
EuroRV3: EuroVis Workshop on Reproducibility, Verification, and Validation in Visualization (2013)
P. Rosenthal, R. S. Laramee, M. Kirby, and G. L. Kindlmann (Editors)

A Study Of Discretization Errors In Volume Rendering
Integral Approximations

Tiago Etiene1, Robert M. Kirby1 and Cláudio T. Silva2

1 School of Computing, University of Utah
2 Poly-NYU

Abstract
We present a study of the influence of different approximation schemes on the convergence rate of volume rendering
integral (VRI) numerical approximations. We experimentally evaluate the impact of numerical integration tech-
niques on the rate of convergence to the correct solution of the VRI on a single ray. We report that the discretization
of both the inner and outer integrals have influence on the overall convergence rate. Then, we present results re-
lated to the (traditional) pre-integrated and second-order pre-integrated algorithms. In practice, we observed that
pre-integrated lookup tables provide second and third order convergence rates for the VRI approximation, re-
spectively. Our results also suggest that the convergence rate drops one order of magnitude for the second-order
algorithm when lookup tables are numerically computed using low sample rates. Also, the convergence of both
algorithms drops to linear when the attenuation within ray segment is neglected.

1. Introduction

The volume rendering literature covers many topics related
to approximation errors of the VRI; these include stud-
ies on the bounds on the magnitude of approximation er-
ror [NA92], interpolant accuracy [EHMDM08, MMMY96,
MMMY97], errors due to limited precision [KUMY10], and
others [WM92,WMS98]. These studies are specially impor-
tant in areas where the image quality plays a crucial role,
such as medical imaging [PH02]. In this work, we focus on
the order of accuracy of the numerical solutions of the VRI,
which, to the best of our knowledge, has not been studied.
The order of accuracy is the rate at which a numerical ap-
proximation converges to the correct solution when the num-
ber of samples increases (n!1), or, equivalently, the sam-
ple spacing vanishes (d ! 0). Etiene et al. [EJR⇤13] pro-
vides the theoretical analysis of the discretization errors of
the VRI approximations that we will use here. We measure
how the image quality (errors) changes as a function of n
and the numerical integration techniques used. Our contri-
butions are the following: we study how different numerical
integration techniques affect the errors of the approximated
solution to the VRI using both Newton-Cotes formulas and
pre-integrated volume rendering.

2. Discretization errors

We assume the low albedo emission plus absorption
model [Max95]. The volume rendering integral I is:

I =
Z D

0
C(s(l))t(s(l))exp

✓
�

Z l

0
t(s(l0))dl0

◆
dl,(1)

where D, C(s(l)), t(s(l)), and s(l) are the ray length, the
emitted light, the extinction coefficient, and the scalar value
at position l respectively. In this paper, we assume that t and
C have bounded derivatives of all orders.

In this section, we provide a corollary extension to the
derivation proposed by Etiene et al. [EJR⇤13]. In previous
work, the authors were interested in verification of the ap-
proximations made in traditional volume rendering systems;
with respect to the VRI, they focused on errors derived from
the rectangle method of integration. In this work, we focus
on only the VRI approximation and provide an extension to
the derivations in Etiene et al.: 1) we use Newton-Cotes for-
mulas for the numerical integration, instead of the particular
case of the Riemann summation and 2) we do not discretize
exp(·) in Equation (1). The discretization version of the VRI
is given by [EJR⇤13]:

I =
n�1

Â
i=0

Citid
i�1

’
j=0

(1� t jd)+O(d), (2)

where i is the i-th sample point in the ray, Ci = C(s(id)),
ti = t(s(id)), n is the number of ray samples, and d = D/n.
Equation (2) shows that errors decay linearly with respect to
d when Riemann summation is used for both the inner and
outer integrals. Let us revisit the discretization errors of the
inner integral. Our derivation assumes that the integration
method being used has the following form:

t(l) =
Z l

0
t(l0)dl0 =

i�1

Â
j=0

j j+a

a

Â
k= j

wk(d)tk +O(dp), (3)
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where wp(d) is a linear function of d, l = id, a is the num-
ber of sample points used by the integration method minus
one, and p is the order of accuracy of the integration method
over the interval [0,D], not within a ray segment. This is not
too restrictive, given that many integration methods can be
written in this form, in particular, the Newton-Cotes formu-
las. The notation j j+ a means that a samples should be
skipped due to the integration method used. Henceforth, we
implicitly skip samples and thus omit the use of j j+a for
the sake of notational clarity. We further assume that a⌧ n
because approximation errors should be written as a func-
tion of sample distance d instead of the domain interval D. In
practice, this is a reasonable assumption. We assume that the
inner and outer integrals in Equation (1) can be discretized
using different accuracy degrees. As an example, if Simp-
son’s Rule is used, Equation (3) becomes:

t(l) =
i�1

Â
j=0

✓
d
3

t j +
4d
3

t j+1 +
d
3

t j+2

◆
+O(d4). (4)

Substituting Equation (3) into exp(·) in Equation (1):

T (l) = exp
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k= j

wk(d)tk +O(dp)

!
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= exp(O(dp))
i�1
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k= j

wk(d)tk

!
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The discretization errors can be trivially retrieved for a single
ray segment (i = 1). Because errors accumulate as the ray is
traversed, we focus on the general case i= n. The next step is
to discretize exp(x). In practice, many implementations use
a linear approximation, i.e. exp(x) = 1� x+O(x2), x! 0.
We, on the other hand, assume that no error is introduced at
this step and the exponential is computed exactly. This is not
what is typically done in volume rendering implementation,
but it will suffice to illustrate how the different error sources
affects the overall convergence rate. Thus, we can further
expand the previous equation:

T (l) = (1+O(dp))
n�1

’
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Because wk = O(d), t and its derivatives are bounded, and
a⌧ n, we can write Âa

k= j wk(d)tk = O(d):

T (l) =
n�1

’
j=0

exp
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a
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wk(d)tk

!
+

O(dp)
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exp(O(d)). (10)

Since n = D/d, the second term simplifies to:

O(dp)
n�1

’
j=0

exp(O(d)) = O(dp)exp
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(11)

= O(dp)exp(nO(d)) (12)
= O(dp)O(1) = O(dp). (13)

Plugging Equation (13) into Equation (10):

T (l) =
n�1

’
j=0

exp
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+O(dp) (14)

= T̃ (l)+O(dp), (15)

where T̃ (l) is the approximation of T (l). The discretiza-
tion of the outer integral is also based on Equation (3) but
assuming an error of order O(dq):

I =
n�1

Â
i=0

b

Â
k=i

fk(d)CktkTk +O(dq) (16)

=
n�1

Â
i=0

b

Â
k=i

fk(d)Cktk
�
T̃k +O(dp)

�
+O(dq) (17)

=
n�1

Â
i=0

b

Â
k=i

fk(d)CktkT̃k + (18)

O(dp)
n�1

Â
i=0

b

Â
k=i

fk(d)Cktk +O(dq), (19)

where T̃ (l) = T̃ (id) = T̃i. Since Âb
k=i fk(d)Cktk = O(d):

O(d p)
n�1

Â
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b

Â
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O(d) (20)

= O(dp)nO(d) = O(dp).(21)

Substituting Equation (21) into Equation (19):

I =
n�1

Â
i=0

b

Â
k=i

fk(d)CktkT̃k +O(dp)+O(dq). (22)

Equation (22) states that the dominant error in the numerical
approximation of the VRI is r = min(p,q). This means that
the methods used for discretizing both the inner and outer
integrals have influence on the approximation of the VRI. In
this work, we have ignored the influence of the approxima-
tion errors arising from the discretization of exp(·).

3. Numerical experiments

Table 1 shows the order of accuracy of the VRI discretiza-
tion using several numerical integration techniques. Rows
and columns represent the method used for the discretiza-
tion of the inner and outer integrals, respectively. Each entry
of the table shows the obtained order of accuracy for the
VRI discretization. We use an analytical solution to measure
the difference between the correct and approximated solu-
tion as d! 0 [EJR⇤13]. The experiments shown in this sec-
tion use: D = 1, s(l) = l, C(s) = sin(s2), t(s) = scos(s2),
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and the analytical solution for this case is I = 2�(sin(D2)+
2)exp(�sin(D2)/2). It works as follows: i) we start by sam-
pling a ray segment in the interval [0,1] at n = 5 points and
progressively increases the sampling level by doubling the
number of points (n = 2n� 1 or equivalently d = d/2); ii)
for each level, we assign a scalar value according to s and use
the transfer functions t and C to approximate the VRI; iii) we
then compute the absolute errors between the numerical and
analytical solution. Given the errors for each sampling level,
one can compute how fast the error converges towards zero
(the rate k shown in Table 1). For details on order of accuracy
method, we refer the reader to Babuska and Oden [BO04].

We run our experiments not only with Newton-Cotes for-
mulas, but also with other methods (marked with an ⇤). For
non-Newton-Cotes formulas, the error expansion involves
different bounds on the integrals, and function evaluations at
points non-aligned with the ray samples points. Thus, these
methods do not directly fit into the derivation shown previ-
ously. We use the following methods for the inner integral:

I t = t̃ +O(d): Riemann summation;
II t = t̃ +O(d2): Trapezoidal Rule;

III t = t̃ +O(d4): Simpson’s Rule;
IV t = t̃ +O(1/

p
n): Monte-Carlo Integration;⇤

V t = t̃ +O(d6): Gauss Quadrature (3 points).⇤

And we used the following integrators for the outer integral:

i I = Ĩ +O(d): Riemann summation;
ii I = Ĩ +O(d2): Trapezoidal Rule;

iii I = Ĩ +O(d4): Simpson’s Rule;
iv I = Ĩ +O(d6): Boole.⇤

Table 1 (top) shows the interplay between discretization er-
rors from the inner and outer integral described in our pre-
vious section. As the results suggest, to increase the overall
accuracy of the method, both the inner and outer integral
must be improved. In practice, it is common to increase the
quality of the numerical integration by simply increasing the
number of samples. Our experiments shows how much im-
provement one should expect assuming different degrees of
approximation.

The bottom table presents a slightly different scenario. Al-
though our analysis does not include the discretization of the
exponential term, one can still run convergence tests and ob-
serve outcomes. In this experiment, we use a linear approxi-
mation of the exponential term, exp(x) = 1�x+O(x2), and
evaluate the convergence of the VRI numerical approxima-
tion. The results reveal that the error convergence is approx-
imately linear for all but Monte-Carlo method. By using, on
the other hand, a cubic approximation and Trapezoid method
for the inner and outer integral, we experimentally obtained
O(d2.00) error. Clearly, not only the inner and outer integral
have influence over the VRI approximation error but also the
discretization of exp(·) in Equation (1).

Table 1: The table shows the convergence rates O(dk) (only
k is shown) of the VRI approximation. As a rule of thumb,
high values of k are better. Rows and columns represent the
discretization method used for inner and outer integral re-
spectively. The first letter of the name of the each method
is shown for clarity. The top table does not approximate
exp(x) whereas the bottom table uses a linear approxima-
tion (exp(x) = 1� x+O(x2)).

R i T ii S iii B⇤ iv
R I 1.01 1.00 1.00 1.00

T II 1.00 2.00 1.98 2.00
S III 0.99 1.99 4.02 4.80

M⇤ IV 0.48 0.41 0.42 0.42
G⇤ V 1.00 2.00 4.00 5.54

R i T ii S iii B⇤ iv
R I 1.03 1.00 1.01 1.01

T II 0.99 1.06 0.98 0.98
S III 0.99 1.08 1.01 1.01

M⇤ IV 0.08 0.01 0.00 0.04
G⇤ V 0.99 1.08 1.01 1.01

4. Pre-integrated volume rendering

Pre-integrated volume rendering separates the computation
of the VRI into the numerical integration of C and t, and
the approximation of the scalar field s. As a result, pre-
integration can deal with high-frequencies and generate
high-quality images. The idea is to pre-integrate C and t
between consecutive sample points i and i+1. The precom-
puted values can be retrieved by using a lookup table indexed
by sf and sb, the scalar values at consecutive sample points.
The pre-integrated values Ci and ai are:

ai = exp
✓
�

Z (i+1)d

id
t(s(l))dl

◆
(23)

Ci =
Z (i+1)d

id
C(l)t(l)exp

✓
�

Z l

id
t(l)dl0

◆
dl (24)

In this section, we focus on two ways of pre-integrating
the previous equations: using linear [EKE01] and quadratic
[EHMDM08] interpolation of the scalar field. In our exper-
iments, we use the following configuration for convergence
analysis: D = 1, s(l) = 1.0/(1+ l), t(s) = s, C(s) = 1/s,
I = log(1+D). Our lookup table is composed by the analyt-
ical solutions of ai (using linear and quadratic interpolants)
and Ci (using linear interpolant). No analytical solution is
available for Ci using quadratic interpolant. In this case we
numerically integrate Ci using N = 10 and N = 100 sample
points per ray segments. As in previous section, the conver-
gence is written in terms of the sample distance d = D/n;
Table 2 shows the obtained results. As before, we assume
the numerical integration of a single ray. The best result is
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the expected one: using a quadratic interpolation for both Ci
(N = 100) and ai, a O(d2.99) error is obtained. Linear in-
terpolation provides O(d2) error. Note that these results are
better than the typical VRI discretization. Also, when using
quadratic approximation, the quality of the numerical inte-
gration of Ci affects the convergence rate: N = 100 result
in O(d2.99) whereas N = 10 leads to O(d1.80). Finally, by
neglecting the ray attenuation within the segment, one can
accelerate table computation but at expense of the order of
accuracy (shown in the last row).

We now provide a sketch of the convergence analysis
for the pre-integrated algorithm. This preliminary analysis
provides useful insights to understand the results shown in
Table 2. Let us focus on ai. A linear interpolation of the
scalar field between adjacent sample points provides a 2nd
order error accuracy between consecutive sample points:
s(l) = sf +

l�id
d (sb� sf)+O(d2) = s̃+O(d2). We expand

t using Taylor series: t(s̃+O(d2)) = t(s̃)+O(d2). Thus:

ai = exp
✓
�

Z (i+1)d

id
t(s̃)+O(d2)dl

◆
(25)

= exp
✓
�

Z (i+1)d

id
t(s̃)dl+O(d3)

◆
(26)

= exp
✓
�

Z (i+1)d

id
t(s̃)dl

◆
exp(O(d3)) (27)

= exp
✓
�

Z (i+1)d

id
t(s̃)dl

◆
+O(d3). (28)

The error for the ray segment [id,(i+ 1)d] is O(d3), so we
expect it to drop to O(d2) when integrating it over n = D/d
sample points, which means that ai approximation error is
second-order. Using similar steps, one can show that Ci is
also O(d3) within a segment and we expect the order of of
magnitude to drop as we integrate over the entire ray. The
steps shown above can be used with other interpolants. A
second-order Lagrange polynomial yield O(d3) approxima-
tion error for the scalar field, which matches the results ob-
tained in Table 2.

The convergence rate may also affected by other approx-
imations (see bottom row in Table 2). Engel et al. [EKE01]
suggest a simplification for Ci to improve the performance
of the lookup table computation. The simplification ignores
attenuation within the i-th ray-segment. In practice, the ob-
tained convergence drops to O(d). Mathematically, this is
equivalent to use a constant approximation within [id,(i+
1)d]. By setting exp(x) = 1+O(x) in Equation (24):

Ci =
Z (i+1)d

id
C(l)t(l)

✓
1+O

✓Z l

id
t(l0)dl0

◆◆
dl. (29)

Assuming that t is bounded:

=
Z (i+1)d

id
C(l)t(l)(1+O(d))dl (30)

=
Z (i+1)d

id
C(l)t(l)dl+O(d2). (31)

Table 2: The table shows the convergence rates O(dk) (only
k is shown) of the VRI approximation. As a rule of thumb,
high values of k are better. The first row shows the approx-
imation of the pre-integrated Ci using linear interpolation.
The second and third rows show the results of applying a
second-order approximation (Ci is numerically integrated
using N = 100 and N = 10 sub-intervals respectively). The
last row shows the convergence obtained by ignoring attenu-
ation within the i-th ray segment [EKE01]. The columns rep-
resent the linear and quadratic approximation of the scalar
field for ai.

Lin. Quad.
Lin. 2.00 1.99

Quad. (N=100) 1.98 2.99
Quad. (N=10) 1.98 1.80

Approx. 1.00 1.01

The last equation is the simplification proposed to acceler-
ate the lookup table computation. Again, by integrating the
previous equation over n samples, the error convergence rate
becomes linear. The error produced within the segment is
O(d2), instead of O(d3). Note that the O(d2) error will not
change even when high-order interpolants are used.

5. Conclusion and Future Work

In this work, we have shown the impacts of both the inner
and outer integral over the convergence of the VRI approxi-
mation. Using pre-integrated algorithm, we have shown that
the high convergence rate obtained from the method drops
for the performance optimizations presented.

This work can be expanded in several ways: first, we be-
lieve that a thorough theoretical analysis of pre-integrated
algorithms in needed; more error sources should be added to
the standard discretization of the VRI, including error due
to the scalar field s and exp(·); our work and previous work
assume as input smooth functions when in practice they may
not even be C0. Another potentially interesting research di-
rection is to study the approximation errors of non-smooth
function.
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