
EuroVis Workshop on Visual Analytics (2013)
M. Pohl and H. Schumann (Editors)

Dataflow-based Visual Analysis for Fault Diagnosis and
Predictive Maintenance in Manufacturing

M. Wörner1,2, M. Metzger1, and T. Ertl1

1Institute for Visualization and Interactive Systems, University of Stuttgart, Germany
2GSaME Graduate School for advanced Manufacturing Engineering, University of Stuttgart, Germany

Abstract
Predictive machine maintenance, which monitors the current condition of a machine, can be much more efficient
than maintaining it on a strict schedule or only as a reaction to actual breakdowns. Although sophisticated theo-
retical models exist, these are not always employed in practice, presumably in part due to their abstract nature.
Introducing interactive visualization into the analysis process may facilitate the adoption of predictive mainte-
nance. We apply a dataflow-based visual analytics approach to the analysis of diagnostic machine data on a
real-world dataset and collect feedback from domain experts.

Categories and Subject Descriptors (according to ACM CCS): I.3.8 [Computer Graphics]: Applications—

1. Introduction

Machine tools are important elements of manufacturing pro-
cesses. A machine tool is a device that uses some kind of tool
to cut or drill a metal work piece. It usually follows a com-
puter controlled path to shape a raw metal block according
to a CAD created design. They are high precision devices,
made of many parts, equipped with numerous sensors, and
controlled by complex electronics and software. They are
also very expensive, so anyone investing into a machine tool
has high expectations regarding its availability and reliabil-
ity. Consequently, the precise diagnosis of actual and poten-
tial problems is an important issue for machine tool manu-
facturers, both for checking new machines before shipping
them to the customer and for diagnosing machines during
maintenance. Diagnosing a machine involves one or more
tests, in which the machine performs certain tasks while
recording various sensor readings. Viewing visualizations of
these sensor readings, an expert will usually be able to judge
whether certain parts and elements behave as expected or
need to be repaired or replaced.

Visual analytics can make this process more effective by
offering a more systematic and partly automatic approach. It
can also enable non-experts to perform the diagnosis based
on pre-configured automatic analysis steps. We present a vi-
sual analytics system we designed to demonstrate this ap-
proach. We were able to collaborate with a machine tool
manufacturer, who supplied us with data sequences to be

analysed, with exemplary expert assessments of some of
these data sequences, and with subsequent feedback on the
results and their assessment of the utility of the visual ana-
lytics method in this particular context.

2. Related work

Monitoring the condition of a machine has always been
an important topic in the manufacturing domain. There
are sophisticated approaches for fault diagnosis and pre-
dictive maintenance. These include wavelet transformations
[WGY12] and machine learning techniques such as principal
component analysis and support vector machines [TZY∗10].
Some algorithms do not require the installation of dedicated
diagnostic sensors but can operate on signals a machine gen-
erates during its normal operation [VHWM09]. Effort has
been put into including diagnostic algorithms on a chip in the
machine [OGC∗10]. These methods strive for an automatic
detection and diagnosis of problems. They do not require
human intervention and have no need for an interactive vi-
sual interface. However, in an extensive review of condition-
based maintenance [JLB06], Jardine et al. note that in spite
of the availability of advanced maintenance techniques in
the literature, it is still common in the industry to either sim-
ply maintain machines on a regular schedule or wait until a
breakdown occurs. They list several possible reasons, among
these a “lack of efficient communication between theory de-
velopers and practitioners”. We believe that an explorative
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visual analytics approach may help to create a better under-
standing of available data collections and the opportunities
modern analysis methods create. Using a combination of vi-
sual and automatic analysis may allow experts to judge vi-
sual data representations and determine patterns and corre-
lations that can be used by automatic methods to generalize
these findings to other measurements.

3. The data

These particular machines collect data during test runs. In
a test run, an operator performs a defined task on the ma-
chine while the machine continuously records the values of
several sensors. The data we received for analysis was from
a ball screw test. This machine part converts the rotational
movement of a rod into a precise linear movement, for ex-
ample to position the tool at the work piece. The machine
can measure the current position of the ball screw in two
ways: Directly, using markings on a measuring rod, and in-
directly, counting revolutions of the motor driving the ball
screw. Over time, wear will reduce the precision of the po-
sitioning and thereby the quality of the parts manufactured
by the machine. The analyst’s task is to determine whether
a given set of measurements indicate a defect and a neces-
sity to replace the ball screw. During the test run, the ball
screw head is moved forth and back over its entire range
at a constant speed. Six sensors were recorded during this
test. These include the nominal position, the difference be-
tween the nominal and the actual position, the velocity of
the movement, and the difference between the direct (mea-
suring rod) and indirect (motor revolutions) position mea-
surements. There were 40 runs for this test. Every sensor
was sampled at 167 Hz and recorded a total of 8192 numeric
values (about 49 seconds). The machines sample all sensors
simultaneously, but there is typically a gap between the start
of the recording and the start of the test as both are triggered
manually.

4. The analysis system

Our task is to find ways to estimate the state of a ball screw
given a set of test run. Domain experts can give us evalua-
tions for some of the test results, which can serve both as
a starting point for discovering what differences in the data
may prompt these evaluations and as ground truth for cal-
ibrating the automatic analysis. In general, the domain ex-
perts will come to their decision by looking at data plots
and judging them from their experience. This evaluation is
mostly a black box for us. However, experts may also be
able to point out specific characteristics in the data, which
may give us some insight into their decision process and sug-
gest ways to convert a given data series into key figures that
can be used for classification. This approach is highly explo-
rative. In order to clearly communicate what steps exactly a
proposed analysis involves, how the raw data is processed by

Figure 1: The main window of the prototype implementa-
tion: Available components on the left, analysis graph in the
centre, test runs and component results on the right. Green
rows indicate cases in which the manual classification (sec-
ond column) and the automatic classification (fourth col-
umn) match.

these steps, and how this eventually results in the final clas-
sification, we use a dataflow graph to represent a particular
analysis. This is an interactive visualization of the analysis
from loading the data to calculating the classifications. In the
long term, once domain experts have designed a graph for a
particular analysis problem, non-expert users may be able to
reuse this graph to perform analysis tasks on their own. Ex-
perts would only have to update the graph when the analysis
task changes (such as when there is a modification to the
machine or sensor design) or users report incorrect classifi-
cations. There are tools available that use a graph-based rep-
resentation of an analysis process, such as Knime [BCD∗09]
or RapidMiner [MWK∗06], but for this particular project,
we chose to create our own prototype implementation for
maximum flexibility.

Figure 2: A node representing the Fourier transformation
component. It has both a settings button (top right) and a
visualization button (bottom right). Three input ports at the
top accept the data to be analysed as either a list of float-
ing point values (blue) or a data channel (red) and a list
of Boolean values (green), which can be used to select only
a part of the input for analysis. One blue output port at the
bottom provides a list of floating point values (the spectrum).

The main window of this prototype (Figure 1) is divided
into three parts. The left part of the window shows the avail-
able analysis components. The central part contains an inter-
active visualization of the current graph, which the user can
edit by moving nodes around or connecting them to other
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nodes. Each node (Figure 2) represents an analysis compo-
nent and has a certain number of input and output ports.
The colour of a port indicates its data type. Ports of the
same colour can be connected to form a dataflow through the
graph. All nodes have a settings button, which can be used
to specify parameters for this particular analysis step. Some
nodes also show a visualization button, which will open a vi-
sual representation of relevant data. To the right of the graph
view, there is a list of all recorded test runs showing the ma-
chine identification and the date of the run in the first column
as well as the pre-classification as “good” (green tick), “bad”
(red cross), or “indetermined/borderline” (grey circle) in the
second column. Nodes can add columns to this list to display
their results. As an example, the third column in Figure 1 dis-
plays a numeric result, the fourth the automatic classification
in the form of a coloured circle.

Usually, the first component to be added is the Data
Loader component. Its parameters define which test runs are
to be read from these files. The corresponding node has one
output port per sensor, each providing a data channel. A data
channel contains the set of all time series of values recorded
by a single sensor in the selected test runs. The node has a vi-
sualization button, which will open a plot of the loaded data.
Here, the user can examine the various channels and mea-
surements or compare plots of different machines. We draw
these diagrams using the open source graph drawing library
ZedGraph [zed]. Another central component is the Results
component. Its input port accepts a Boolean value for each
test run, giving the classification of this test as “good” or
“bad”. A second input port accepts a float value instead to
allow for a fuzzy classification of test cases.

5. Analysing the data

We started out with a small set of test runs, some of which
had been pre-classified by the experts. Our first step was
to add a Data Loader node to the analysis graph that reads
these test runs and lists them in the right part of the main
window. We then marked them as “good”, “bad”, or “inde-
termined” according to the experts’ assessment. When we
compared plots of good and bad cases in the visualization of
the Data Loader node, we noticed that an obvious difference
appeared to be that the deviation between the nominal and
the actual ball screw head position is generally larger in the
bad cases (Figure 3). We added a MinMaxAvg component,
which computes the minimum, maximum, or average of a
series of values, to the graph and connected it to the Data
Loader output port that corresponds to the position differ-
ence channel. We set the node to compute the average of the
absolute input values. In the list of test runs, adding the node
inserted a new column displaying these average values.

We noticed that “good” test runs indeed seem to have a
lower average position difference and added a Results com-
ponent to create a classification of the test runs based on
these values. After connecting this new node to the out-

Figure 3: The data channel recording the difference be-
tween the nominal and the actual ball screw head position
in cases pre-classified as good (top) and bad (bottom) as
seen in the data visualization view of the Data Loader node.

put of the MinMaxAvg node, we opened its settings win-
dow and enabled the automatic value mapping. This searches
for a linear separation of the input values based on the pre-
classified test runs. In this case, the Results component de-
termined that the greatest average value of a “good” test run
was 2.72, whereas the least average of a “bad” test run was
5.92. All pre-classifed test runs in the list of test runs turned
green, confirming that all classification results matched the
expert assessments. The automatic value mapping maps val-
ues between 2.72 and 5.92 to a gradual progression from
“good” to “bad”, and among those test runs without a known
expert classification, we can now identify some that are
deemed borderline cases according to this metric. Figure 1
shows the state of the prototype implementation after these
steps.

While the average position deviation appears to be a good
indicator, the plots show that even in the “good” cases, there
are noticeable peaks (as in Figure 3 top). These usually oc-
cur at the beginning, in the middle, and at the end of the
measurement. When we pointed this out to the domain ex-
perts, we were told these are caused by the starting, stopping,
and turnaround motion of the ball screw head, are perfectly
normal, and do not indicate a defect. With this additional
knowledge, it seemed plausible to ignore these points when
calculating the average deviation. The data channel contain-
ing the absolute nominal head position can be used to deter-
mine the time periods in which the head is meant to acceler-
ate or decelerate and exclude these from the further analysis.
To model this in the analysis graph, we add a Differences
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component and a Comparison component. The Differences
component calculates the difference between two consecu-
tive measurements in a data channel and the Comparison
component can be configured to produce a list of Boolean
values that state whether the corresponding absolute posi-
tion difference (and thus head velocity) indicates a steady
movement rather than acceleration or deceleration. This list
of Booleans can then be connected to the MinMaxAvg node,
acting as a mask that limits its calculation to these time pe-
riods. Once the connection is made, the MinMaxAvg com-
ponent recalculates the averages and the Results node now
classifies test runs as “good” if their average value is not
greater than 2.99 and as “bad” if it is not less than 6.87.
Compared to the first analysis without the mask, we were
able to increase the separation between good and bad from
3.20 to 3.88.

Figure 4: Using the first data channel to create a mask that
limits the analysis to periods of steady head movement.

Although the average value of the position difference ap-
pears to be well suited to classify these test runs, it com-
pletely ignores any temporal component of the signal. The
plots of bad machines show that defects often do not simply
increase the average value, but show time-dependent anoma-
lies. An example is the data series in Figure 3 bottom, which
reaches greater values near the turning point in the centre.
There are other cases in which values are greater in the sec-
ond half of the measurement or values are generally within
the limits except for a short period with extreme oscilla-
tions. To include the temporal component of the time se-
ries in the analysis, we added a component that performs
a Fourier transformation on a data channel. This computes
its frequency spectrum and can thus detect temporal patterns
in the data. The visualization of the Fourier node shows a
graph of the spectrum. When we compared several spectra,
we noticed that “bad” test runs typically exhibited significant
oscillations at around 20 Hz, which the “good” test runs did
not, and concluded that limiting the average calculation to
a frequency band around 20 Hz might further increase the
robustness of the analysis.

6. Results

With these components in place, we took the system to a
field test at the manufacturer. We started by analysing a set
of 40 test runs that represented the same ball screw scenario
as our test set. Together with a domain expert, we set up an
analysis graph to calculate the average intensity in the 16–32
Hz band. We asked the expert for an opinion on 20 of the test
runs and selected the classification limits in the Results node
accordingly. We then added the remaining 20 test runs and
compared the analysis results with the expert’s assessment.
He agreed with 19 of these automatic classifications. In one
case, however, the analysis marked a test run as “bad” while
the expert considered the plot to show only a minor problem.
Looking at this test run’s spectrum revealed a high intensity
in the 28–40 Hz range, which was not found in the other test
runs. This might indicate a difference in the configuration of
this particular machine or an issue with the ball screw that
is different from the defects seen in the other machines. We
then moved on to a second set of test runs from measure-
ments of another ball screw component moving perpendic-
ular to the first. After adjusting the Results node to account
for the slightly different value range, the graph classified all
of the 100 test runs correctly. One machine, which the expert
expected to fail very soon, was scored at 0.1, another, which
the expert said was having a minor problem, was scored at
0.9. After completing this analysis, we asked for an assess-
ment of the utility of the approach, especially when com-
pared to the current method of mostly manual evaluation.
The expert stated his impression was “rather positive” and
that the prototype “illustrates an interesting way of how this
kind of data can be analysed in the future”. He also said that
“more experiments are necessary to visualize and analyse a
much larger number of measurements” and that he can imag-
ine analysing about 1,000 measurements per year on 10 ma-
chine components using this approach.

7. Conclusion

We presented our prototype implementation of a system for
the visual analysis of diagnostic machine data from the man-
ufacturing domain. We used an analysis graph to visually
represent the analysis steps and allow for an easy and flex-
ible modification of the process during an exploratory data
analysis. The visual representation facilitated the communi-
cation with domain experts, who provided ground truth eval-
uations, explanations on certain data features, and a general
assessment of the utility of the approach. For now, its use-
fulness is limited by the lack of available data, which is cur-
rently only collected when a machine is prepared for ship-
ping or a defect is known to have occurred. The encourag-
ing results achieved even with these comparatively simple
means may have demonstrated the possibilities of modern
visual data analysis and prompt a regular collection of data
for an eventual introduction of visual analytics as a valuable
element of the machine diagnosis process.
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