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Figure 1: Three examples of results obtained by our method.

Abstract

This article describes a method for simulating the formation and the development of cracks on the surface of a
shrinking volume. The simulated cracks are applied afterwards to any surface provided with a parameterization.
The 2D path of the cracks is automatically precalculated by an appropriate algorithm which gives a graph of
discrete ways. We newly propose to take into account a possibly inhomogeneous thickness of the shrinking layer by
using a watershed transformation to compute this path. The propagation of one crack is then based on the respect
of the primary orientation of the crack. Another originality of our method is the calculation of the enlargement
of each crack by a discrete shrinkage volume propagation. We consider the shrinking layer as a set of cubic cells
which contain volumes of matter and pores. During the dessiccation process, the matter shrinks, creating what
we call a “shrinkage volume”. We propagate this shrinkage volume among the cells up to the cracked ones, and
we deduce the width of the cracks from the resulting shrinkage volume in these cells. In this paper, this method
is presented in detail and we give images obtained from different simulations. Initially designed to help for the
prediction of seedlings emergence in an agronomic environment, the method we present can also be applied to
enhance the realism of virtual 3D objects.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Physically based modeling
1.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism 1.6.8 [Simulation and Modeling]: Visual

1. Introduction of great interest for scientists from different disciplines. In
the computer graphics (CG) field, visually plausible crack
patterns can enhance the realism of a natural scene. Our
work is focused on cracks caused by the shrinking of a mate-
rial layer frustrated by its deposition on a non-shrinking sub-
i Correspondence to : laurent.lucas@univ-reims.fr, Rue des strate (produced, for example, in the glaze of ceramics or in
Crayeres, B.P. 1035, 51687 REIMS Cedex 2. a desiccating soil). Such cracks can be considered as quasi-

Cracking is a very common phenomenon on many different
types of surface on several scales. Thus cracks formation is
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Figure 2: The principle of our method.

static, and no external force is needed to generate them.
Other works propose methods for creating shattering cracks
and breaking objects into fragments [OH99, MGDAO04], and
very impressive results can also be obtained with a design-
ing stage where the user defines the crack pattern and profile
curves [DGAOS5].

The models of quasi-static cracks in the literature can
be roughly subdivided into three main classes. Geometric
models propose algorithms to get cracks pattern close to
those produced by nature. Perrier et al. [PMRAM95] ap-
plied a fractal fragmentation algorithms based on Dirichlet
tessellation to generate crack patterns at hierarchical scales.
MacVeigh [Mac95] created patterns based on line segments
and circular arcs, with respect to two characteristics: the
cracks intersect at right angles and they are such so as to
minimize their lengths. Horgan and Young [HYO0O] proposed
a two-dimensional (2D) stochastic geometric model for 2D
crack patterns in clay soil which produces realistic patterns.
However, some particularities are often not presented by this
type of model, such as varied widths, the three-dimensional
(3D) aspect, the presence of dead branches or the dynamics
of cracking.

On the contrary, physical approaches propose models
which tend to faithfully reproduce this dynamics. Their main
drawback is their slowness. Furthermore, in general, their
principal aim is not to get visually interesting results. Skjel-
torp and Meakin [SM88] used a 2D lattice where the nodes
are connected through Hookean springs which break when
a critical strain is exceeded. Hirota et al. [HTK98, HTK00]
also applied a spring-network model to compute 2D and 3D
cracks formation in a material. Vogel et al. [VHLROS] ex-
pressed the water evaporation, which causes the formation
of cracks, as a slow contraction of springs. Federl [Fed02]
adapted the method of Skjeltorp and Meakin by incorporat-
ing growth. He showed that mass-spring models are limited
in their capacity to successfully model fracture formation
on growing domains. Therefore Federl and Prusinkiewicz
[FPO4] used another approach to fracture modeling, intro-
duced for modeling inelastic deformation by Terzopoulos
and Fleischer [TF88] and based on solid mechanics and fi-
nite element models. This approach is more accurate but
slower than the spring-network approach.

Gobron and Chiba [GCO1] proposed a completely differ-
ent “intuitive-physical”” approach, based on their 3D cellular
automaton (CA) model, for simulating realistic propagation

of various types of cracks on any triangulated surface. Pa-
quette et al. [PPDO02] applied this model to flat surfaces in
order to reproduce paint cracking and peeling. These meth-
ods permit to visualize realistic cracks, but their parameter-
ization seems to be difficult. Moreover, they are not directly
linked with physical quantities, like those of a desiccating
soil.

In this paper, we propose a method based on a similar
CA approach to compute cracks and to apply them on any
surface provided with a parameterization. We consider the
shrinking layer as a set of cubic cells which contain vol-
umes of matter and pores. During the dessiccation process,
the matter shrinks, creating what we call a “shrinkage vol-
ume”’. One of the originalities of our method is the calcula-
tion of the enlargement of each crack with a propagation of
this volume by summing it from the farthest to the nearest
cell (according to the distance to the cracks). In their pro-
gression, cracks follow a precalculated path, generated by
an appropriate algorithm, with respect to their orientation.
We have implemented three different algorithms to compute
the path of the cracks. In particular, one of the originalities
of our approach is the use of a watershed transformation in
order to compute this path, which permits to take into ac-
count the inhomogeneous thickness of the shrinking layer.
Our method is based on a physical approach, and it produces
visually interesting images of 3D cracks, with different char-
acteristics controlled by a set of intuitive parameters. In this
paper, we present this method in detail and we give images
obtained from different simulations.

2. Approach overview

As is shown in Fig. 2, our method is a two-stage process: in
the first stage, we compute a 2D mesh of cracks (a collection
of facets in a planar area with an information of depth for
each vertex), and in the second stage, we mix these cracks
with a 3D mesh by means of a parameterization. In the first
stage, we consider that cracks formation depends on two
main parameters: a stress function and a precalculated path.

2.1. Cracks formation
2.1.1. The stress function
We define the stress function with the thickness of the

shrinking layer of the material and a shrinkage function. The
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thickness of the shrinking layer is given in a discrete way
by a heightmap, which can be understood as a grey image:
white is the highest value, and black the lowest value. Except
for the particular case of a constant value, this heightmap can
be either randomly generated or based on a particular prop-
erty of the surface, like the gaussian curvature.

Figure 3: Representation of the shrinking layer with its el-
ementary cubic cells (a visible cell in this image is actually
43 = 64 times bigger than a real one).

We represent the shrinking layer as a volume of elemen-
tary cubic cells (see Fig. 3). We consider that the heightmap
used for the shrinking layer thickness has the same resolu-
tion. Therefore the pixel (i, j) of this map corresponds to the
cells column (7, j) of the layer (and to the particular first cell
of this column which is on the surface). Each cell holds two
main substates which are the volume of matter and the vol-
ume of pores it contains. We can write the total volume of a
cell Veep = Vi +V), where V,,, is the volume of matter and V),
is the volume of pores. As our 3D-grid is regular, the height
of each component in a cell can be considered equivalent
to its corresponding volume, so we can do calculations on
heights: H..;; = Hy, + Hp, where Hy, is the height of matter
and H), the height of pores.

The shrinkage function must give the volume of matter of
one cell at an instant 7. In our method, we simply consider
that we can compute a coefficient of shrinkage Cs which de-
pends on the time and on the relative depth of the cell. For
that coefficient we use the following empirical formula:

Cs(t,2) = ko + (1 — ko) exp (—kl ><z2><(l—zr)) (1)

with ky the minimum value for this coefficient, k; another
coefficient permitting the control of the speed of the shrink-
age process, ¢ the elapsed time, and z, = z/ max(z) the rela-
tive depth. For this method we have:

Vin(t) = Vi (t — 1) x Cs(t,72) 2)

It is worth noticing that any other formula giving the vol-
ume of matter could be used and an example is shown in
section 3.

2.1.2. The precalculated path

Our method uses a pre-existing 2D path for the cracks. This
path is stored as an undirected graph G: the nodes are points
of intersection (or one final point of a path), the edges con-
tain the sequence of discrete points connecting two nodes,
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each point corresponding to a surface cell of the shrinking
layer. Any binary image with one pixel wide discrete lines
can be used as an input for our method. Nevertheless, in or-
der to get realistic results, we have implemented three meth-
ods to compute the cracks path. The first two methods are not
new in this context: they are the empirical stochastic model
of Horgan and Young and the Dirichlet tessellation. As the
third approach, we introduce a novelty in the computing of
cracks path by using a watershed model. Examples of these
three types of path are given in Fig. 8, 10 and 11.

Horgan and Young [HYOO] proposed an empirical sto-
chastic model to define the geometry of 2D cracks, such as
will form in a thin layer of soil. We use the results produced
by this model in two ways: statically, as a final pattern from
which we extract nodes and edges of our graph, or dynami-
cally, by adding to the edges of our graph information con-
cerning the order of creation of the crack which owns this
edge. Further explanations of using this information in our
method are given in the next section.

Inspired by the work of Perrier et al. [PMRAM95], we use
a Dirichlet tessellation (also called Voronoi tessellation) to
get a space partition of the terrain in polygonal zones (the
Voronoi regions, also called in hydrology and geography the
Theissen polygons). This method starts from a set S of m
points s; called seeds in the Euclidean plane R2. These seeds
are randomly chosen. The points in the interior of a Voronoi
region V(i) are the points of the plane that are closer to the
seed point 5; € S than to any other seed point s; of S, (j # ).
The borders B, of the Voronoi regions are called skeletons
by influence zones (SKIZ). They contain the points that are
equidistant from two seeds, and in our method they form the
possible path of the cracks.

The drawback of these techniques is that they do not con-
sider the thickness of the shrinking layer. Making the as-
sumption, based on our own observation of cracked soils,
that cracks appear and propagate where the shrinking layer
is the thickest, we apply a watershed transform to get the
possible cracks path from the corresponding heightmap.

The watershed transform treats the image as a relief: the
pixel (i, ) is considered as a point with a vertical coordi-
nate equal to its level of gray. This way, all the pixels de-
fine some landscape. An algorithmic definition of the water-
shed transform by simulated immersion was given by Vin-
cent and Soille [VS91]. For this algorithm, the watershed
transform fills up this landscape with water starting at the
local minima and, at points where water coming from dif-
ferent basins would meet, builds dams. As a final result, the
landscape is partitioned into regions (or “catchment basins™)
separated by dams, called watershed lines or simply water-
sheds: these lines represent exactly the path we need for the
cracks. It is well known that the watershed method produces
an oversegmentation of the image, i.e., many small basins
are produced due to many local minima in the input image.
According to the scale-space theory for discrete signals, sig-
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nificant image features must be stable with respect to vari-
ations in scale [Lin94]. Thus, this drawback can be avoided
by smoothing the image before applying the watershed algo-
rithm. In our case, that means that we can control the number
of possible ways for the cracks by more or less smoothing
the shrinking layer thickness map.

It is worth noticing that these three methods do not need
any user interaction, except for one possible initial para-
meterization. The cracks path is automatically generated
and no design stage is required, contrary to other methods
[DGAOS].

2.1.3. Creation and progression of cracks

In this section we describe the creation of cracks and the
progression of active cracks.

The potential start points of the cracks are all the middle
points of each edge of the graph. To select the points from
which a new crack will actually start, we arrange them in or-
der from the highest down to the lowest distance to the exist-
ing cracks. On this purpose we maintain a distance map com-
puted from the skeleton of the cracks by an External Euclid-
ean Distance Transformation [ST94]. When a start point is
selected, it is removed from the list of potential start points.

Two parameters are used to decide if cracks need to be
created: a minimum number of active cracks m, and a max-
imum number of active cracks M. A crack is considered as
“active” if it keeps growing at least at one of its extremities.
If the number of active cracks is below m, cracks are cre-
ated until their number reaches M. If one chooses m = 0, the
creation proceeds by entire generations. On the contrary, if
one chooses m = M, the creation proceeds by individuals. Of
course, creation is possible only if the list of potential start
points is not empty. Creation can be stopped if a predefined
number of cracks is reached, or if the cracks exceed a maxi-
mal total length.

When a crack is created, it grows simultaneously at each
extremity. Each extremity grows by adding the points stored
in the current edge up to the distance corresponding to the
speed of the crack multiplied by the step duration, and by
choosing the next edge when it reaches a node. The prin-
ciple of this choice is to respect direction ¢ of the crack,
which is determined by the edge containing the start point.
A global limit of tolerance o is given, so a crack tries to
find an edge whose angle is the closest to ¢ and in the range
[@— o, @+ . It stops because either such an edge does not
exist, or the current node is an extremity, or it is attracted by
another crack. This attraction occurs if the distance between
the current node and a node from another crack is below a
threshold. A crack can also be stopped if it arrives at a place
where the shrinking layer thickness is below another thresh-
old.

Another criterion is taken into account when the edges
have stored an order of creation (as for the Horgan and

Young model). In this case, the start points are arranged with
respect to this order, prior to their distance to cracks. In the
same way, during the progression of a crack, the next edge
is the edge whose angle is in the desired range and whose
order has the minimal value amongst the available edges.

2.1.4. Enlargement of cracks

We assume that there is a loss of volume of matter during the
shrinkage process. We call this loss of volume the “shrink-
age volume”. In one cell (whose volume is constant), this
volume must be replaced by some matter: this matter must
come from a neighbor cell, which also needs some matter to
replace its own shrinkage volume, and so on. We assume that
this phenomenon would explain the formation and enlarge-
ment of cracks: a cell which is part of a crack has lost all its
matter which was distributed to other cells. We conclude that
we can deduce the volume of the cracks from a calculation
of the shrinkage volume accumulated in the cracked cells.
Thus, in our method, the enlargement of cracks consists in
three stages: the calculation of the shrinkage, the propaga-
tion of the shrinkage volume inside the cells, and finally the
calculation of the cracks enlargement.

By means of the shrinkage function, in each cell c, at it-
eration ¢ + 1, we calculate a new volume of pores, and we
deduce from it the shrinkage volume V;, for this cell:

Vsh(C7t+1):VSh(C,Z‘)+Vp(C,l’)*Vp((‘,l#»l) (3)

Notice first that as V), increases, Vy, also increases, and sec-
ond that Vyj,(c,t 4+ 1) will be modified by the next stage of
our method, i.e., the shrinkage volume propagation.

crack

‘ distance ‘ distance »

s

(a) Distance map.

(b) Vertical section.

Figure 4: The principle of the shrinkage volume propaga-
tion: (a) on the distance map, volumes are propagated to-
wards the closer cells (b) the volumes are propagated hori-
zontally and, if not possible, vertically, up to a crack.

The aim of the shrinkage volume propagation is to ex-
press the exchange of matter and pores between the cells.
This propagation uses the same distance map than the cre-
ation of cracks (section 2.1.3) and starts from the cells whose
distance is equal to D, initially the maximum of this map. At
each iteration, we decrement the distance D in order to treat
closer cells, until reaching the cracked cells, which are at
distance zero (Fig. 4(a)). If a cell is isolated at its depth, i.e.,
there is no closer cell of the shrinking layer in its horizontal

(© The Eurographics Association 2006.



G. Valette & S. Prévost & L. Lucas / A Generalized Cracks Simulation on 3D-Meshes 11

neighboring, its shrinkage volume is transmitted vertically
(Fig. 4(b)). Otherwise, first we calculate the volume V), (c)
which will be distributed from the cell to the valid neighbor
cells:

%*Q:{(I,DX%AQXU L) i d <
0 if d > dpax

€}
with V;, (¢) the shrinkage volume of the cell ¢, d the distance
of the cell to the cracks, dq,; the maximum distance of vol-
ume exchange for one crack, r, the geometry factor: in order
to take care of vertical shrinkage (also called subsidence),
we use this “geometry factor” r,, which equals 3 in case of
isotropic shrinkage and equals 1 in case of subsidence only.
If vertical shrinkage dominates cracking, we have 1 < ry < 3,
if cracking dominates vertical shrinkage, we have ry > 3. The
distance d,;,4 can be fixed or can evolve as the maximum of
the distance map. We use this value V, (c) to update Vy,(c)
for the next iteration:

Vi (¢) = Van(c) = Vg (c) Q)

Then, we calculate the proportion V! (i) of the volume
V!, (¢) which will be distributed to a valid neighbor cell i:

d—d;
>< e —
Yiene)(d—dj)

where N(c) is the set of valid cells from the horizontal neigh-
boring of c. When all the cells have been visited, the cells
which are on the cracks path have received the shrinkage
volume they must transform in void, so we base our enlarge-
ment calculation on this information. This is the next stage
of our method.

Vi () = Vu(c) ©)

sh

A crack is composed of a succession of links between the
adjacent surface cells of its path. To avoid unnatural regular-
ity, the extremities of these links are slightly randomly dis-
placed from the center of the cells. The portion of the crack
between two adjacent surface cells is considered as a trian-
gular prism, optionally truncated. At the surface, this prism
is seen as a rectangle. We deduce from the volume of this
prism Vp,, which is deduced from the shrinkage volume, its
width W and its depth H:

2Vp, 1

X
LR = 1—-r2
where L is the distance between the two extremities, w the
width of the base of the crack, R and r two ratios defining
the proportions of the crack: R = H/W and r = w/W. In the
case of a triangular shape, we have w = 0 and thus r = 0.

W= H=RWx(1—-r) (1)

In case of flat surface, as our method does not change the
relief at all, the visual result can be unnatural. To improve
this point, we have implemented a vertical shrinkage.

2.1.5. Vertical shrinkage
This shrinkage uses the same volume shrinkage Vy, as for the

cracks enlargement, but it does not affect the cracks, only the
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height of the surface. We mix two types of calculation: the
first one involves one column of cells, depending on its dis-
tance to the cracks (the farther it is, the more it goes down),
the second one involves each region enclosed by cracks, de-
pending on its area (the larger it is, the more it goes down).
The vertical volume shrinkage of a cell ¢ is given by:

(k¥ g o) o

V() =
wn () max(area) Dipax

s
where ry is the geometry factor, R(c) the region of c,
max (area) the maximal area of the regions (in pixels), d the
distance of ¢ to a crack, D,,,, the maximum of the distance
map, and k a coefficient which determines the contribution of
both the column and region calculations. We update V,(c)
as in equation (5). To get the change of the height Hy, of
one point P of the surface, we divide this volume by the cell
area, and sum the result for the column C(P) corresponding
to this point:

B ):ceC(P) V\fsh ()

H; (P): Acell
ce

)]
An example of the effect of the vertical shrinkage on an orig-
inally flat surface is given in Fig. 8. The cracks on the paint-
ing in Fig. 1 were also obtained from a Dirichlet tessellation
with both horizontal and vertical shrinkage, and Fig. 8 shows
a detail of this painting.

2.1.6. 2D mesh of cracks computation

At this stage of our method, we dispose of a collection of
cracks, each one defined by a sequence of points, each point
storing the width and the depth of the volume portion of
crack starting from this point. In order to mix these data
with the parameterized area of a surface, we need to trans-
form them into a triangulated surface. This transformation
is straightforward: (i) we assemble consecutive portions of a
crack as polygons, in order to eliminate voids, with respect
to the width of each portion at its beginning; (ii) we compute
the lines or the polygons corresponding to the bottom of the
portions of the cracks; (iii) we transform the edges of all
the polygons and the lines into vertices, adding a sufficient
number of interpolated vertices in order to avoid aliasing;
(iv) finally, we get facets from all the vertices by making a
Delaunay triangulation with the freely available library Tri-
angle [She96]. Notice that step (i) modifies the shape of the
portions of the crack and consequently, the previous calcula-
tion of the volumes does not exactly match the final rendered
cracks, but we consider that the difference is negligible.

2.2. Parameterization

In order to apply our cracks to any surface, we need a method
which allows operations on a surface to be performed as if it
were flat. Parameterization offers this opportunity by map-
ping a surface onto regions of the plane. Surface parame-
terization has been studied extensively in the CG field and



12 G. Valette & S. Prévost & L. Lucas / A Generalized Cracks Simulation on 3D-Meshes

many techniques are available. As our cracks are represented
in a continuous area, the chosen method of parameteriza-
tion must unfold the surface rather than be based on charts.
For example, Gu and Yau [GY03] propose a global confor-
mal parameterization for surfaces with nontrivial topologies,
with or without boundaries. Fig. 9 shows a part of the Stan-
ford Bunny which can be cracked using this method of para-
meterization.

Simpler methods can be used for less complicated sur-
faces. For a heightmap (Fig. 6) or a surface of revolution, the
method is trivial because there is a natural correspondance
between the surface and the unity square. It corresponds to a
planar projection which can also be used for certain non pla-
nar surfaces like a plate (Fig. 1) or parts of a wall (Fig. 7).
In the same way, spherical and cylindrical projections can be
used to get a parameterized area of some part of other partic-
ular surfaces, like the igea and the moai models respectively
(Fig. 11).

The use of a parameterization has a drawback: the quality
of the result depends on the quality of the parameterization.
For example, in Fig. 7, the rough planar projection inhibits
cracks to follow the surface curvature well. However, this
method offers two main advantages: first, there is no relation
between the resolution of the cells and the surface, thus, it
would work well on a highly bumpy or irregular surface;
second, it can be applied to any 3D surface with arbitrary
genus.

2.3. Interpolation and displacement

Assuming that we dispose of a conformal parameterization
of at least a patch of the surface we want to crack, we need
to mix the mesh of cracks with the corresponding parame-
terized area. For that purpose we project all the points of the
cracks to this parameterized area. First, we discard points
which are off the area boundaries. For the other points, we
determine in which triangular facet each point is projected
and we use its barycentric coordinates in this facet to inter-
polate both its 3D cartesian coordinates and its normal. Then
we modify this 3D position by moving the point along its
normal by the depth stored in the cracked mesh at this point.
Finally, we remove all the original points of the mesh that
are inside a cracked facet and we make a new triangulation
from all the remaining points (an example is given in Fig. 5).

3. Applications and results

For the agronomy, a model of cracks formation could be
useful to help in the prediction of seedling emergence, be-
cause presence of aggregates and crust due to rainfalls can
mechanically inhibit seedling emergence, whereas presence
of cracks can allow seedlings to break through the soil sur-
face. Thus, this method was initially designed for that aim,
by using real or simulated input data. For example, we can
obtain a heightmap by measuring the surface roughness of

Figure 5: Left figures show the parameterized area of the
surface and right figures the corresponding 3D visualiza-
tion. Top figures corresponds to the original mesh and bot-
tom figures to the (roughly) cracked mesh.

a real patch of soil with a laser profile meter: the result is
a digital elevation map (DEM). Starting from this DEM,
we can try to simulate the formation of crust during a rain-
fall [VHLLOS] and then use the result of this simulation both
for the shrinking layer and the surface to crack (examples of
cracks produced by our method from these input data are
given in Fig. 6).

To get the shrinking function, in order to obtain more ac-
curate results, we use shrinking models available in the Soil
Science domain. For soil scientists, shrinkage is often di-
vided into three stages [OH98]. In the first stage, called nor-
mal or basic shrinkage, the decrease in the volume of wa-
ter in saturated soil equals the decrease in pore volume and
the soil remains saturated. In the next stage, called residual
shrinkage, air enters the pores and the water loss exceeds the
decrease in pore volume. The last stage, called zero shrink-
age, occurs when the soil has reached its densest configura-
tion: water loss is not accompanied by any further change
in volume. Soil scientists define the shrinkage characteristic
as the relation between the moisture ratio v and the void ra-
tio e, which are defined as v =V;/V,, and e = V,, /V,,, where
V with subscripts /, m and p means volume of water, solid
material and pores, respectively. For this type of modeling,
as we have to take into account the presence of water in the
soil, we need to add a new substate in the cell, corresponding
to the moisture volume.

Olsen and Haugen [OH98] have proposed an equation of
the shrinkage characteristic with three parameters A, A, and
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A3 which determine the form of the shrinkage curve:

1
e(v)=> (X3v+>»2+ \/(k3v+x2)2 —Ahha (1 =2y

(10)
Another equation, with four parameters, was presented by
Groenevelt and Grant [GGO02]:

e(v)=¢e+ks {exp <_V—];0> —exp <_€—I;O>} (11)

As we have to vary the void ratio with time, we need to
know how the moisture ratio is varying with the time. Wa-
ter evaporation from a soil surface can be divided into two
stages: the constant-rate stage and the falling-rate stage. As
first-stage evaporation does not usually last long, we con-
sider only the second-stage evaporation, by means of an
equation proposed by Suleiman and Ritchie [SR03]:

0(1) = 04q + (841 —84a) exp(—C x 1) (12)

where 6 is the volumetric water content, i.e., V;/(Vin +Vp),
t the elapsed time, 0, the initial uniform volumetric water
content (i.e., for t =0, z > 0), and 6,4 the volumetric wa-
ter content at the surface, constantly in equilibrium with the
vapor pressure of the atmosphere (i.e., fort > 0, z =0). C
is a conductance parameter that can vary among soils and is
given by the empirical formula C(z) = az®, where z is the
depth, and a, b two parameters.

Figure 6: Cracks applied on a simulated crusted soil. The
top left image shows the original terrain, i.e., the heightmap
obtained from laser profile metering followed by a simula-
tion of crust formation. For the other images, the paths are

produced by the watershed transformation on a more or less
smoothed shrinking layer heightmap.

Fig. 6 shows different types of cracks applied on a soil ob-
tained by a laser profile metering and a simulation of crust
formation. The range of the side of the terrain we simulate
is typically between 25 cm and 30 cm for a depth of 10 cm,
and one cell is a 2 mm side cube (corresponding to the laser
profile meter resolution). For the dessiccation process, we
use the equation proposed by Groenevelt and Grant, with
the following parameters: kg = 9.988, k3 = 6101, n = 0.233,
€ = 1.546 corresponding to a clay soil [GGO2]. The evapo-
ration is modeled by the equations of Suleiman and Ritchie
with these values: a = 0.58, b = —1.98, 6,; = 0.05 [SRO3].
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Figure 7: Cracks applied on a rocky soil, with paths coming
from the Horgan and Young model.

Fig. 7 and 10 show results obtained with paths computed
with the model of Horgan and Young [HYOO] and a pla-
nar projection. Fig. 11 shows results obtained with paths
computed with a watershed transformation. On the left, this
transformation is based on the gaussian curvature of the
model with a cylindrical projection and on the right, it is
based on a purely random method (the fault algorithm) with
a spherical projection. These examples show that our method
gives various depths and widths, highlighting their order of
creation, and thus permits plausible natural cracks. Further-
more, even if the possible path is a connected graph, our
method can produce “dead branches”, i.e., cracks can be in-
terrupted before joining another crack, which is close to re-
ality.

In terms of time complexity, the duration of the cracks
formation stage varies considerably with the number of the
cells of the shrinking layer and the total length of cracks,
i.e., the number of cells for which a calculation of width
and depth is required. This stage can be very short, because
a few iterations suffice to give an interesting result, but it
can also require a longer time. On the contrary, the time of
the interpolation-displacement stage can be neglected: dur-
ing our tests, it has ranged only from a few seconds to a
maximum of one minute (examples are given Table 1).

(without cracks) (with cracks)

Model Vertices | Triangles | Vertices | Triangles| Timing
Soil Fig. 7 4 2| 121389 241696 40s
EG Fig. 1 33114| 65484 99087| 132534|1min20s

Moai Fig. 11| 10002 20000 92038| 164212 18 min
Igea Fig. 11 | 134359| 268714| 417056| 593386 21 min

Table 1: Examples of timings and memory costs, on a Pen-
tium IV CPU running at 3GHz with 1024MB of RAM.

4. Conclusion

In this paper we have detailed a new generalized method to
simulate the formation of cracks due to a shrinking layer.
It is generalized in two ways: first, cracks can be applied
at any scale to any surface provided with a parameterization,
and second, the parameters controlling the creation, progres-
sion and enlargement of the cracks can either be linked to
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the original model or be purely random or even be arbitrar-
ily chosen. Following an automatically precalculated path,
cracks appear, propagate with respect to their initial direc-
tion and can be attracted by another close crack. Their width
is computed from the propagation of shrinkage volumes.
The input data are simple and the parameters controlling the
simulation are intuitive. In order to reproduce cracks on a
crusted soil, we have tried our method on virtual terrains.
As this method is based on physical quantities, we hope that
it could be used to help in the prediction of seedling emer-
gence. For this purpose, we have first to validate our results,
for example by comparing the appearance, the total length,
the area, the tortuosity of our simulated cracks with those
of real cracks. Besides, we have tried our method on differ-
ent 3D models and obtained visually interesting results prov-
ing that it can help to enhance the realism of these models.
In the future it could be worth trying other methods for the
computation of both the cracks path and the shrinking layer
thickness, as well as studying more precisely the effect of
the different parameters.
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