Eurographics Workshop on Natural Phenomena (2006)
E. Galin, N. Chiba (Editors)

Artist-Directable Real-Time Rain Rendering in City
Environments

Natalya Tatarchuk and John Isidoro*

ATT Research

Figure 1. Photorealistic rain rendering using our system on the left versus the same complex scene without the rain. Note the multitude of
effects in the rainy environment, including rainfall rendering, dripping raindrops, glow, streaky reflections and such details as the tire treads
in the street puddles.

Abstract

Photorealistic rain greatly enhances the scenes of outdoor reality, with applications including computer games and
motion pictures. Rain is a complex atmospheric natural phenomenon. It consists of numerous interacting visual
effects. We present a comprehensive real-time system for the realistic rendering of rain effects in complex envi-
ronments in real-time. Our system is intuitive, flexible and provides a high degree of artistic control for achieving
the desired look. We describe a number of novel GPU-based algorithms for rendering the individual components
of rain effects, such as a hybrid system of an image-space approach for rainfall and the particle-based effects for
dripping raindrops and splashes; water surface simulation for ripples; animation and rendering of water droplets
trickling down on transparent glass panes; view-dependent warped reflections and a number of additional effects.
All our techniques respond dynamically and correctly to the environment lighting and viewpoint changes as well
as the atmospheric illumination due to lightning. Our effects can be rendered at interactive rates on consumer
graphics hardware and can be easily integrated into existing game and interactive application pipelines or offline
rendering.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Color, shading, shadow-
ing, and texture

1. Introduction

Creating a faithful representation of rain in complex nat-
ural environments is a non-trivial problem. The challenge

T natasha@ati.com
i jisidoro@ati.com

(© The Eurographics Association 2006.

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org

62 N. Tatarchuk & J. Isidoro / Artist-Directable Real-Time Rain Rendering

stems not only from the visual complexity and diversity of
the rain components and scene objects, but also from the
huge amount of small details that should be modelled to
obtain realistic visual effects and physically plausible sim-
ulation. However, rain rendering greatly enhances outdoor
scenes and is an important problem for computer graphics,
with many applications in computer games and motion pic-
tures. Filming rain scenes involves a significant effort and
cost due to complicated setup. This task becomes even more
challenging when trying to create photorealistic rendering of
rain in rich environments at interactive rates.

Some recent games which incorporate rain rendering
use simplistic approaches, including rendering stretched,
blended particles to simulate falling raindrops or using
blended animated textures (as in [WWO04]) to render pre-
cipitation. These methods fail to create a truly convincing
and interesting rain impression. Furthermore, games often
limit using only one or two individual rain effects (the rain
particles or the scrolling textures and perhaps a CPU-based
water puddle rendering) to simulate the impression of rainy
environment. This results in an unrealistic rendering with the
rain not reacting accurately to scene illumination, such as
lightning or spotlights.

Rain is an extremely complex atmospheric natural phe-
nomenon. It consists of numerous visual effects interact-
ing together. Although research has been done in the area
of rendering some individual components (rain streaks
in [GNO6], [WWO04], or water droplets on surfaces in
[KIY99], [WMTO05]), there exists a gap for creating a com-
plete system for rain rendering in complex environments.
Simply adding several individual components is insufficient
as the discerning viewer’s eye quickly notices the missing el-
ements. For a truly convincing illusion of rain environment
we must present a coherent system supporting the full gamut
of the natural phenomena associated with rain.

There is a strong need for inexpensive and streamlined al-
gorithms capable of photorealistic rendering of rainfall and
rain-related effects in games and interactive applications.
Photorealistic rain rendering requires convincing display of
rainfall and raindrops, various dynamic water-related effects
for puddles and streaming water, and a variety of scene ef-
fects for atmospheric effects and wet materials. Our main
contribution is an intuitive, comprehensive and flexible sys-
tem for photorealistic rendering of rain effects in real-time
in a complex environment. We provide a high degree of
artistic control for achieving the desired final look. To our
knowledge, this is the first complete system of this kind. We
present a number of novel algorithms for rendering the indi-
vidual components of rain, including the following:

e A new post-processing composite rainfall algorithm ex-
hibiting raindrop shape perturbations and dynamic re-
sponse to varied illumination conditions and viewpoints

e Simulation and rendering of raindrops dripping from var-
ious objects in the scene

e Techniques for raindrop splashes and splatters on solid
objects and in water puddles

e An engine-driven lightning illumination system for simu-
lating lightning flashes

e Halos around light sources and objects due to light scat-
tering in rainy mist

e A novel effect for rendering view-dependent warped re-
flections on wet surface materials and puddles using re-
flection impostors

e Atmospheric light attenuation

e GPU-based water surface simulation for puddle ripples
due to raindrop splashes

e A novel approach for the simulation and rendering of wa-
ter droplets on glass surfaces on the GPU, with wetting,
droplet merging and separation phenomena

e A large number of supporting effects resulting in in-
creased scene realism

Our algorithms provide a variety of artist-directable con-

trols and respect the rules of physics for simulating rain-

fall. All our techniques utilize a unified HDR illumination

model to allow the rain to respond dynamically and cor-

rectly to the environment lighting and viewpoint changes as

well as the atmospheric effects (such as lightning). The il-

lumination system also provides integrated support for dy-

namic soft shadows. Our effects can be rendered at interac-

tive rates on consumer graphics hardware and can be eas-

ily integrated into existing game and interactive application

pipelines or offline rendering to enhance the scene realism.

We have tested our system extensively and successfully in

a complex environment, representative of future-generation

games.

2. Related work

Rain effects have been examined in the context of at-
mospheric sciences ([WC75] and [Mas75]), as well as in
the field of computer vision ([NNO3], [GNO04]). However, at
the moment only a few approaches exist for creating realistic
rainfall rendering that dynamically responds to the lighting
environment and camera movement.

Constant brightness rain strokes are generated in [SWO03]
for simulation of rain in videos. This approach fails to
represent dynamic illumination and camera movement. In
[WWO04] rain and snow precipitation was modelled with sev-
eral interpolated hand-drawn textures with constant bright-
ness mapped on a double-cone which is dynamically aligned
to match the camera orientation in real-time. A detailed
photometric variation model for modelling rain streak illu-
mination is described in [GNO06], accounting for raindrop
oscillations and motion parallax. Rainfall is rendered with
a particle system using a large precomputed rain streak tex-
ture database to interpolate the streak appearance. Although
this offline approach exhibits dynamic response to varying
lighting conditions and camera movement, it does not con-
sider the illumination due to lightning and the effects of at-
mospheric scattering and light attenuation.

(© The Eurographics Association 2006.

N. Tatarchuk & J. Isidoro / Artist-Directable Real-Time Rain Rendering 63

Cinematographic rendering of rain uses various ap-
proaches to create visually appealing results. In The Matrix
Revolutions ([BSS*04]), instanced 3D rod-like shapes for
water drops and hand-animated raindrop splash objects were
used for rendering rain effects. Commercial software such
as Maya(R) and 3D Studio Max(R) include offline systems
for rain rendering based on particle systems. These methods
generate detailed physics-based movement and accurate vi-
sual representation at the price of prohibitive computational
speeds. In Pixar’s A Bug’s Life, probability distribution func-
tions are used to guide the fluid simulation of stylized rain-
drop splashes ([HerO1]). The raindrops were rendered with a
particle system, using implicit surfaces to represent individ-
ual particles. This is a computationally expensive approach
and thus poses difficulties in interactive applications.

Atmospheric light scattering in the context of rain precip-
itation due to weather conditions is analyzed in [NNO3].
The authors show that the appearance of glows around the
light sources is due to multiple scattering effects. Scattering
effects due to clouds and atmospheric particles illuminated
by lightning were described in [YYTO1] and [ENN9O]. IlI-
lumination due to lightning is important for the realism of
inclement weather rendering. In the scope of our system, we
only focus on approximating the atmospheric scattering and
modelling the illumination due to lightning flashes for the
scene.

In the field of computer graphics there exists a plethora
of approaches for fluid simulation and rendering, based on
computational fluid dynamics ([FM96], [Sta99], [Har03]).
However, due to high computational complexity these ap-
proaches are less practical for most interactive applications.
Many applications use CPU-based water displacement via a
dynamically displaced vertex mesh (as in [GomO0]).

Animation of water droplets with the use of particle sys-
tems in a discrete environment driving the droplet move-
ment was described in [KIY99] using an offline implemen-
tation. Environment mapping was used to model droplet re-
flection and transparency. Discrete surface representation al-
lowed easy integration of obstacles for droplet movement
simulation (such as windshield wipers) and provided sup-
port for such effects as merging and wetting. Flowing water
droplets movement is modelled in [FHP99] with a mass-
spring system simulating surface tension and volume conser-
vation constraints. An offline physically-based method for
droplet simulation is presented in [WMTO05], using level set
distance field representing the surface of the water droplet
to simulate a variety of physically accurate small-scale fluid
phenomena.

The remainder of this paper is organized as follows. Rain
precipitation effects and raindrop splashes are described in
section 3. Water puddles and droplet simulation and render-
ing are covered in sections 4 and 5. We present the details of
scene rendering effects, such as lightning illumination, re-

(© The Eurographics Association 2006.

Figure 2: Rendering rainfall and raindrops with splashes

flections, and atmospheric effects in section 6. The results
and conclusions are given in sections 7 and 8.

3. Rendering rain precipitation

Precipitation due to rain consists of spatially distributed wa-
ter drops falling at high velocity, refracting and reflecting
the environment around it. As the raindrops fall through the
scene, they create the perception of motion blur and paral-
lax and generate ripples and splashes in puddles. We de-
veloped a hybrid system of an image-space approach for
the rainfall and particle-based effects for dripping raindrops
and splashes. We render individual raindrop shape varia-
tion and motion parallax due to different depth for raindrop
movement as well as dynamic raindrop illumination. Unlike
purely particle-based approaches, the image-based rainfall
precipitation effect does not incur extra performance over-
head for modelling heavy versus light precipitation.

3.1. Rendering multiple layers of rain with a
post-processing composite effect

Our image-space rainfall effect simulates multiple layers of
falling raindrops in a single compositing pass over the ren-
dered scene. This method differs from most previous ap-
proaches in rendering the rainfall without the use of a par-
ticle system with a large number of particles or rain tex-
tures. We provide a set of artist controls for the rain di-
rection, velocity, and strength. The raindrop rendering re-
ceives dynamically-updated parameters such as the lightning
brightness and direction from the lightning system to allow
correct illumination resulting from lightning strikes.

Creating rainfall with multiple layers of rain. Com-

64 N. Tatarchuk & J. Isidoro / Artist-Directable Real-Time Rain Rendering

puter vision analysis of rain models ([GNO04]) and video rain
synthesis ([SWO03]) shows that one cannot easily recognize
rainfall from a single static frame. However, rain is easily
noticeable in a dynamic simulation or a video. Perceptual
analysis of rain video shows that the individual raindrop mo-
tion cannot be tracked by human perception accurately due
to swift movement and density of raindrops. This allows us
to assume temporal independence of rain frames. However,
our empirical experiments showed that purely random move-
ment of raindrops does not yield satisfactory results and gen-
erates excessive visual noise. Therefore to simulate strong
rainfall, we simultaneously use the concepts of individual
raindrop rendering and the principles of stochastic distribu-
tion for simulation of dynamic textures (as in [DCWSO03]).

We render a composite rainfall layer prior to the final post-
processing of the rendered scene. We must consider the prac-
tical performance implications of the rainfall layer as a full-
screen pass and design the algorithm to yield pleasing visual
results without expensive computations.

The first challenge lies in minimizing the repeating pat-
terns that are inevitable when using a single static texture to
model dynamic textured patterns. Initial raindrop distribu-
tion in the full-screen pass is simulated with an animated 8
bit raindrop placement texture. Artists can specify the rain
direction and speed in world-space to simulate varied rain-
fall strength. At every time step we determine the raindrop
clip space position (x;,y;) for every pixel in the composite
pass. Using an artist-specified rain direction vector v, in clip
space, the current raindrop position, and the rain speed, |v;|
we compute the tentative raindrop distribution texture coor-
dinates as follows (x;,y;) = vi¥ * |vy| % At.

In order to create the illusion of several layers of rain-
drops, the artists specify a rain parallax parameter p, which
maps the depth range for the rain layers in our scene. Using
the concepts of stochastic distribution for simulation of dy-
namic textures, we compute a randomized value for an indi-
vidual raindrop during the simulation, r;. Using the rain par-
allax value p,, the screen-space individual raindrop location
(x1,y;) for a given pixel computed earlier and the distribution
parameter r;, we can model the multiple layers of rain in a
single pass with a single texture fetch. The parallax value for
the raindrop, multiplied by a distribution value, is used as the
w parameter for a projective texture fetch to sample from the
rainfall movement texture: w; = p, * r; . This allows us to
simulate raindrops falling with different speeds at different
layers of rain without obvious repeating patterns.

Rain appearance. Raindrops refract light from a large
solid angle of the environment (including the sky) towards
the camera. Specular and internal reflections further add to
the brightness of the drop. Thus, a drop tends to be much
brighter than the portion of the scene it occludes. The solid
angle of the background occluded by a drop is far less than
the total field of view of the drop itself. In spite of being
transparent, the average brightness within a stationary drop

(without motion-blur) does not depend strongly on its back-
ground.

The illumination for rain precipitation is computed using
water-air refraction for individual raindrops as well as re-
flection due to the surrounding light sources and the Fresnel
effect. The layer of rain is shaded by using a normal map of
varied individual raindrop shapes. Our approach does not re-
quire any preprocessing and can handle an arbitrary number
of light sources. The lighting model for illuminating individ-
ual raindrops is flexible. Currently our system utilizes point
light sources.

Although we render the entire ’curtain’ of rainfall in a
single pass, we model the raindrop shape variation phenom-
enologically. The normal for a given raindrop pixel »; is dis-
torted as function of the raindrop velocity v, and w; (as com-
puted above), thus mimicking the complex shape deforma-
tions that the raindrops undergo as they fall through the air
during rain. We compute an individual raindrop shape dis-
tortion parameter using the raindrop velocity and position
values, the distribution of raindrops (as described above) and
the parallax parameter along with the scene depth informa-
tion. This distortion parameter is used as an LOD bias for the
raindrop normal map fetch, thus serving to create additional
motion blur.

This, combined with a fully dynamic lighting, gives us the
desired variation and interaction for the raindrop shapes and
illumination. To capture the complex interactions between
the raindrops and the scene light sources, the viewer and the
rendered scene, we compute the specular illumination and
reflection based on the individual raindrop normal and air-to-
water refraction. These contributions are attenuated toward
the edges of the raindrop by using a variation of the Fresnel
equations with the following formula: f; = 0.95- (1.0 — 7; -
7;)4 +0.05, where 7; is the raindrop per-pixel normal, and
V; is the per-pixel view vector.

We note that falling raindrops produce motion-blurred in-
tensities due to the finite shutter speed of a camera. Unlike
a stationary drop, the intensities of a rain streak depend on
the brightness of the drop as well as the background scene
radiances and integration time of the camera. We simulate
the motion blur and the strong mistiness of the falling rain-
drops by applying blurring via post-processing (as described
in section 6.2) after the rain pass has been blended onto the
scene rendering. The amount of blurring is controlled by
the raindrop velocity and the input rain opacity texture. This
simulates both raindrop motion-blur and multiple-scattering
glow for individual raindrops, taking into account the rain-
drop environment.

Rain and lightning flashes. As lightning strikes, the rain-
drops should appear more transparent, reflective and refrac-
tive. Thus the opacity of each individual raindrop must be
a function of the lightning brightness (see Figure 3.1); oth-
erwise water surfaces appear too solid. Our rendering script
propagates the lightning system parameters (see section 6.1)

(© The Eurographics Association 2006.

N. Tatarchuk & J. Isidoro / Artist-Directable Real-Time Rain Rendering 65

(b)

Figure 3: Rendering the raindrops falling off the rooftop ledge.

to all of our rain shaders, as well as to the material shaders.
For the raindrop rendering, we use a combined lightning
brightness parameter (mixing both lightning ’light sources’
as they flash in the environment) to compute the bias value
to adjust the amount of reflection and refraction and the rain-
drop transparency as follows: I, = 1.0+ k¢ - (L1 + Ly) where
Ip is the lightning bias for computing the resulting raindrop
illumination, k. is the artist-specified rain contrast value (de-
pending on the rainfall strength), and L}, L, are the lightning
brightness values for two lightning illumination sources. The
resulting value /;, is used to modulate the reflection and re-
fraction terms as well as the specular illumination and the
opacity of the raindrop.

Other practical considerations. Realistic rain is very
faint in bright regions but tends to appear stronger when the
light falls in a dark area. Physically accurate modelling re-
sults in overly dim rain appearance. We use a cinematic tech-
nique of adding milk to water while filming rain as inspira-
tion and bias the raindrops color toward the white spectrum
to create a stronger perception of rainfall.

3.2. Rendering dripping raindrops

During rain, raindrops drizzle from various objects in the
scene - trickling off gutter pipes, window ledges and so on
(see Figures 3 and 3.1 for some examples). We simulate this
effect with the use of physics-based particle systems using
screen-aligned billboard representation for individual rain-
drops. The base particle system simulation uses the physical
forces of gravity, wind and several animation parameters for
raindrop movement. The artists can place any number of sep-
arate particle systems, culled by the camera frustum during
rendering, throughout the environment to generate dripping
raindrops.

Each raindrop has its initial shape specified via a droplet
normal map. We model the raindrop shape variation by sto-
chastic motion-based shape elongation. A pre-blurred and

(© The Eurographics Association 2006.

a priori stretched normal map helps in increasing the per-
ception of motion blur. We use raindrop depth and velocity
to drive shape elongation and dynamic blurring of the nor-
mal map, and therefore resulting drop illumination (by using
LOD bias for normal map lookup). We compute specular re-
flection and air-to-water refraction effects for each individ-
ual raindrop in the same manner as in the rainfall method.

To control raindrop transparency, we attenuate raindrop
opacity by its distance in the scene. We wish to make the
individual raindrop particles appear less solid and billboard-
like as they move through the environment. This can be ac-
complished by attenuating the particle opacity value by the
Fresnel value (same as the composite rainfall) f, scaled and
biased by two artist-specified parameters for droplet edge
strength e and bias e, (which could be specified per particle
system): o =dp -0+ (es- f+ep) - (1— lj”) where d, is the
particle distance and /;, is computed in the same fashion as
in Section 3.1, o is the initial texture-based raindrop opac-
ity. We used the observation that the raindrops should appear
more transparent and water-like when the lightning strikes,
and increased the raindrop transparency as a function of the
lightning brightness to maintain physical illusion of water.
This can be easily done by biasing droplet transparency by
1— % - I. The particles still maintain their artist-specified
transparency in the regular lighting without any lightning
flashes. We used this approach for both regular raindrop ren-
dering and for raindrop splash rendering.

3.3. Raindrop splashes

We simulate raindrops splashing when hitting solid objects
by colliding individual particles with objects in the scene
(Figures 3.1, 3 and 3.3). A single filmed high-quality milk
drop splash sequence (Figure 4) is used to drive rendering
of the thousands of raindrop splashes. We incorporate a high
degree of randomization for splash particle parameters (such
as size and transparency) in order to reduce the noticeable
visual repetition of the splash animation. Furthermore, we

66 N. Tatarchuk & J. Isidoro / Artist-Directable Real-Time Rain Rendering

randomly flip the horizontal texture coordinates based on
particle parameter. Splashes should appear correctly lit by

Figure 4: Milk drop sequence for raindrop splash anima-
tion.

the environment lights. Empirical observations show that the
splashes appear the strongest when backlit and thus display
the subtle effects of raindrops splashing under a street light.
Thus if light sources are behind the rain splashes, we ren-
der the splash particles as brightened backlit objects; other-
wise we only use ambient and specular lighting for simplic-
ity. . Finally, we integrate the illumination from the light-
ning flashes as described in Section 6.1 for the raindrop
splash illumination. Figure 3.3 shows two examples of the
lit splashes. Aside from the dynamic lights, we wanted to

(b) During a lightning flash

(a) Regular rendering

Figure 5: Raindrop splash rendering

simulate the splashes lit by all of the bright objects in the en-
vironment (such as street lamps, for example), even though
those objects are not actual light sources in our system. Us-
ing an overhead illumination texture we can simulate the sky
and street lamp source lighting. The light from these objects
is encoded into this texture at preprocessing stage. During
the splash rendering we can use the world-space position of
each splash particle to sample the overhead illumination in-
formation and use it to modulate splash brightness.

3.4. Misty object halos due to precipitation

In a strong rainfall, as the raindrops strike solid objects, they
generate not only the splashes, but also the delicate halo out-
lines along the edges of objects. This is a very important
visual cue which has been omitted from most of the existing
rendered rain environments. We support rendering of this ef-
fect for objects in our scene (including the animated objects,
such as cars, see Figure 6) by using normal ’fins’ (similar
to fur rendering in real-time in [LPFHO1]). To create a rain
halo effect, we insert a degenerate quad which is extruded
normal to the surface at object silhouettes. The actual halo is
rendered on each such quad by using the rainfall algorithm
from section 3.1 as an animated texture, alpha-blended with
the rest of the environment.

Along with the water splashes from fast and heavy rain-
drops, strong rainfall also generates a more subtle effect with

the raindrop splattering on the surface of wet materials (Fig-
ure 6). We use a shells-based technique to create the raindrop
splatters. The shells technique is widely used for rendering
fur in real-time (as described in [LPFHO1]). We render the
material with raindrop splatters as a series of extruded shells
around the original object. The rain splatters are rendered on
the surface of objects in the form of concentric circles. In
each successive shell we expand the splash circle footprint
with a series of animated texture fetches and blend onto the
previous shells. This creates a very convincing effect of dy-
namic splatters on objects due to raindrops.

4. GPU-Based Water Simulation for Puddle Rendering

The raindrop particle collisions generate ripples in rain pud-
dles in our scene. The goal was to render dynamic realis-
tic wave motion of interacting ripples over the water surface
using the GPU for fast simulation. We use an explicit in-
tegration scheme to simulate fluid dynamics for rendering
dynamically lit puddle ripples. Similar to real-life raindrops,
a single raindrop in our system excites multiple interacting
ripples on the water surface. The physics simulation for wa-
ter movement is done entirely on the GPU. We treat the water
surface as a thin elastic membrane, computing forces due to
surface tension and displacing water sections based on the
pressure exerted from the neighboring sections. Our system
provides simple controls to the artists to specify water pud-
dle placement and depth. Figure 7 shows water puddle on a
rooftop.

Water surface displacement computation. Water rip-
ples are generated as a result of raindrops falling onto the
geometry in the scene. Our system supports generation of
raindrop ripples as a result of direct collision as well as due
to a randomized spatio-temporal distribution. The latter is
accomplished by seeding the water ripple texture with rain-
drop masses at rendering time.

We approximate the water surface as a lattice of points on

Figure 6: Object halos due to rain precipitation and rain-
drop splatters on the car surface. Note the close-up at the
bottom left corner.

(© The Eurographics Association 2006.

N. Tatarchuk & J. Isidoro / Artist-Directable Real-Time Rain Rendering 67

Figure 7: Dynamic water simulation for puddle rendering.
Note the view-dependent reflections

the GPU containing the information about the water surface
in that location (we store the current and previous time step
wave displacement values). These quantities can be packed
into a single 32 bit texture using 16 bit per channel, giving a
good precision balance for computing displacements.

Due to memory considerations, we currently use the sto-
chastic seeding method, rather than direct collision response,
for a simulation on a 256x256 lattice. We splatter the rain-
drops as point primitives into the water simulation texture
with the RGB value proportional to the raindrop mass during
the first pass of the simulation. This method can be applied
to generate dynamic water surface response for arbitrary ob-
jects. This can be achieved by rendering an orthographic pro-
jection of the objects into the seeding texture using the ob-
ject’s mass as the function for color of the object’s outline.
This would generate a wake effect in the water surface.

The rendered seeds act as the initial ripple positions by ex-
citing the ripple propagation in the subsequent passes. Real-
life raindrops generate multiple ripples that interact with
other ripples on the water surface. We implement the same
model. We render a raindrop into a wave seed texture using a
dampened sine wave as the function for raindrop mass. This
approximates the concentric circular ripples generated by a
typical raindrop in the water puddle.

To compute the water surface response we treat it as a thin
elastic membrane. The forces of gravity are considered neg-
ligible for the purposes of the simulation (as compared to the
surface tension). At every time step, infinitesimal sections of
the water surface are displaced due to tension exerted from
their direct neighbors acting as spring forces to minimize
space between them. Vertical height of each water surface
point in a cell (i, j) can be computed with partial differential

equation:
2 2 2
Ozij _ 2 (9j 974
Y 2 2
on ;i

where z; ; is the water displacement height, v; ; is the veloc-

(© The Eurographics Association 2006.

ity of the water in the cell, x; ; and y; ; are the lattice coordi-
nates.

We use explicit Euler integration in DirectX9.0 pixel
shaders to solve this PDE in real-time by using a texture
feedback approach to determine the water wave heights for
each point on the lattice. We found that two passes are suffi-
cient for a stable simulation. During the final pass we com-
pute the normals for the water displacements using the Sobel
filter.

Water puddles integration.. We sample from the water
membrane simulation using the object’s current position in
world space (the xz Cartesian coordinates) as a lookup tex-
ture coordinates into the computed ripple wave normal map.
Since our system implements a single ripple simulation for
all puddle surfaces due to memory considerations, this lim-
itation is overcome by providing the artists control over the
ripple sampling space. To reduce visual repetitions of the
resulting puddles, we provide a per-object scale parameter
s, for ripple waves and a rotational angle 6, for the ripples
look-up. The ripple simulation sample coordinates are ro-
tated in texture space based on the specified object angle 0,.
Note that no additional geometry is required for puddle in-
tegration. This approach also enable our system to control
turning on and off of puddle rendering on demand by using
a material parameter and dynamic flow control features of
the latest shader models.

To render an object with water puddles, we perturb the
original object’s bump map normal with the normal from
the water membrane simulation. The artists can also specify
a puddle ripple influence parameter per object. This parame-
ter controls the perturbation ratio for the water ripple normal
and the original bump map normal, allowing creation of dif-
ferent water motion for various objects.

Puddle Placement and Depth. In real environments, wa-
ter puddle depth and locations differ significantly due to
landscape details and rainfall accumulation. Our system pro-
vides complete artistic control over the puddle placement
and depth with a puddle depth mask. This mask specifies
both the location of each puddle in the environment and
its depth variation. Adding puddles with dynamic ripples
to objects is intuitive with this approach. During render-
ing, we first sample the puddle depth map for the current
depth value d;. Then the ripple normal map is sampled as
described earlier. We observe that the deep puddles’ visual
properties depend mainly on the color of the underlying ma-
terial (for example, the asphalt on the street), and the water
surface geometric properties for illumination. As the light
rays refract through the water surface, the viewer observes
the color properties of the material. However, the actual
micro-geometric structure of the surface under the puddle
does not influence the appearance of the puddle. Therefore
to modify the apparent puddle depth, we can specify the in-
fluence of the water surface normal as compared to the ob-
jectnormal vector p;. We interpolate between the object nor-

68 N. Tatarchuk & J. Isidoro / Artist-Directable Real-Time Rain Rendering

mal vector and the water surface normal based on d; and
an artist-specified puddle influence parameter p;. Using this
perturbed normal, we render the objects with water surfaces
using Fresnel equations ([Jen0O1]) for water-air refraction
and reflection, as well as the material properties of the ob-
ject as desired.

5. Water droplet animation and rendering on glass
surfaces in real-time

We adopted an offline raindrop simulation system from
[KIY99] to the GPU to dynamically animate and render a
large number of water droplets and their streams trickling
down on glass planes in real-time (Figure 5). We animate
and render the droplets entirely on the GPU, with the simu-
lation using the gather operation in the pixel shader, rather
than the original scatter-based particle system implementa-
tion. The shape and motion of water droplets is influenced
by the forces of gravity and the interfacial tension force, as
well as air resistance. We generate the quasi-random mean-
dering of raindrops due to surface tension and the wetting of
the glass surfaces due to water trails left by droplets travel-
ling on the surface. Our system produces correctly lit droplet
appearance including the refraction and reflection effects.

Figure 8: Water droplet rendering on the glass window

Droplet movement. We represent the glass surface as a
discrete lattice of cells, storing the water mass M; ; at that
location, the velocity v; j, and the droplet traversal quantity
t;,j within each cell (i, j). The droplet information is packed
into a 16-bit per channel RGBa texture. The droplet begins
to trickle down the glass surface when the acting downward
forces start to exceed the upward resisting forces on the
droplet. Droplet movement direction is determined by ex-
ternal forces acting on the droplet, however, the meandering
of the droplet path also depends on the surface properties of
the glass (due to impurities, small scratches or grooves). Ad-
ditionally we can account for obstacles on the droplet path
which can be encoded into the cell information. Each lat-
tice cell stores the affinity parameter k4 (i, j) (artist-specified

or assigned at random from a normal distribution) which de-
scribes the hydrophobic or hydrophilic properties of that sur-
face location.

We compute the force of gravity F, at render time as a
function of the droplet mass: Fyg (i, j) = M; ;- g (Where g is the
gravitational acceleration) and use it as the downward force
F; (i, j). For the competing upward forces, the static friction
force Fi(i, j) is specified for stationary droplets and we com-
pute the dynamic friction for moving droplets, Fy¢(i, j). The
glass surface friction coefficients ky(i, j) are specified via a
texture. These forces and the surface tension force F; (i, j)
vary over the surface of the glass based on the affinity para-
meter kq(i, j). At every step of the simulation, we apply the
resultant force, F; ; to the current droplet velocity to compute

the new velocity value for the droplet: v; J=Vij T A%’/ * A\t
where At is the current time step. We use texture feedback

technique for a stable simulation.

Since we limit our simulation to the downward move-
ment on glass surfaces, at every time step a droplet can only
flow into the three neighbor cells directly below the current
cell(as opposed to eight in [KIY99]). The new cell for the
flow is randomly chosen. The probability depends on the
droplet velocity vector, the affinity of the current cell and
the *wetness’ of the target cells. We compute the probabil-
ity value for each droplet cell using the roulette areas ap-
proach as described in [KIY99]. Droplet flow has greater
affinity toward the wet regions of the surface. During the
droplet traversal, some amount of water must remain behind.
Mass transfer from the current cells allows us to simulate this
wetting phenomenon for the droplet movement. We support
droplet merging in the following manner - if any droplets ar-
rive at the same cell, we add their mass values and maintain
a single droplet thereon. At the end of each simulation step,
we compute the droplet velocity vf j» new droplet mass value
Ml{‘ ;j and the normal vector n; j based on this mass for each
water cell (i, j) on the lattice.

Droplet rendering. The background scene is rendered
prior to the droplet rendering pass. Water density values are
treated as height values. We apply a Sobel-type filter to de-
rive per-pixel normals based on water density values for the
droplets. We use the computed droplet normals n; ; to per-
turb the background scene to simulate reflection and refrac-
tion through the water droplets on the glass surface (Figure
9(b)). Droplet water density value is used as the environment
reflection and refraction coefficient parameter to control the
amount of environment refraction and reflection through the
droplets. The droplets refract the background scene (sam-
pled from an offscreen texture) and the environment in front
of the glass window (by sampling the planar reflections off-
screen buffer). Aliasing reduction is achieved with applying
a Fresnel term and edge attenuation to the droplet reflections
and refraction (as described in section 3.1). Note that for wa-
ter droplets we determine the droplet edge for each pixel and
scale the exponent used to compute Fresnel term in order to

(© The Eurographics Association 2006.

N. Tatarchuk & J. Isidoro / Artist-Directable Real-Time Rain Rendering 69

(b) Droplet shadows on surround-
ing objects

Figure 9: Water droplets refracting the background scene
and reflecting external lights. Note the bright quasi-caustic
highlight for heavy droplets

reduce aliasing at droplet edges. Droplet shadows on sur-
rounding objects are rendered by using the droplet mass val-
ues as projective textures (Figure 9(a)). If the droplet mass
value in a cell is above a artist-specified threshold, we ren-
der a quasi-caustic highlight in the middle of the projected
shadow for that droplet.

o

Figure 10: The windshield wipers can dynamically wipe
away the raindrops on the glass surface

(© The Eurographics Association 2006.

6. Scene rendering effects

The realism of an outdoor rain rendering depends on the
multitude of details present in such an environment as much
as on the convincing rendering of the rain and water effects.
The illumination of the environment, the lightning flashes,
the atmospheric light scattering effects - all of these help en-
hance the resulting rendering. Wet environments also display
a great deal of reflectivity - without realistic reflections the
illusion is broken.

6.1. Lightning system and integration

A dark night in rough weather would not affect the viewer
in the same manner without the sudden surprise of a light-
ning flash followed by the inevitable thunder. Lightning is a
strong directional light that affects every object in the scene.
Creating a realistic lightning effect in interactive applica-
tions is challenging for several reasons. Illumination from
the lightning flashes needs to simultaneously affect every
object in the scene. Uniformly aligned shadows are crucial.
Simply adding extra shadowing lights for each lightning is
still an impractical approach for interactive applications due
to associated performance cost and additional memory re-
quirements for storing shadow maps.

Figure 11: Illumination due to a lightning flash - note the
uniformly aligned shadows due lightning illumination

Our proposed solution consists of a system driving light-
ning flashes and the resulting illumination model consis-
tently integrated into all materials and effects. We support
several simultaneous lightning flash light sources. During
the preprocessing phase for the environment several key
lightning source directions are picked by the artists and
global illumination illumination solutions are computed for
each selected light source. The encoded illumination value
(in a series of 8 bit textures per direction) is used at render-
ing time by all rendering components to modulate the illu-
mination result to account for a lightning flash event. This
compact representation allows us to create consistent uni-
form lightning shadows (as in Figure 11).

70 N. Tatarchuk & J. Isidoro / Artist-Directable Real-Time Rain Rendering

In order to control the lightning flash sequence at run-
time, the engine uses a scripting language to create a mix
of the cardinal lightning directions which are encoded in
the above textures. We provide the artists with an animated
editable intensity parameter for the mixing of the cardinal
lightning directions. The rendering script provides a method
for computing overall lightning brightness value at every
frame.

Every shaded pixel in our environment uses the lightning
illumination information. The computed lightning direction
and brightness parameters are used at render-time with the
encoded lightning illumination information to create accu-
rate lighting result for each material or effect (as described
in section 3). The rendering script propagates the animation
parameter for each of the two lightning flashes to all of the
shaders in the form of uniform parameters. The lightning
illumination value is added to the regular illumination for
each material prior to tone mapping. This approach incurs
negligible performance cost (consisting of a single texture
fetch along with several ALU operations to compute the re-
sult of several lightning flashes). All objects in our real-time
environment use this scheme and thus appear to respond ac-
curately to lightning illumination in the scene.

6.2. Post-processing system for rendering atmospheric
effects due to light scattering and rain precipitation

In recent years post-processing has become a popular ap-
proach for adding visual variety to games, as well as for ap-
proximating many camera or environment properties of the
world around us. We used a flexible post-processing pipeline
to simulate atmospheric effects such as misty glow due to
light scattering, to perform tone mapping for HDR render-
ing and for a variety of specific blurring effects for creation
of rain effects.

Creating the appearance of glow due to inclement
weather. Water particles in the atmosphere during the rain
increase the amount of light scattering around objects. Mul-
tiple scattering effects are responsible for the appearance of
glow around light sources in stormy weather ([dH57] and
[NNO3]). In order to approximate the effect of halos around
bright light sources, we make use of the post-processing
pipeline that is controllable through a rendering script.

To approximate the atmospheric point spread function
which can be used to model multiple scattering around the
light sources in the stormy weather, we use the Kawase
post-processing approach for rendering glows in our scene
([Kaw03]). To model fog attenuation due to water scattered
in the atmosphere we implemented light attenuation based
on distance in material shaders. We attenuate the light in-
formation based on distance directly in the shaders. In the
vertex shader we compute the distance of the object to the
observer and then compute the linear fog value which is then
sent to the interpolator for rasterization. See Figure 12 for an
example of both effects.

Figure 12: Atmospheric light scattering and attenuation

6.3. Reflections

Realistic streaky reflections increase the feel of rain on wet
streets and various object surfaces. Therefore, adding con-
vincing reflections is a must for any rainy environment. To
simulate the appearance of a wet city street in the rainy night,
we render a number of various reflection effects in our scene
(as seen in Figures 13, 11):

View-dependent stretched warped reflections on surfaces
Wet material rendering with environmental reflections
Planar reflections on glass surfaces

Dynamic cubemap environment reflections for animated
objects, such as reflections on the surface of a moving ve-
hicle

Depending on the polygonal properties of a particular ob-
ject, highly specular surfaces can display a great deal of
aliasing if one is not careful. The solution lies in attenuating
the reflection illumination and specular highlights at the ob-
jects’ edges. The artists can supply a per-object coefficient f,
for computing Fresnel effect as follows: f = (1 — 7 - V)%
where 7 is the per-pixel normal and V' is the view vector
for a given pixel. Using this value we can then compute the
attenuation coefficient for the reflective materials using the
following formula: k, = saturate(1 — f*) and modulate the
specular and reflection contributions by k.

View-Dependent Streaky Reflections. When moving
around any city streets late night during a rain, one of rain’s
strongest visual cues are the stretched reflections of vari-
ous objects (such as street lamps, vehicle headlights, and so
on) (Figures 1 and 13). These reflections are very promi-
nent in any rainy scene. They appear to elongate toward
the viewer, distorting the original reflecting object vertically
proportional to the distance from the viewer. Water in the
puddles and on the streets warp the reflections. This subtle
effect greatly increases the realism of the rainy environment,
especially as the falling raindrops hitting the puddles create
dynamic warping of the reflections. The original shape of
the reflector is distinguishable only by the blurred dominant
colors of the reflecting object. Thus we want to preserve the

(© The Eurographics Association 2006.

N. Tatarchuk & J. Isidoro / Artist-Directable Real-Time Rain Rendering 71

Figure 13: View-dependent streaky reflections

principle colors and create a blurry glowing reflection image
for each reflecting object or light source in the scene.

We render reflections of complex arbitrary objects by us-
ing their impostors approximating the geometry of the re-
flected scene. We render the reflector objects into billboard
reflector impostors (as described in [MSO01]) both for the
bright light sources and the dark objects (such as the tele-
phone poles)). We render the impostors lit with the scene
illumination using manually-simplified material shaders to
ensure the accurate reflections appearance, however, the re-
flections materials shaders strongly saturate the dominant
colors. The dynamic lighting allows us to represent reflected
animated light sources (such as a flickering neon light or
blinking traffic lights in the streets) correctly. The reflections
attenuate simultaneously with their corresponding reflector
objects.

The reflection impostors are dynamically stretched view-
dependently toward the viewer in the vertex shader. The
amount of stretching varies depending on the distance of the
object to the viewer. The reflection buffer is down-scaled to
half size of the original rendering buffer, and we use HDR
texture formats to preserve the range for the reflections. The
post-processing blurring technique (section 6.2) is used to
dynamically streak the reflection buffer in the vertical direc-
tion to simulate warping due to raindrops striking in the pud-
dles. Note that this is done in separate passes from the reg-
ular scene post-processing. The downsampling of the reflec-
tion buffer provides additional blurring for the reflections.
To render objects with the stretched reflections, we sample
from the reflection buffer using the screen space projection
of the input vertex coordinate for each reflective object. We
use object’s per-pixel normal in tangent space to account for
stretching of the reflection in view space and distort the re-
flection based on the surface normal. The post-process-based
blurring and further warping alleviates specular aliasing and
excessive flickering from reflections which would otherwise
be highly distracting.

(© The Eurographics Association 2006.

7. Results

Our test system consisted of rendering several city blocks
in stormy weather, with animated vehicles and other ob-
jects in the scene. We used DirectX 9.0¢© HLSL shaders
to implement all of our effects, and the Lua scripting lan-
guage to create the rendering scripts for the post-processing
system and lightning integration. For rendering rain-related
effects, nearly 300 unique shaders were used, with more
than 500 used to render the entire complex environment in
full. The rain-related shaders included various object shaders
for wet materials, dynamic water simulation shaders, view-
dependent reflections, raindrops, rain splashes, misty halos
around objects, composite rainfall layer rendering, water
droplet rendering and so on. Although our example video
contains rendering of a night scene, the approaches pre-
sented in this paper can be successfully used in variety of
lighting environments, including daytime renderings. The
environment geometry, textures and rain-related offscreen
buffers used 240 MB of video memory. In order to create
a realistic environment, high resolution textures were used
to capture the extreme detail of the represented world. For
rendering individual falling raindrop and their splashes we
used from 5,000 to 20,000 particles depending on a particu-
lar scene.

Effect Frame rate | Rendering
time
Composite rainfall 243 fps 4.11 ms
Raindrop particles (5-10K) 51.46 fps 19.45 ms
Raindrop splashes (5K) 52 fps 20.01 ms
Misty object halos 52.84 fps 18.93 ms
Raindrop splatters 285 fps 3.50ms
Post-processing for glow due 414.03 fps 2.41 ms
to atmospheric scattering
GPU-based water simulation 360.18 fps 2.75 ms
GPU-based water rendering 143.49 fps 6.98 ms
(includes simulation)
Droplet simulation 281.18 fps 3.55 ms
Rendering objects with droplets 152.35 fps 6.59 ms
(includes simulation)
View-dependent reflections 114.48 fps 8.74 ms
Complete system rain rendering 32 fps 31.25 ms
Rendering without the rain
effects 62.54 fps 15.71 ms

Figure 14: Average performance results for rain rendering
effects for full-screen scenes from the video rendered at 1024
x 768 resolution with 4X multisampling enabled

Performance. We measured performance of our system on
a 1GB Dual 3.2GHz Pentium 4 PC with a ATI Radeon
X1900 XT graphics card with 512MB of video memory. Us-
ing our system on a complex environment described above,
we achieve frame rates of 26-69 fps for the final rendering
(shown in the accompanying video) depending on the com-

72 N. Tatarchuk & J. Isidoro / Artist-Directable Real-Time Rain Rendering

plexity of a specific scene and a combination of rain effects
(see Figure 14 for the individual effect timings). Note that
the rendering time for the raindrop particles and splash was
limited by the CPU as the particle system simulation was
CPU-bound.

8. Conclusions

Convincing and visually pleasing rendering of rain effects
enhances the realism of outdoor scenes in many applica-
tions. In this paper we described a comprehensive system
for interactive rendering of rain effects in real-time in com-
plex environments. We presented a number of novel effects
such as the image-space rainfall rendering, GPU-based wa-
ter simulation for dynamic puddle rendering, water droplet
animation and rendering using graphics hardware and view-
dependent wet reflections, amongst all. All of the these ef-
fects help us generate an extensive, detail-rich urban envi-
ronment in stormy weather. We hope that the new technol-
ogy can be successfully used in the next generation of com-
puter games and real-time rendering.

9. Acknowledgements

We would like to thank the ATT ToyShop team for their work
on the interactive demo shown in the video. The program-
mers (also responsible for the rendering engine along with
the authors): Daniel Ginsburg, Thorsten Scheuermann, Chris
Oat, David Gosselin, the artists: Dan Roeger, Daniel Szecket
(who have contributed many algorithm ideas for the puddle
effects), Abe Wiley and Eli Turner; and the producers (Lisa
Close and Callan Mclnally). We are also very grateful to
Thorsten Scheuermann for the initial idea of the GPU wa-
ter simulation and Chris Oat for his implementation of the
Kawase post-processing method.

References

[BSS*04] BORSHUKOV G., SABOURIN K., SUZUKI M.,
LARSEN O., MIHASHI T., FAIMAN K., SCHINDERMAN
S., JAMES O., JACK J.: Making of the superpunch. ACM
SIGGRAPH Sketches (2004).

[DCWS03] DoRETTO G., CHIUSO A., WU Y. N.,
SOATTO S.: Dynamic textures. International Journal of
Computer Vision 51, 2 (2003), 91-109.

[dH57] DE HuLSsT H. C. V.: Light Scattering by Small
Farticles, 1st ed. Dover, New York, NY, 1957.

[ENN90] EIHACHIRO NAKAMAE KAZUFUMI KANEDA
T. O., NISHITA T.: A lighting model aiming at drive sim-
ulators. ACM Trans. Graph. 24, 4 (1990), 395-404.

[FHP99] FOURNIER P., HABIBI A., POULIN P.: Simu-
lating the flow of liquid droplets. In SIGGRAPH ’99:
Proceedings of the 26th annual conference on Com-
puter graphics and interactive techniques (New York,

NY, USA, 1999), ACM Press/Addison-Wesley Publishing
Co., pp. 121-128.

[FM96] FOSTER N., METAXAS D.: Realistic animation
of liquids. In Graphics Models Image Process (1996),
vol. 58, pp. 471-483.

[GNO4] GARG K., NAYAR S.: Detection and removal of
rain from videos. IEEE Conference on Computer Vision
and Pattern Recognition (2004), 528-535.

[GNO6] GARG K., NAYAR S.: Photorealistic rendering
of rain streaks. To appear in the proceedings of ACM
SIGGRAPH 2006, August 2006.

[Gom00] GOMEZ M.: Interactive simulation of water
surfaces. In Game Programming Gems, De Loura M.,
(Ed.). Charles River Media, Rockland, MA, 2000, ch. 2.6,
pp- 185-194.

[Har03] HARRIS M. J.: Real-time cloud simulation and
rendering. PhD thesis, University of North Carolina at
Chapel Hill, Chapel Hill, NC, 192003.

[Her01] HERMAN D. L.: Rainman: Fluid pseudodynam-
ics with probabilistic control for stylized raindrops. ACM
SIGGRAPH Sketches (2001).

[JenO1] JENSEN H. W.: Realistic Image Synthesis Using
Photon Mapping, 1st ed. A K Peters, Ltd., Natick, MA,
2001.

[Kaw03] KAWASE M.: Frame buffer postprocessing ef-
fects in double-s.t.e.a.l (wreckless). GDC 2003 lecture,
San Jose, CA, March 2003.

[KIY99] KANEDA K., IKEDA S., YAMASHITA H.: Ani-
mation of water droplets moving down a surface. Journal
of Visualization and Computer Animation 10, 1 (1999),
15-26.

[LPFHO1] LENGYEL J., PRAUN E., FINKELSTEIN A.,
HoPPE H.: Real-time fur over arbitrary surfaces. In SI3D
'01: Proceedings of the 2001 symposium on Interactive
3D graphics (New York, NY, USA, 2001), ACM Press,
pp- 227-232.

[Mas75] MASON B. J.: Clouds, Rain and Rainmaking.
Cambridge Press, 1975.

[MSO1] MACIEL P., SHIRLEY P.: Visual navigation of
large environments using textured clusters. In Symposium
on Interactive 3D Graphics (2001), pp. 95-102.

[NNO3] NARASIMHAN S. G., NAYAR S. K.: Shedding
light on the weather. In JEEE CVPR (2003).

[Sta99] STAM J.: Stable fluids. In SIGGRAPH 99 (August
1999), ACM SIGGRAPH, pp. 121-128.

[SWO03] STARIK S., WERMAN M.: Simulation of rain in
videos. International Journal of Computer Vision Texture
2003 (The 3rd international workshop on texture analysis
and synthesis) (2003), 95-100.

(© The Eurographics Association 2006.

N. Tatarchuk & J. Isidoro / Artist-Directable Real-Time Rain Rendering

[WC75] WANG T., CLIFFORD R. S.: Use of rainfall-
induced optical scintillations to measure path-averaged
rain parameters. JOSA (1975), 8-927-237.

[WMTO5] WANG H., MUCHA P. J., TURK G.: Water
drops on surfaces. ACM Trans. Graph. 24, 3 (2005), 921-
929.

[WWO04] WANG N., WADE B.: Rendering falling rain and
snow. ACM SIGGRAPH Sketches (2004).

[YYTO1] Y.DoBASHI, YAMAMOTO T., T.NISHITA: Effi-
cient rendering of lightning taking into account scattering
effects due to clouds and atmospheric particles. In Pacific
Graphics (2001), pp. 390-399.

(© The Eurographics Association 2006.

73

