xi, j). At each grid point, the data uncertainty
is given by the variation of the data values. The data un-
certainty can be modeled by assigning a random variable
Y (xi, j) to each grid point xi, j .

To analyze the variability in position of iso-contours for
an iso-value θ in the ensemble members, our goal is to de-
termine for every grid point the probability that a contour is
located exactly at this point. At a point xi, j , the probability
that the data takes on the value θ is P(Y (xi, j) = θ). Unfor-
tunately, this probability vanishes if the data is real-valued
and smooth. This is because a 1D contour (or 1-manifold)
in a 2D domain has a zero Lebesgue measure, i.e., its area
is zero. Since a non-zero probability of the occurrence of a
contour is only possible across a non-zero area, it must hold
that P(Y (xi, j) = θ) = 0. It is thus not possible to directly
compute probabilities of the occurrence of iso-contours at
particular domain points.

Instead of interpreting an iso-contour as a 1-manifold em-
bedded into the 2D domain, however, we regard it as the
boundary between the regions containing all points with
scalar values above and below the iso-value. These regions
are called the superlevel and sublevel sets, respectively, and
have non-zero Lebesgue measures in general. They can thus
be used to derive probability measures.

For this purpose we introduce the spatial CDF

Ψθ(xi, j) := P(Y (xi, j)≥ θ) =
1
n

n

∑
k=1

Pk(Y (xi, j)≥ θ), (1)

where Pk is a boolean indicator function 1k for each ensem-
ble member k:

Pk(Y (xi, j)≥ θ) = 1k(xi, j) :=

{
0 if yk(xi, j)< θ

1 if yk(xi, j)≥ θ
. (2)

The spatial CDF expresses the probability that the scalar
value at a particular grid point is greater than θ with re-
spect to the data uncertainty at that point. It is defined for
any number n of ensemble members. In Fig. 2 (b), Equ. (2)

was applied to the single ensemble member shown in (a). A
color table was used to map values in the interval [0,1] to a
color range from blue to red.

Since a CDF is obtained by integrating the respective
PDF, we obtain the spatial PDF via differentiation as

ψθ(xi, j) :=
∥∥∇Ψθ(xi, j)

∥∥ . (3)

In the following we will show for the spatial PDF that a) it
can be computed at each grid point by using only the ensem-
ble data at that point, and b) can be used directly to encode
the positional uncertainty of the iso-contours. Note that the
spatial CDF and PDF only model the distribution of the iso-
contour along the so-called normal curves of the CDF field
(cf. [PRW11]). Both functions are defined on a 2D spatial
domain and not on a 2D data or parameter domain like tra-
ditional 2D distribution functions.

3.1. Gaussian Contour Representation

The spatial PDF expresses the probability density of the iso-
contours in the 2D domain. However, it cannot be evaluated
directly, because the indicator function in Equ. (2) is neither
continuous nor differentiable. Thus, we replace the binary
indicator function by a function that generates a smooth and
differentiable transition between the sublevel and superlevel
sets. We choose a function with a closed-form first deriva-
tive, such that a closed form of Equ. (3) can be obtained.

One possible choice is the well-known CDF Φ of the stan-
dard normal distribution, yielding

Pk(Y (xi, j)≥ θ) = Φ

(
yk(xi, j)−θ

σs

)
. (4)

Since Φ is computed as an integral of the Gaussian PDF, it
serves our requirements. Fig. 2 (c) shows, for the ensemble
member in (a), the values of Pk for a small positive sharpness
parameter σs.

Due to the chosen smoothing function, with increas-
ing/decreasing values yk(xi, j) above/below the iso-value in
one ensemble member k, we obtain Pk(Y (xi, j) ≥ θ) → 1
and Pk(Y (xi, j) ≥ θ) → 0, respectively. The transition rate
between the superlevel and sublevel region is controlled by
the sharpness parameter. For a fixed sharpness parameter, the
spatial CDF has a strong gradient magnitude in those regions
along the contour where the data gradient is strong, too.

By substituting the smoothing function (Equ. (4)) into
Equ. (1), and using the resulting CDF in Equ. (3), we arrive
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Figure 2: (a) Member of the ensemble in Fig. 1 (b). (b) Spatial CDF for single ensemble member in (a) using binary indicator
transition function. (c) Spatial CDF using Gaussian transition function. (d) Spatial PDF as derivative of spatial CDF.

at the spatial PDF for the selected member:

pk
(
xi, j
)
= φ

(
yk(xi, j)−θ

σs

) ∥∥∇yk(xi, j)
∥∥

σs
. (5)

Here, φ is the bell-shaped PDF obtained by differentiating
the standard normal distribution function. Note that for each
member k, Equ. (5) models a Gaussian “uncertainty region”
around each single iso-contour, but not for the distribution
of the set of iso-contours. The degree of this “uncertainty”
is directly related to the data gradient and can be interpreted
as a condition indicator (cf. visual condition analysis of iso-
contours in [PH10]). In Fig. 2 (d), for the ensemble mem-
ber in (a), the values of pk are first transformed to [0,1] via
1− exp

(
−pk(xi, j)

)
, and then to color. The color transition

between blue and red allows clearly distinguishing between
low and strong gradient regions along the iso-contour. The
spatial PDF modeling the probability density of the contours
in the whole ensemble can now be written as

ψθ(xi, j) =

∥∥∥∥∥1
n

n

∑
k=1

φ

(
yk(xi, j)−θ

σs

)
∇yk(xi, j)

σs

∥∥∥∥∥ . (6)

The spatial PDF gives rise to a quantitative assessment of
the local probability density of iso-contours, which is caused
by their positional variation in the ensemble. The distribu-
tion puts into relation the strength of the spatial variations. It
is worth noting, however, that the spatial PDF covers only
the positional variation of an oriented boundary contour.
Variations in topology, e.g., flip of the superlevel and sub-
level regions across one and the same contour, are not taken
into account. However, this is not the case for most ensemble
data sets, affected by moderate uncertainty.

3.2. Visualization

The spatial CDF computes for every grid point the probabil-
ity that this point belongs to the region in which the scalar
values are greater than the iso-value. The probabilities range
from 0 to 1, and they are mapped linearly to gray scales from
black to white. The resulting colors serve as background col-
ors Cb, which indicate the sublevel and superlevel regions, as
well as the transition zone in between.

Next, we display the color-coded spatial PDFs of all
ensemble members simultaneously. The color-coded con-
tours appear wider and more diffuse in regions showing
low gradients, and more narrow and sharper in regions with

strong gradients. By drawing all spatial PDFs simultane-
ously, wider regions could completely hide narrower ones.
Therefore, instead of averaging the spatial PDF values of all
members (cf. Equ. (6)), we always select the largest value at
each domain point:

ψ
max
θ (xi, j) = max

k=1,2,...,n
pk
(
xi, j
)
. (7)

Note that both ψθ and ψ
max
θ range between 0 and ∞.

These values are first mapped to [0,1] using the transfer
function α(xi, j) = 1− exp

(
−τ ·T(xi, j)

)
, where T(·) is ei-

ther replaced by ψθ or ψ
max
θ . The scaling parameter τ is used

to control the color contrast.

In addition to the background color Cb, we further con-
struct two foreground colors: The first one, lower color Cl ,
is obtained by linearly mapping Ψ (∈ [0,1]) to the color map
[yellow→ green→ cyan]. The second one, the upper color
Cu, is constructed by mapping Ψ to [red→magenta→ blue].
The final color at each grid point is obtained by linearly map-
ping α from [0→ 0.5→ 1] to [Cb → Cl → Cu]. The terms
lower color and upper color indicate relatively low and high
gradients along the iso-contours.

Figure 3: Spatial CDF/PDF plots for ensembles in Fig. 1.

The color scheme allows the simultaneous encoding of
the values of the spatial CDF—shows the transition between
the sublevel and superlevel sets—and the spatial maximum
PDF—indicates regions with high and low gradients. In Fig.
3, the color scheme was applied to the ensembles in Fig.
1. In (a), regions colored white/black contain those points
that belong to the superlevel/sublevel region in all ensemble
members. A gray value of 0.5 indicates an equal number of
ensemble members in which the respective point is in the su-
perlevel or sublevel set. Thus, from the location of the gray
region it can be concluded on a multi-modal distribution of
the iso-contours, i.e., the contours are positioned either left
or right of the gray region. The color represents the spatial
PDF: Strong presence of Cu indicates almost constant gra-
dient magnitude along the iso-contours and no contrast be-
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Figure 4: Two ECMWF temperature ensemble data sets: (a),(c) Spaghetti plots. (b),(d) Spatial CDF and PDF.

tween low and high gradient regions. In (b), the background
color indicates that there are no larger regions belonging ei-
ther to the superlevel or sublevel regions. Compared to (a),
it cannot be concluded on a strong multi-modality in the
iso-contour representation; black and white regions reveal a
clear separation between the superlevel and sublevel region.
The presence of Cl in the upper part of the domain indicates
a much lower gradient strength than in the lower part.

Figure 5: Spatial PDF values for ψ
max
θ (a) and ψθ (b).

In Fig. 5, we illustrate the differences between using ψ
max
θ

and ψθ for visualizing the contour distributions. In (a) and
(b) we show the upper domain part of the data set in Fig. 1
(a), with ψ

max
θ and ψθ as probability measures, respectively.

The individual contours can be visualized much more ef-
fectively in (a), and the visual focus is always put on the
contours along which the gradients are most prominent. Due
to the averaging of values in (b), contour points where sev-
eral contours intersect each other receive higher values than
points where no crossing occurs. This results in a shift of the
visual focus from the contours to the intersection regions,
and an increasing loss of the contours’ shapes.

4. Results

Our approach has been applied to two different temperature
ensembles, each comprising 50 members. The ensembles
have been generated by the European Center for Medium-
Range Weather Forecast (ECMWF) for two different fore-
cast periods and pressure levels above Europe. Since all
computations are carried out for every domain point in par-
allel on the GPU, the user can interactively monitor the
changes caused by selecting different iso-values θ, sharpness
parameters σs and color contrasts τ.

In Fig. 4 (a), iso-contours are visualized via spaghetti-
plots, with different colors assigned to contours in different

ensemble members. Although only 50 members are plotted,
the visualization quickly becomes cluttered, and the limita-
tions of spaghetti-plots prohibit a detailed statistical anal-
ysis. In (b), the spatial CDF and the maximum values of
the spatial PDF are shown. The gray-valued background al-
lows clearly segmenting the domain into regions with tem-
perature values above (white) and below (black) the selected
iso-value. The “sharpness” of the iso-contours and the pres-
ence of color Cu in region (1) identify a sharp temperature
transition with low gradient uncertainty towards the Green-
land border. In region (2), the iso-contours have a smooth
appearance and do not show a clear preferential direction.
Together with the presence of the lower color Cl , this indi-
cates lower gradients and a much smoother temperature tran-
sition. These observations cannot be made by just looking at
the spaghetti-plot in (a).

Image (c) shows the spaghetti-plot for a different iso-
value and pressure level in the second ensemble. Compared
to the first ensemble, the visualization in (d) reveals a new
statistical feature. In region (1) (also shown in the small
image), the iso-contours split up into two branches, which
indicates a bi-modal distribution. Both branches enclose a
gray-valued background area. In addition, the presence of
the upper color Cu indicates strong gradients in this region,
compared to, for instance, region (2).

The visualization techniques presented in this paper can
be implemented very efficiently on the GPU. For a high
screen resolution pixel raster of 1860×1040 and a 2D scalar
ensemble data set with a resolution of 1060× 460 and 50
members the spatial CDF/PDF computation takes below 20
ms on a NVIDIA GeForce GTX 660 Ti graphics adapter.

5. Conclusion

To enable an uncertainty analysis of iso-contours in 2D
scalar ensemble fields, we have derived probability distribu-
tions for iso-contours in such fields, and proposed a method
to visually convey this information. We did not make any
assumption on the underlying uncertainty model, but com-
puted statistical summaries and generated continuous distri-
bution functions thereof.

In the future, we will look into ways to extend our ap-
proach towards an uncertainty analysis of other features in
scalar ensembles. Furthermore, we aim to extend our method
to 3D. Here, an approach similar to the 2D case should work,
yet one has to investigate adequate mapping strategies to vi-
sually convey the spatial distribution values.
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