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Abstract

We present a fast method for physically-based animation of fluids on adaptive, unstructured meshes. Our algo-

rithm is capable of correctly handling large-scale fluid forces, as well as their interaction with elastic objects.

Our adaptive mesh representation can resolve boundary conditions accurately while maintaining a high level of

efficiency.

Categories and Subject Descriptors (according to ACM
CCS): I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically based mod-
eling; I.3.6 [Computer Graphics]: Methodology and
Techniques—Graphics data structures and data types; I.3.7
[Computer Graphics]: Three-Dimensional Graphics and
Realism—Animation; I.6.8 [Computer Graphics]: Types of
Simulation—Animation;

1. Introduction

Fluid phenomena play important roles in everyday life —
as blowing winds, jet streams, chemical dispersion, granular
flows, ocean waves and currents, and so on. Although these
phenomena are commonplace, they are fascinating, visually
and physically, for the effects they produce. Mathematical
models that describe them properly are nonlinear and lead
to computational simulation processes that are very com-
plex and challenging to perform efficiently; the intricate in-
terplay of essential processes such as convection, diffusion,
turbulence, surface tension, and their interaction with rigid
and deformable solids demands careful attention to stability,
temporal and spatial scales, and domain representations.

In this paper, we present an efficient method for
physically-based animation of fluids that is also suitable for
capturing fluid interaction with elastic solids at large scales
of space. The two-way interaction of fluids and elastic bodies
is unpredictable and visually interesting. We have developed
a simple and efficient method for fluid simulation that also
can capture these large-scale fluid phenomena and interac-
tion in complex scenes.

† e-mail: {sewall,prm,lin}@cs.unc.edu, mitran@amath.unc.edu

Main Results: We investigate the applicability of Residual
Distribution Schemes (RDS) for physically-based animation
of fluids, that may also interact with solids. These schemes
were initially introduced in computational fluid mechanics
by Roe [Roe87] as multidimensional methods that do not re-
quire a Riemann solver. Residual distribution schemes have
not been considered for use in computer graphics, but they
exhibit a number of attractive properties:

• They are inherently parallel. The scheme is organized as
a loop over computational cells. Each computational cell
sends updates to nodal values. The process allows massive
parallelization.

• Users can balance accuracy versus cost. In a basic form
the schemes are first order in space and time. Higher-order
accuracy can be imposed locally or overall by either carry-
ing out multiple iterations over the cells or by higher-order
(and more costly) interpolation of physical variables in a
single cell.

Furthermore, RDS is capable of describing multi-physics
applications. Different physical laws can be defined in each
cell; although we have not exploited this property in this pa-
per, it is an attractive property in our consideration when se-
lecting appropriate mathematical formulations.

In this work, we also use an unstructured, adaptive tetra-
hedral mesh to represent our computational domain and
effectively capture boundary conditions. We demonstrate
our system on large-scale environments under high-energy
forces — a strong wind rocking a bridge, skyscrapers bow-
ing and twisting on a windy day, and a space station deform-
ing in a flow of solar particles.

Organization: The rest of the paper is organized as follows:
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Section 2 presents a brief review of related work, section 3
presents the theory behind RDS and our model in detail, sec-
tion 4 describes how our fluid simulation method is coupled
with deformable body dynamics, followed by a presentation
of results. We discuss some limitations of our approach and
conclude with a discussion of potential future research di-
rections.

2. Previous Work

In this section, we briefly discuss related work in compu-
tational fluid dynamics, residual distribution schemes, and
modeling of deformable solids.

2.1. Computational Fluid Dynamics in Graphics

Realistic animation of fluids has been a topic of consider-
able interest in computer graphics. Among the first work
on visual simulation of fluid dynamics was that of Fos-
ter and Metaxis, in which finite-difference methods were
used to simulate free-surface flows modeled by the full 3D
Navier-Stokes system of equations. Stam addressed the stan-
dard timestep restrictions due to CFL conditions in his pi-
oneering work “Stable Fluids” [Sta99], introducing semi-
Lagrangian advection to the graphics community. This work
has made robust simulation of realistic fluid phenomena pos-
sible and popular. Numerous enhancements, such as parti-
cle level set methods for modeling free surfaces, followed
in [FF01]. We refer the readers to the detailed surveys in
[SSK05,BFMF06].

More recently, there has been an increasing desire to
model fluid-structure interaction to achieve still more com-
plex visual effects. Genevaux et. al. [GHD03] presented im-
pressive results with a method for fluid interacting with ob-
jects represented as particles and Carlson, et. al. [CMT04]
described an efficient and elegant method for modeling
two-way coupling of fluid and rigid bodies using a finite-
difference framework with the Distributed Lagrange Multi-
plier method. Their approach achieves impressive and beau-
tiful results, but is mainly designed to handle the interaction
of fluid with rigid bodies.

Fluid dynamics on irregular grids with finite-volume dis-
cretization was introduced around the same time by several
authors [FOK05, ETK∗07,WBOL07]. Subsequent work by
Klingner et al. [KFCO06] models fluid interaction with mov-
ing boundary conditions by re-meshing the domain at each
time step and projecting the field variables from the old mesh
to the new. Recent work [CGFO06] extends the approach
of Klingner et al. to handle the coupled simulation of fluids
and elastic bodies with an implicit reformulation of the as-
sociated equations, and Batty et. al. [BBB07] augment the
hybrid particle-grid approach of Zhu et. al. [ZB05] with a
variational coupling of rigid body kinetics to the pressure
correction step frequently used to simulate incompressible
fluids.

2.2. Residual Distribution Schemes

Residual distribution schemes (RDS) were presented for the
Euler equations in [Roe87, SDR91]. Their applicability to
hyperbolic systems of partial differential equations has led to
their adoption in the aeronautics community, but RDS have
also been adapted to solve other classes of equations, in-
cluding incompressible Navier-Stokes [vdWDID99]. A thor-
ough review of this area was recently presented by Abgrall
[Abg06]. Despite their popularity in the aeronautics commu-
nity, RDS have hitherto not been investigated for computer
graphics.

2.3. Simulating Elasticity in Graphics

The modeling of deformable bodies have been heavily stud-
ied in computer graphics for more than three decades.
We refer the readers to the recent survey for more detail
[NMK∗05,GM97]. In this paper, we model deformable ob-
jects with linear elasticity using a Galerkin finite-element
formulation.

3. Residual Distribution Schemes in Flow Simulations

We begin this section with an overview of our method, then
describe how the equations of fluid dynamics may be solved
with residual distribution schemes. The derivation of resid-
ual distribution schemes for the Euler equations in three di-
mensions is rather lengthy and mathematically intense; for
clarity’s sake, many details of the derivation are provided in
an Appendix.

We solve Euler’s equations of compressible, inviscid fluid
dynamics with Roe’s residual distribution schemes (RDS)
[Roe87]. These are simple, narrow stencils applied to an
unstructured grid for the solution of hyperbolic systems of
partial differential equations. The residual of the governing
equation is calculated over each simplicial element and dis-
tributed to each adjacent vertex (which we also refer to as
nodes) every time step, then the accumulated residual con-
tributed to each vertex is integrated in time and the procedure
is repeated. The solution for each simplex in the computa-
tional grid is essentially independent for a given time step,
affording a highly parallel solution; this proves to be very
efficient at solving the expensive Euler equations of gas dy-
namics.

3.1. Overview of Fluid Solver

The system described by the Euler equations is a simplifi-
cation of the general Navier-Stokes equations of fluid dy-
namics where the fluid is assumed to be compressible and
inviscid. In terms of conservative variables, the system is as
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follows:

∂ρ

∂t
+∇· (ρu) = 0

∂ρu

∂t
+∇((ρu)u)+∇p= 0

∂ε

∂t
+∇· (u(ε+ p)) = 0

(1)

Here ρ is density, u the velocity vector, p pressure, and ε

the total energy. For simplicity and efficiency, typical visual
simulations of gaseous phenomena, such as air and the trans-
port of smoke, further simplify (1) to be incompressible, i.e.
to assume ρ is constant in space and time and introduce the
zero-divergence condition ∇ · u = 0 often used for models
of water. While the resulting inviscid, incompressible sys-
tem does not correctly model many physical phenomena, for
low levels of energy, noticeable compression is unlikely to
occur and the results are physically plausible.

The introduction of the divergence-free condition has far-
reaching ramifications on the character of the system and
how it can be efficiently solved. The Euler equations (1)
form a strictly hyperbolic system of PDEs, while the im-
position of the divergence-free condition adds an elliptical
character to the system.

Put simply, the unmodified Euler equations model the
propagation of perturbations at finite speeds (the speed of
sound, to be specific) — we are guaranteed that perturba-
tions will be local in a given time interval. Perturbations in
the system with the zero-divergence condition travel with in-
finite speed; a change in one part of the spatial domain has
instantaneously affect all other parts of the domain.

The Euler equations (1) are naturally amenable to local
solution stencils, while the zero-divergence condition man-
dates the global pressure projection step used in many con-
temporary fluid simulation methods. Residual Distribution
Schemes (RDS) were developed by Roe [Roe87] to take ad-
vantage of the hyperbolic character of the Euler equations;
independent stencils are applied at each simplex at each time
step. The spatial dependency of the method is minimal and
it is well-suited to parallel computation.

3.2. Residual Distribution Schemes

RDS apply to conservation laws of the form

qt +∇·F(q) = 0 (2)

with unknown vector q and vector flux function F. Systems
formulated in this matter are simple to understand; the con-
served unknowns’ evolution in time is described completely
by the movement (flux) of the unknowns in space.

The discretization of (2) used in RDS takes the form

q
n+1
i = qni +

∆t

Vi
∑
T

βiTΦT (3)

for a simplex T , where qni is the solution vector at node i at

time n, ∆t the timestep used, Vi the dual volume associated
with node i, ΦT the vector of fluctuation (or residual) values
of the equations over T , and βiT weights specifying how ΦT
is distributed to the nodes of T .

The fluctuation ΦT is given by

ΦT =−
Z

VT

∇·F(q)dV =−
I

ST

F(q) ·ndS (4)

over simplex T ’s volume VT and surface ST . Since q varies
linearly over each simplex T , (4) simplifies to

ΦT =−VT
∂F

∂q
·∇q=−∑

i∈T

Kiqi (5)

with

Ki =
1

2D

∂F

∂q
·ni =

1

2D
A ·ni (6)

where D is the spatial dimension of the system, and ni is
the inward scaled normal of the face opposite node i in the
simplex. The matrix A represents a problem-specific Jaco-
bian of the quasilinear form of the equations; this concept is
explained in greater detail in [Abg06].

3.3. The system N-scheme

The vectors βi of coefficients describe how the fluctuation
ΦT is distributed per simplex; specific variants of RDS have
different procedures for computing these coefficients. We
use the N-scheme (N for ‘narrow’), which is the simplest
such scheme that enforces upwinding, preserves linearity,
and is monotonic. For a system, it is as follows:

βiT =
γiT
ΦT
, ∑
j∈T

γ
j
T = ΦT , (7)

(

∑
j∈T

K
+
j

)

γiT =K+
i ∑
j∈T

[

K
−
j

(

q
n
i −qnj

)]

. (8)

Here K+ and K− are products of the diagonalization of K

K = RΛR−1 = R(Λ+ +Λ−)R−1 =K+ +K− (9)

with Λ+ containing the positive eigenvalues of K and Λ−

the negative.

3.4. Discretization of the Euler equations in 3D

We reform the Euler equations (1) as a conservation law (2).

q=
[

ρ l m n ε
]T

(10)

l = ρu, m= ρv, n= ρw (11)

(u, v, w) are the components of velocity. In 3D, Eqn. (2) has
the form qt + fx(q)+gy(qz)+hz(q) = 0. The flux functions
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for the Euler equations f(q), g(q), h(q) are defined as:

f =

















l

p+ l2/ρ

lm/ρ

l n/ρ
l(p+ ε)

ρ

















g=

















m

ml/ρ

p+m2/ρ

mn/ρ
m(p+ ε)

ρ

















h=

















n

nl/ρ

nm/ρ

p+n2/ρ
n(p+ ε)

ρ

















(12)

3.4.1. Similarity Transformations

The eigenvectors of the Euler equations describe how quan-
tities of unknowns are propagated spatially, while the corre-
sponding eigenvalues describe the speed at which this hap-
pens. Since the Euler equations are hyperbolic, we are guar-
anteed that all of the eigenvalues will be real and distinct.

We would like analytical expressions of the fluid eigen-
modes; an exact solution to the Riemann problem at each
cell guarantees a genuinely multidimensional solution that
preserves the character of the original equations. Unfortu-
nately, these are difficult to obtain from the Euler equations
in conservation form (1). The eigenmodes are more readily
obtained from the primitive form of the equations, and we
can transform from the conservative to the primitive vari-
ables Q = (ρ,u,v,w, p)T of the Euler equations through the
differential relationship:

∂q

∂Q
=M,

∂Q

∂q
=M−1 (13)

(M is given in Eqn. (28) in Appendix A) The primitive vari-
able equations are of the form

Qt +FQ∇Q= 0 (14)

so we obtain the relationship between Jacobians

FQ =M−1
FqM, Fq =MFQM

−1 (15)

The system is hyperbolic, so we assume wave solutions of
the form

Q= Rexp i(k ·x−λt) (16)

with eigenvectors k, eigenvalues λ, and R the right eigen-
vector matrix from Eqn. (9). This leads to the eigenproblem

(

FQk
)

R =
[

M
−1(Fqk)M

]

R = λR (17)

3.4.2. Primitive Variable Eigensystem

We now seek the eigensystem for the matrix K = FQk,

K =













V ·k kxρ kyρ kzρ 0
0 V ·k 0 0 kx/ρ

0 0 V ·k 0 ky/ρ

0 0 0 V ·k kz/ρ

0 kxa kya kza V ·k













(18)

with V= 〈u,v,w〉.

The matrix varies over a computational simplex as a re-
sult of the linear variation of the flow variables; to estab-
lish a single set of eigenmodes upon which to base an up-
winding procedure (as in section 3.3), we must choose an
appropriate reference state for the flow variables. It can be
shown [Roe87] that the Roe average is the proper choice to
ensure discrete conservation, a property crucial to shock cap-
turing and solution accuracy. In the following, assume that
all flow variables are evaluated at the Roe average (given in
Eqn (34) of Appendix A). The eigenvalues are

λ+ = (v ·k+ c) > λ = v ·k> (v ·k− c) = λ− (19)

with λ having an algebraic multiplicity of 3, and the right
eigenvector matrix is

R =













ρ 1 0 0 ρ

kxc 0 −ky 0 −kxc
kyc 0 kx −kz −kyc
kzc 0 0 ky −kzc
c2ρ 0 0 0 c2ρ













(20)

3.4.3. K-Matrix Decomposition

Let ni be the unit normal vector to face i pointing into the
simplex. We seek to identify which of the eigenmodes com-
puted above are inflowing and which are outflowing. This
step is needed for proper upwinding of the scheme. The four
potential cases are enumerated in Appendix A

3.5. Solution Procedure

Each simplex T has four nodes, and a vector of unknowns for
the conservative Euler equations q is stored at each of these
nodes. The fluctuation over a simplex T at a given time step
is calculated and split according to the pseudocode given in
Figure 1.

EULERRDS(T )

1 for each node i ∈ INCIDENTNODES(T )
2 do� As in section (3.4.1)
3 Qi← PRIMITIVEVARIABLES(qi)
4 � Roe parametrization
5 Zi←

√
ρi 〈1,ui,vi,wi,Hi〉

6 � Compute Roe average (See Appendix A)

7 Z̄← ∑i Z̄i
4

8 for each node i ∈ INCIDENTNODES(T )
9 do� As in eq. (19)
10 Λi← EIGENVALUES(z̄, ni)
11 � As in section 3.4.3
12 (K+

i , K−
i )← KMATRIXDECOMP(Λi z̄, ni)

13 � Compute reference inflow state Q̄
14 Q̄← (∑iK

−
i )−1(∑iK

−
i Qi)

15 Φi←K+
i (Qi− Q̄)

16 �M from Appendix Eq. (28)
17 return MΦi

Figure 1: RDS for the Euler equations
c© The Eurographics Association 2007.

50



J. Sewall, P. Mecklenburg, S. Mitran, & M. Lin / Fast Fluid Simulation Using Residual Distribution Schemes

3.6. Parallel Application of RDS

Residual distribution schemes are straightforward to paral-
lelize; the pseudocode in Figure 2 describes the procedure
for a full solve of the Euler equations in parallel (each for
statement can be applied in parallel over its iterates).

PARALELLFLUIDSOLVE()

1 for each node n ∈ LeafFluidNodes
2 do CLEARACCUMULATOR(n)
3 � implicit barrier
4 for each simplex T ∈ LeafFluidCells
5 do NodeUpdates← EULERRDS(T )
6 for each node n ∈ INCIDENTNODES(T )
7 do ATOMICINC(n,NodeUpdates[n])
8 � implicit barrier
9 for each node n ∈ LeafFluidNodes
10 do TIMEINTEGRATE(n)

Figure 2: Parallel procedure for solving the Euler equations

The subroutines in Figure 2 are defined as follows.

CLEARACCUMULATOR(n) Clears the q accumulator at node n
EULERRDS(T ) Computes the fluctuation over simplex T ac-
cording to Figure 1; returns q updates for T adjacent nodes.
INCIDENTNODES(T ) as in sec. 3.5
ATOMICINC(n,NodeUpdate) Atomically adds NodeUpdate to
the accumulator at node n
TIMEINTEGRATE(n) Multiplies the quantity in the accumulator
of node n by ∆t/Vn and adds it to n’s solution vector

4. Fluid-Solid Interaction

One of the complex and interesting fluid phenomena is inter-
action with deformable solids. To test the suitability of our
simulation method in modeling such visual effects, we will
next describe a preliminary system that uses our fluid simu-
lation method based on residual distribution schemes (RDS)
and couples it together with the commonly used finite ele-
ment methods (FEM) for modeling deformable bodies.

4.1. Overview

Our system is composed of several modules working in uni-
son: a fluid solver based on RDS, an elastic solver using a
standard FEM formulation, mesh management utilities, and
other numerical methods and geometric operations binding
these components together. Figure 3 provides an overview of
our system and the interaction between these components.

We solve Euler’s equations of compressible, inviscid fluid
dynamics with Roe’s residual distribution schemes [Roe87]
as described above. Our elastic solver is a Galerkin formu-
lation of the equations of linear elasticity commonly used
in computer graphics; the solution is implicitly integrated in
time for stability and the method yields a sparse, symmetric,
positive-definite system of equations efficiently handled by
iterative solvers.

Figure 3: The structure of our system

We use adaptive mesh refinement to focus computational
resources on the areas of the simulation most interesting
from a standpoint of both visual and dynamic effects. These
modules are combined together with a facility for the cou-
pling of the two dynamical systems and an effective method
for the updating movement of the computational domain.

4.2. Elasticity Simulation

The elastic bodies in our system are modeled with the equa-
tions of linear elasticity; we use a Galerkin finite element
method (FEM) formulation as described in [NMK∗05] to
build the stiffness matrix K for elastic bodies at rest state;
this is used to construct the following system for the dis-
placement ∆x of each node in the body:

M∆ẍ+K∆x= F (21)

where M is a diagonal matrix of the mass associated with
the dual volume around each node, K the linear elastic stiff-
ness matrix as above, and F the forces acting on each node.
We employ a backward Euler temporal discretization as per
[BW98] to obtain:

(

M+∆t2K
)

∆v= ∆tFext−∆tK∆x−∆t2K∆vn (22)

∆vn+1 = vn+∆v (23)

∆xn+1 = ∆xn+∆tvn+1 (24)

The left-hand side of (22) is a symmetric, positive-definite
matrix; its sparsity and block structure is such that we are
able to store each compressed row with the associated elastic
domain node. We use the conjugate gradient method [She94]
to solve for the velocity vn+1 and apply (23, 24) for the re-
sulting displacement.

4.3. Fluid-Structure Coupling

As mentioned previously, we split the solution of our system
in time, advancing the fluid in time, then the elasticity. Be-
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tween these separate solution stages, we propagate the nec-
essary information across domains in the form of boundary
conditions. This method is considerably simpler to formulate
and solve than an implicitly coupled system as in [CGFO06]
and allows the individual solvers to be changed indepen-
dently.

The force due to pressure on a given surface S is simply:

FS =
Z

S
pndS (25)

where p is the pressure along the surface, and n the surface
normal oriented toward the interior of the body under pres-
sure. In our system, Eqn. 25 is integrated over the dual area
on the surface of the fluid-solid interface surrounding each
node. For simplicity’s sake, we assume that the pressure p
is constant over this area; the formula for the force fi due to
the pressure on node i with dual surface area Ai and incident
faces enumerated by j is then:

Fi = Aini
1

| j|∑
j

p j (26)

The effect of a solid body’s motion on the surrounding fluid
is obtained by simply setting the fluid velocity of each node
on the fluid-structure boundary to be the velocity of the body
at the point.

4.4. Adaptive, Semi-Regular Simplicial Meshes

We use unstructured simplicial meshes to represent the fluid
and elastic domains and have developed a robust and ef-
ficient method for managing the geometric and simulation
data used in the numerical methods.

We provide a coarse initial mesh with minimal bound-
ary information and subdivide the mesh as needed to effi-
ciently and accurately represent the solution; the refinement
criteria for this process can range from geometric predicates
to more sophisticated, domain-specific approaches based on
the solution state during simulation. Currently, we only re-
fine cells to enforce volume constraints, but we are investi-
gating schemes based on solution configurations.

4.4.1. Splitting Scheme

For a given simplex, our subdivision scheme uses the mid-
points of each edge along with the original vertices as the
vertices of the child simplices. For triangles, we produce

4 similar triangles of 14
th
the area of the original, and for

tetrahedra, we produce 4 similar tetrahedra incident on each
of the original vertices, leaving an octahedron with the new
edge-midpoint vertices as its vertices. We further divide this
octahedron into 4 tetrahedrons; each of these children are
1
8
th
the volume of their parent tetrahedron.

4.4.2. Representation

Our adaptive mesh cannot guarantee the order in which the
simplices and vertices (which we call cells and nodes respec-
tively, to emphasize their role in the solution of a physical

system) are created. Thus, for efficiency’s sake, we explic-
itly track each face and edge in addition to cells and nodes
to facilitate the quick location of child nodes and incident
faces, edges, and cells. An additional advantage of this prac-
tice is that we are able to efficiently and directly operate on
each of these computational elements without having to lo-
cate them by searching incidence information and deal with
the inevitable multiplicity of reference.

4.5. Mesh movement

One difficulty in coupling fluid and solid dynamics lies with
the way they are typically formulated; the most popular
equations describing the behavior of fluids are Eulerian for-
mulations, while elasticity is most naturally described with a
Lagrangian formulation. If not carefully handled, difficulty
will arise in solving the fluid equations as cells are inverted
and become co-located by the changing boundary condi-
tions.

To reconcile these opposing models, we adapt our fluid
mesh to capture the moving boundary conditions due to the
motion of solid bodies. The motion of the actual fluid-solid
interface is completely described by the displacements ∆x

of the solid body; we are left to determine how to best move
the internal fluid nodes to maintain correct meshes. This step
is achieved by treating the mesh itself as an elastic body and
solving for the node displacements of the internal fluid nodes
with a steady formulation of elasticity. This can be obtained
by solving the simple system:

K∆x= 0 (27)

The displacements of the solid body (see 4.2) and the do-
main boundaries provide Dirichlet-type boundary conditions
for (27), yielding a system that can be efficiently solved via
the method of conjugate gradients. Figure 4 demonstrates
our mesh movement scheme for a simple 2D configuration.
There are situations where this approach does not work well.
In particular, topological changes in the fluid domain would
require more sophisticated mesh management; one very vi-
able fix for this problem would be to re-mesh the domain
whenever deformations become severe enough to invaldidate
tetrahedra, as in [KFCO06].

Figure 4: An elastic body and enveloping mesh at rest (on

left) and after deformation/mesh movement (right)
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5. Implementation and Results

Our mesh management and simulation code was developed
in C++ and the multi-threaded components parallellized
with OpenMP). The tetrahedral meshes were generated us-
ing the Tetgen package (see [Si04]). We performed our mod-
eling and animation with Blender, and rendering was per-
formed with a combination of Blender and the open-source
RenderMan-like renderer, Pixie.

5.1. Benchmarks and Performance

We have tested and applied our method to a number of chal-
lenging problems with applications in computer animation:
(a) air current speeding past an iconic bridge, rocking it back
and forth, (b) wind buffeting a skyscraper, causing it to bend
and twist, and (c) a flow of solar particles passing over a
space station suspended high above the Earth. The numbers
of tetrahedra listed are for the input meshes given to the
solver.

• Bridge: The first benchmark scene is shown on the cover page in
Fig. A. the bridge and the fluid domain are composed of 31,478
tetrhedral elements.

• Skyscrapers: In the skyscrapers benchmark as shown in Fig. A,
the buildings and the fluid domain are composed of 9,088 tetra-
hedral elements.

• Space Station: For the space station benchmark in Fig. 8, the
space station and the fluid domain are composed of 25,129 tetra-
hedral elements.

Scene # cells secs/frame

Fluid Solid Total
Bridge 31k 0.6 5.73 6.36
Skyscrapers 9k 0.15 4.77 4.92
Space station 25k 0.46 14.53 14.99

Table 1: Runtime performance for each benchmark.

Table 1 shows the runtime performance achieved by our
prototype implementation on the three benchmarks. The tim-
ings were collected on a Pentium D 3.4GHz processor with
2 GB of RAM. Our fluid simulation using RDS runs in real
time. The dominating computational cost in our simulator is
due to FEM simulation of deformable solids.

5.2. Scaling

To demonstrate the scalability of RDS, we have imple-
mented our algorithm (as described in Figure 2) with the
parallization facilities provided by OpenMP. This model of
parallel computing is well-suited to the multi-core, shared-
memory architectures commonly available on desktop work-
stations and laptops. It will also be directly applicable to
many-core architectures. We achieve near-linear scaling for
up to 8 processors on the skyscraper model (see Figure 5).

Figure 5: Linear performance scaling of RDS for the Euler

eqs. for the skyscraper scene on an SGI Altix cluster.

6. Summary and Conclusion

We have introduced residual distribution schemes (RDS) to
computer graphics as method for efficiently simulating high-
energy fluids on modern architectures. We demonstrate that
RDS are computationally attractive in several regards; they
can effectively model multi-physics phenomena, such as
two-way coupling between fluids and solids. It offers a nat-
ural balance between efficiency and accuracy. Our method
also takes advantage of adaptive mesh refinement to focus
computational efforts on areas of visual and physical signif-
icance. Therefore, it is able to deform the computational do-
main and avoid inaccuracies due to inverted computational
cells.

6.1. Limitations

Our method also has a few limitations. Our mesh adaptation
scheme assumes limited solid movement and would require
re-meshing to handle arbitrary object motion (in particular,
topological changes to the computational volume). The N-
type residual distribution scheme we use is linear and thus
suffers from diffusion; this could be addressed with a non-
linear scheme such as Low-Diffusion Advection (LDA) and
Positive-Streamwise Invariant (PSI) schemes (see [Abg06]).

6.2. Future Work

There are a number of directions for our future work. Our
mesh deformation and adaptation methods could benefit
from some refinement. We would like to investigate mul-
tiple splitting schemes and more advanced criteria for per-
forming the splits. We would also like to investigate alterna-
tives to remeshing gross deformations in the computational
mesh. There are many options for future work with resid-
ual distribution schemes. We would like to combine them
with a Poisson solver to allow for the simulation of incom-
pressible fluid. We would like to investigate higher-order and
less diffusive distribution schemes, such as the LDA and PSI
methods described in the aeronautics community. We are
currently investigating the potential application of RDS to
the equations of elasticity for a more integrated approach to
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fluid-solid interaction, and we would like to investigate some
different time integration schemes for RDS as well.

As we have demonstrated, RDS is well-suited to comput-
ing the solution to problems of compressible fluid dynamics
and are suitable for faithful shock capturing in solutions; the
appeal of efficiently computed, accurate shockwaves for vi-
sual effects is clearly great and we intend to investigate ex-
tension of our method to supersonic, shock-forming flows.

Due to the inherent parallelism of RDS, we also plan to
implement parts of our algorithm on GPUs and future many-
core architectures, as well as other new commodity paral-
lel architectures, to exploit RDS’ computational properties
and further improve its overall performance. We hope to
achieve at one to two orders of performance gain, making
this method interactive on desktop workstations or mobile
platforms.
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