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Abstract

Simulations of dynamic bi-stable spatial systems usually generate large and complex data that are hard to evaluate.
In this paper, we describe how visual analytics technology can help in analyzing such simulation data. The idea
behind our approach is to utilize concepts of feature-based visualization. Consequently, we consider (1) interactive
specification of meaningful features, (2) analytic extraction and tracking of features as well as detection of events
in the features’ evolution, and (3) visual representation of features with their spatial, temporal, and structural
aspects. Our solution has been used by simulation experts to analyze spatio-temporal distributions of multiple
types of particles in reaction-diffusion simulation data. With the help of the feature-based approach the scientists
were able to understand how the spatial separation of proteins develops over time.

Categories and Subject Descriptors (according to ACM CCS):

Visualization of simulation data

1.3.6 [Computer Graphics]: Miscellaneous—

1. Introduction

Computer simulations of biochemical systems are a power-
ful means to develop an understanding of natural phenom-
ena. In contrast to real-life observations, simulations usually
provide a more cost-effective and easier way to get data of
the phenomena under investigation. However, the generated
data are usually large and complex making it necessary to
provide appropriate tools for their analysis.

Previous work suggests that interactive visual approaches
are useful for supporting the analysis of simulation
data [Dol07, US09]. However, plainly following Tufte’s
“Above all else show the data.” will not suffice when the
data are larger. In such cases it is necessary to provide tools
that enable the user to focus on relevant and digestible sub-
sets of the data.

A classic approach with exactly the rationale to focus
on meaningful parts of the data is feature-based visual-
ization [RPSO1]. Based on a specification of what is rel-
evant, features are automatically extracted from the data
and tracked over time. Higher-level events in the evolution
of features are detected as well. The visual representations
show features and events, rather than the underlying raw
data. The user can concentrate on the information that is im-
portant for the task at hand; less-relevant data are omitted.
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In this work, we utilize concepts of feature-based visual-
ization in order to support the analysis and exploration of
larger simulation data. While there is previous work in vi-
sual analytics that incorporates the one or the other aspect
of the feature-based approach (usually feature specification
and extraction), the aspects that lead to higher-level insight
(i.e., feature tracking and event detection) are considered
only rarely, if at all. Our solution realizes a complete pass
through the pipeline of the feature-based strategy as sug-
gested in [RPSO1]. Where necessary we adapt the classic
methods to meet the requirements of our users.

Next we will take a closer look at this scenario. In Sec-
tion 3 we will describe the internals of our feature-based ap-
proach. A brief discussion concludes our work in Section 4.

2. Background and Related Work

Our studies have been conducted in collaboration with sim-
ulation experts who need effective tools to support the inves-
tigation of simulations of dynamic bi-stable spatial systems.
The researchers simulate such systems using the Next Sub-
volume method [EE04] with ML-Space [BHMU11]. The
model contains two substrate proteins produced by one of
two corresponding enzymes. Each enzyme blocks the pro-
duction capability of the respective other by binding to it.
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The simulation uses mesoscopic methods to model par-
ticle distribution and movement. The 3D simulation space
is partitioned into sufficiently small subvolumes such that a
homogeneous particle distribution can be assumed for each
subvolume. As the simulation progresses, particles diffuse
between subvolumes, and particles partake in reactions (i.e.,
binding or producing) within subvolumes.

The data generated by such simulations contain informa-
tion about the spatial movement of thousand of microscopic
particles and their interaction with each other. The simula-
tion experts are interested in identifying three dimensional
spatial separations of the different types of proteins at given
points in time and in understanding the general dynamic de-
velopment of the spatial distribution of proteins over time.

Previous work by Unger et al. [US09] utilizes multiple
coordinated views and direct volume rendering to visualize
proteins’ spatial distribution. Luboschik et al. [LTB*12] fo-
cus on visualizing trajectories of simulated particles. How-
ever, as these low-level methods basically show each and ev-
ery detail of the data they reach their limits when it comes
to identifying and evaluating key characteristics. What is
needed are higher-level visualizations that focus on giving
a spatio-temporal overview of core features in the simulated
bio-chemical systems.

About a decade ago Reinders et al. [RPSO1] formulated
the theoretical foundations behind an approach that is able
to generate higher-level overviews of large and complex data
sets by reducing the shown information to relevant features.
While Reinders et al. describe a general feature-based vi-
sualization pipeline, concrete applications of it are almost
exclusively related to the visualization of flow data.

A recent survey by Kehrer and Hauser [KH13] indicates
the potential of the feature-based concept. For example,
Anand et al. [ADW12] compute features to guide explo-
ration of multivariate data, Wong et al. [WFA*03] extract
features to speed up computations, and Kandogan [Kan12]
works with annotations derived from statistical analysis. But
often the focus is on feature specification and extraction and
not so much on feature tracking and event detection. An ex-
ample that includes tracking is the work by Rohrdantz et
al. [RHD™* 12], who analyze text document streams.

Here we aim to apply feature-based concepts in the con-
text of visual analytics of simulation data generated by the
Next Subvolume method. In our scenario we need the en-
tire feature-based pipeline, because the evolution of features
over time and events in the features’ evolution are of primary
interest to the simulation experts. To this end, we adapt the
classic feature-based approach and extend it where needed.

3. General Approach

The next paragraphs will describe in more detail how we re-
alized the complete feature-based pipeline to handle spatial
and temporal aspects of the simulation data:

e We show how a meaningful specification of features can
be achieved in the context of our application scenario.

o We extract features from the simulation data and visualize
them as 3D ellipsoids in their spatial frame of reference.

e We track features over time and detect events in their evo-
lution. The resulting tracking graph is visualized to con-
vey the temporal aspects of the data.

e We provide interactive tools such as coordinated selection
across views and dynamic filtering to support the explo-
ration and analysis of the data.

3.1. Feature Specification

A suitable specification is required to be able to extract
meaningful subsets of the simulation data. In the area of flow
visualization, the origin of the feature-based approach, plau-
sible feature definitions exist (e.g., vortices, shock waves,
critical points). In our setting, there are no such a-priori def-
initions of features.

Discussions with our users revealed that they are inter-
ested in features based on protein concentration and related
attributes. Using such features they could determine regions
where certain proteins are dominant, which in turn allows
them to study distribution and spatial separation of the pro-
teins. However, the thresholds of dominant concentrations
vary depending on the simulated system. Therefore, we have
to resort to an interactive and exploratory specification pro-
cedure.

We follow a practical approach that integrates spa-
tial, temporal, and attribute aspects similar to [DGHO3,
GRBM11]. Basic data characteristics (i.e., the frequency dis-
tribution of protein concentration) are conveyed in parallel
aligned histograms. Users can then perform brushing opera-
tions on the histograms to capture the parts of the data they
deem interesting and relevant. This results in a set of logical
rules to be handed over to the feature extraction.

3.2. Feature Extraction and Spatial Visualization

With the help of the logical rules defined in the specification
phase, we can classify the individual subvolumes in the 3D
simulation space. A subvolume may or may not match the
defined rules. Neighboring subvolumes that match identical
rules are merged to form coherent regions or features. This
matching is performed for each time step individually.

In our simulation setting it is not uncommon that proteins
are distributed evenly across the 3D simulation space. Under
such circumstances the classic extraction process generates
large numbers of tiny features. However, the simulation ex-
perts need an overview of the principle characteristics of the
data in the first place. Details of fine-grained features would
distract from the important changes in the distribution of the
extracted features.

Therefore, we further adapt the extraction to our users’
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Figure 1: Ellipsoids representing regions with high concen-
tration of two selected proteins.

needs. We use a combination of connectedness (e.g., shared
point, edge, or face) and Euclidean distance as the criterion
for merging of subvolumes to features. This way, we give
the users the opportunity to steer the size of the extracted
features, where they often favor larger features. Secondly,
the user can explicitly filter out smaller features.

The features that pass the filter are mapped to 3D ellipsoid
glyphs as suggested in [WPSP96]. Each glyph approximates
spatial distribution of merged subvolumes by encoding aver-
age position, volume alignment, and size. The ellipsoids are
placed in a three dimensional representation of the simula-
tion space. Figure 1 shows an example with several features.
Red and blue ellipsoids stand for regions with high concen-
tration of two different proteins (see [EE04] for details).

The ellipsoid representation helps users in evaluating the
spatial distribution of proteins at any selected point in time.
Insight into to the temporal development can be gained by
comparing the features of different time points. However, a
semantic relationship between features across multiple time
points remains hard to detect visually. This task is supported
by feature tracking.

3.3. Feature Tracking and Temporal Visualization

The feature tracking step establishes relationships between
features of consecutive time steps. A feature at time ¢; is re-
lated to another feature at time #;, if the latter describes
the “evolved” version of the former. In addition to one-to-
one relations (i.e., feature continues to exist), there can also
be one-to-many or many-to-one relations when features split
or merge, which might indicate important events in the evo-
lution of the data [SSZC94].

Because the concentrations in our simulated systems
change only slowly, the spatial properties of features in sub-
sequent time steps are very similar. This allows us to use a
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region-based algorithm (e.g., [SW97]) to track features and
detect events.

The result of the tracking algorithm can be interpreted
as a feature graph (or event graph, see [RPSO1, CSJO3,
BWT*11]) in which nodes represent features and edges con-
nect related features. Paths in the graph links features across
multiple time steps, thus establishing a semantic relationship
of features over time. Particular connectivity patterns in the
graph represent events. For instance, a node with one incom-
ing edge and multiple outgoing edges corresponds to a split
event. Although the feature graph abstracts from the spatial
properties of features, it yet crystallizes their temporal evo-
lution.

We visualize the feature graph (1) in a dedicated view that
focuses on temporal aspects and (2) as a novel fusion of spa-
tial, temporal and structural aspects.

To emphasize the temporal character of the feature graph,
we compute a layered drawing based on the Sugiyama lay-
out [STT81]. Each time step is associated with a layer that
contains all features extracted from that time step properly
stacked along the vertical axis. Layers are arranged along the
horizontal axis ordered by time. The visualization uses node
size to encode feature “size” (e.g., volume, avg. concentra-
tion) and small symbols indicate events (i.e., split or merge).
Connected components in the graph are colored with a dis-
tinct hue depending on the dominant type of protein.

As illustrated in Figure 2, one can easily spot bigger fea-
tures, and by comparing connected nodes it is possible to
identify features that grow or shrink. By comparing sizes
and numbers of nodes contained in a layer it is even possible
to estimate which protein occupies more space and whether
there are few bigger spots of higher concentration or several
smaller ones. This helps to identify whether there is a sharp
separation of proteins in larger areas or a more homogeneous
distribution.

But with the abstract structural representation of the track-
ing graph alone it obviously remains difficult to fully grasp
the spatial aspects of features. Therefore, we propose to em-
bed the graph structure directly into the 3D representation
of the feature ellipsoids of a selected time interval. As illus-
trated in Figure 3 such a visualization conveys spatial, tem-
poral, and structural aspects.

To find a suitable compromise to the conflict over explor-
ing overviews with many features of many time steps or ana-
lyzing details of specific aspects for fewer features, the users
must be provided with flexible interaction mechanisms.

3.4. Interaction

Our solution communicates different aspects of the same
data in different views. To assist users in mentally linking
the different aspects, we support interactive selection of fea-
tures in any view and highlight the selected features in all
views.
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Figure 2: Layered drawing of a tracking graph of features
related to high concentration of two selected proteins.

In addition to the standard selection of individual features,
we developed novel selection modes that exploit the struc-
ture of the feature graph. The user can select (1) all features
that are connected through a path in the graph, or (2) all fea-
tures that belong to the same connected component. The dif-
ferent selection modes can be combined to form any subset
of features with just a few clicks. Highlighting the selected
features in all views makes it possible to evaluate features
in their temporal context in one view while assessing their
spatial properties in another view.

Additionally, users can restrict the selection to a specific
time range (e.g., single time step, past, future, or free inter-
val). This temporal filtering is carried out with the help of
the gray frame depicted in Figure 2. To put more visual em-
phasis on the currently focused time step, features of past or
future time steps can be dimmed or omitted altogether (see
Figure 3).

4. Discussion and Conclusion

In this work, we presented visual analytics support for the
investigation of dynamic bi-stable spatial systems.

The analytical component of our solution is largely in-
spired by the classic feature-based strategy, where it is worth
mentioning that we implemented the full pipeline, including
feature specification, feature extraction, feature tracking, and
event detection.

In terms of visual components, we built on well-accepted
representations and improved them in details. Spatial aspects
of the data are visualized by 3D ellipsoids. Temporal aspects
are dealt with by showing (optionally dimmed) ellipsoids
of multiple time steps, and by using a dedicated layout of
the feature graph. This layout also communicates the higher-
level structural aspects and corresponding events of the tem-

Figure 3: Ellipsoids with embedded graph for three con-
secutive time steps show spatial, temporal, and structural
aspects of features. Features of past time steps are dimmed.

poral evolution of features. The embedding of the feature
graph into the 3D ellipsoid display establishes a direct con-
nection between space, time, and structure.

Interaction facilities enable the users to flexibly specify
the features they are interested in and to fine-tune the extrac-
tion process with additional filter thresholds. The user can
select and highlight features in a coordinated way and focus
investigations on specific points or intervals in time.

The developed feature-based visual analytics approach
has been used by simulation experts to observe the spatial
distribution of different types of proteins in a three dimen-
sional space, as well as to analyze the temporal changes of
those distributions. By using different types of feature def-
initions for each observed protein, the major distribution of
particles and the general dynamical behavior could be ob-
served. For example, when features are getting smaller over
time (as shown in Figure 2), there are not as many areas with
high protein concentrations, leading to the impression that
the two types of proteins mix up. This general view helped
in analyzing the conditions under which proteins separate
and the specific simulation parameters that influence the de-
velopment of a system.

Forupto 5- 10° subvolumes, our tool is able to extract
interesting features per time step at interactive rates. Track-
ing the features over 20 time steps is completed within a few
seconds, depending on the number of features to be tracked.

In the future, we plan to combine our high-level feature-
based visualization with suitable low-level representations
of the raw data (e.g., 2D slices [US09] or protein trajecto-
ries [LTB*12]). While features are useful to identify inter-
esting parts of the data, the low-level techniques will help to
analyze the interesting parts in more detail.

(© The Eurographics Association 2013.
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