Ibero-American Symposium on Computer Graphics - SIACG (2006)
P. Brunet, N. Correia, and G. Baranoski (Editors)

Grid Architecture for Distributed Rendering

J. A. Fernandez-Sorribes, C. Gonzalez-Morcillo, L. Jiménez-Linares

Escuela Superior de Informdtica, Ciudad Real
University of Castilla-La Mancha, Spain

Abstract

Rendering is the process by means of which a raster 2D image can be obtained from the definition of a 3D scene.
This process is computationally intensive and requires a lot of time to be done when the source scene has certain
complexity or when high-quality realistic images are required.

YAFRID (Yet Another Free Render griD) is a system that takes advantage of the characteristics of computational
grids by distributing the rendering of a scene among a large number of heterogeneous computers connected to the
Internet. With that kind of systems, the time a scene takes to be rendered is drastically decreased because the parts
in which the complete work has been divided (called workunits) can be processed in parallel and finally joined
using an interpolation function to obtain the image result.

As we will discuss on the final section of this article, the selection of the workunit size is a key step in this class of
work division. With this approach, local optimizations in each workunit could be made to obtain a better rendering

time per frame.

Categories and Subject Descriptors (according to ACM CCS): 1.3.2 [Computer Graphics]: Distributed/network
graphics 1.3.3 [Computer Graphics]: Parallel processing 1.3.7 [Computer Graphics]: Raytracing

1. Introduction

The process of creating a 3D animation comprises several
phases such as character design and modeling, setting tex-
tures and materials, construction of the bones and subse-
quent animation, lighting, and, finally, rendering.

The latter consists basically in generating a 2D image
from the abstract description of the geometry of a scene plus
the definition of lights, cameras, and materials. This usually
is the most computationally intensive phase of the whole
process and, as a result, it takes a long time to be done.
That situation is even worse when the scene to be rendered is
complex or when high-quality realistic images are required.
Rendering is often considered to be a bottleneck in that kind
of projects and even obtaining just one image could need a
lot of rendering time.

In spite of the fact that the huge time dedicated to ren-
der a scene represents an important problem, rendering is
also a highly parallelizable activity because each frame of
the whole animation can be calculated independently of the

(© The Eurographics Association 2006.

others. In the case of static scenes, an image could be divided
into fragments to be processed separately.

In order to solve such a key problem in animations, and
taking into account the advantage mentioned, several ap-
proaches has been developed. Today, the most popular one is
the well-known render farm. A render farm is a computer
cluster owned by an organization where each frame of an
animation is independently calculated by a single processor.

Over the last few years, 3D animation companies have
been discovering a new source of benefits in the Internet.
Besides using its render farms in its own productions, some
of this companies offer render services via Internet. An user
of these render services can make use of the dedicated cluster
that the company owns. The main difference between them
and the project which this document is about (apart from
the frame-level division and interpolation schemes) is that
Yafrid allows anyone to be part of the grid by sharing CPU
cycles via the Internet.

This technique and other similar ones work by dividing

=

a complex task (rendering—acomplete-animationor-seene)
P 7
delivered by

www.eg.org

o @’m EUROGRAPHICS

: DIGITAL LIBRARY
diglib.eg.org

http://www.eg.org
http://diglib.eg.org

142 J. A. Ferndndez-Sorribes, C. Gonzdlez-Morcillo, L. Jiménez-Linares / YAFRID (Yet Another Free Render grID)

into a set of smaller tasks (rendering a frame or a fragment
of a frame). As a result, the time dedicated to render a whole
scene is highly decreased because each smaller task is done
in parallel with the other ones.

As mentioned, it is possible to take advantage of a par-
allel processing not only dividing an animation into inde-
pendent frames but also dividing a static frame into smaller
pieces. Each one of these units can be sent to a computer to
be done independently and in a parallel way with the other
ones. Once all the units has been finished, all of them has to
be composite in order to obtain the whole image. Therefore,
there are two types of distributed rendering systems accord-
ing to its task granularity: fine-grained and coarse-grained
(or frame-level).

The system architecture this document is about has taken
both approaches as it supports both types of granularity.

2. Grid Computing
2.1. Definitions

There are several definitions of what a grid system is but all
of them are based on the same basic principles.

It was in 1998 when the term grid computing came up
and Carl Kesselman and Ian Foster gave the following defi-
nition [FK98]:

A computational grid is a hardware and software
infrastructure that provides dependable, consis-
tent, pervasive, and inexpensive access to high-end
computational capabilities.

The evolution of this definition led to a checklist given by
Ian Foster [Fos02]. According to this list a Grid is a system
that:

1. coordinates resources that are not subject to centralized
control ... (A Grid integrates and coordinates resources
and users that live within different control domains, dif-
ferent administrative units of the same organization or
different companies. This model is often described with
the term virtual organization which is profoundly ana-
lyzed in [FKT02])

2. ...using standard, open, general-purpose protocols and
interfaces ... (A Grid is built from multi-purpose proto-
cols and interfaces that address such fundamental issues
as authentication, authorization, resource discovery, and
resource access. It is important that these protocols and
interfaces be standard and open.)

3. ...to deliver nontrivial qualities of service. (A Grid al-
low its constituent resources to be used in a coordinated
fashion to deliver various qualities of service, relating for
example to response time, throughput, availability, and
security, and/or co-allocation of multiple resource types
to meet complex user demands, so that the utility of the
combined system is significantly greater than that of the
sum of its parts.)

Another definition due to Rajkumar Buyya appears in a
recent article [BSO5] and defines a grid as a type of par-
allel and distributed system that enables the sharing, se-
lection, and aggregation of geographically distributed "au-
tonomous" resources dynamically at runtime depending on
their availability, capability, performance, cost, and users’
quality-of-service requirements.

2.2. Peer-to-peer networks, clusters and grids

There are some terms such as distributed systems, peer-
to-peer networks, and clusters which are related with the
concept of grid computing and are often mistaken. All
these terms have obvious similarities and also several dif-
ferences [LSSHO3]. For that reason, a definition of what a
grid is and what is not is essential.

Like peer-to-peer, grid computing allows users to share
files, and additionally grid allows many-to-many sharing for
all types of resources.

Clusters, distributed computing, and grids have in com-
mon that all these approaches make a large quantity of re-
sources appear as one single computational resource. How-
ever, unlike clusters and distributed computing, which need
physical proximity and operating homogeneity (and are of-
ten owned by a single organization), grids can be geograph-
ically distributed and heterogeneous.

2.3. Grid classification

There are several classifications of grids according to differ-
ent characteristics. One of them is given by IBM [Bro02] and
classifies this kind of systems according to their functional-
ity. This classification establishes that there are two primary
grid types, computational and resource, and one common
hybrid type, the application grid.

e Computational grid. Those systems are focused to solve
computationally intensive problems. Computational grids
make use of the CPU and usually memory components of
the grid to increase the overall computing power.

e Resource grid. The aim of this grids is to manage and
distribute vast quantities of data. A resource grid is used
to store information across a range of computers, either to
improve performance in retrieval, or to expand the poten-
tial storage space.

e Application grid. Rather than providing access to a spe-
cific resource, application grids use systems from both the
computational and resource grids to support their func-
tionality.

Another common classification [LMV*04] takes into ac-
count the shared resources that the grid contains. Resources
to be shared can be computation resources (CPU cycles and
storage), information resources (data bases and application
data), displays, instruments, etc.

(© The Eurographics Association 2006.

J. A. Ferndndez-Sorribes, C. Gonzdlez-Morcillo, L. Jiménez-Linares / YAFRID (Yet Another Free Render griID) 143

Reinefeld and Schintke [RS02] give another classification
and distinguish three categories of grid systems: the Infor-
mation Grid, the Resource Grid, and the Service Grid.

e The Information Grid is equivalent with today’s world
wide web that delivers information on any kind of topic to
any place in the world. Information can be retrieved medi-
ated by many different kinds of networking infrastructure,
personal computers, advanced mobile phones, etc. Also
file sharing services are part of the information grid.

e The Resource Grid provides mechanisms for the coordi-
nated use of resources like computers, data archives, ap-
plication services, and special devices. These grids give
access to resources without bothering the user with the
name, location and other attributes of the resources used.
In contrast to the data supplied by the Information Grid,
the facilities of the Resource Grid are supplied to autho-
rized users only.

e The Service Grid delivers services and applications inde-
pendent of their location, implementation, hardware plat-
form, etc. The services are built on the concrete resources
available in the Resource Grid. While the Resource Grid
gives access to concrete resources, the Service Grid pro-
vides abstract, location-independent services.

3. Other related systems

As it has been mentioned, the problem that represents ren-
dering an scene, due to its characteristics, is suitable to
be solved using distributed approaches. To deal with that
kind of problems, clusters of computers are commonly used
by companies dedicated to graphics. Those systems require
that all computers belong to the same organization with a
small level of heterogeneity. Two examples of this approach
are the distributed rendering environment at Purdue Univer-
sity [MABOS5] and the solution of DeMarle et al. [DPH*03],
using a cluster of PCs.

On the other hand, grid computing is an emergent field
and, nowadays, that kind of computing approach is taken
to solve an increasing number of computationally intensive
problems through the Internet.

One of the most famous examples of these systems is
SETI@home, pioneering scientific project dedicated to the
Search for Extraterrestrial Intelligence (SETI). This exper-
iment harnesses the power of hundreds of thousands of
Internet-connected computers to analyze the data from the
Arecibo Radio Observatory in Puerto Rico.

After that one, several applications have found in grid
approaches a solution for complex operations performance.
Another grid based solution to visualize tomographic data is
RAVE [GAWO04], that is mainly oriented to obtain an inter-
active representation of large volumes of data.

The main contribution of the system that this article
presents consists in changing the classic approach to the

(© The Eurographics Association 2006.

problem of rendering, clusters, by a grid computing ap-
proach where everyone can be a provider of CPU cycles,
in a non-dedicated, heterogeneous global architecture. The
theoretic power of this approach is huge because any com-
puter (it is a multiplatform system in terms of both hardware
and software) with an Internet connection can be part of the
grid, in the typical distribution of peer-to-peer applications.

Another difference that provides an advantage over other
related works is that Yafrid supports both kinds of granular-
ity. It permits to divide the rendering of an animation into
frames or the rendering of a frame into fragments using the
same key concept, the workunit.

yot st fres roveinr g Yt i

B

ot dvarced P pmrteey

Figure 1: Yafrid Web User Interface.

4. Objectives

One of the aims of the project is to create an extensible ar-
chitecture which supports as many render engines as possi-
ble (in its current stage, the system has support for the Open
Source render engines Yafray and Blender). The system also
supports fine-grained and coarse-grained task division to im-
plement methods for optimizing the rendering time using a
Grid network.

The system is aimed to spread the computing require-
ments of rendering a scene across a large number of com-
puters, as many as possible. In order to achieve this goal,

144 J. A. Ferndndez-Sorribes, C. Gonzdlez-Morcillo, L. Jiménez-Linares / YAFRID (Yet Another Free Render grID)

the grid has been developed to be multiplatform in terms of
both hardware and software (operating system). These fea-
ture and the operation via the Internet, makes the number of
potential service providers almost unlimited.

As a result, Yafrid is basically a system which take ad-
vantage of the characteristics of the computational grids by
distributing the rendering of a scene through the Internet.
Besides this basic functionality, there are other activities that
are not the primary ones but are also important. These tasks
(see User Interface in Figure 1) are activities related with
the management of the workunits and with controlling the
grid such as the management of client and provider priori-
ties, groups, etc.

5. General Architecture

The type of grid which is the most suitable one for distribut-
ing the rendering of a scene among several computers is the
computational grid. It is deduced from the properties of ren-
dering considering it as an intensive process in terms of use
of CPU.

The components of a grid of this type are basically the
following ones:

e Server. The hub of the grid. Its basic component is the
Distributor that takes works from a queue and sends them
to the providers to be done.

e Service Provider. This entity is responsible for actually
processing the requests of the clients.

e Client. A client is an external entity which doesn’t belongs
to the system in a strict sense. Its role in the operation of
the grids consists in submitting works to be done by the
providers. Those works are stored in a queue from where
distributor will take the next one to be scheduled.

5.1. Yafrid server

The server is the fundamental node around of which the
whole Yafrid render system is established. Each one of the
providers connects to this node in order to let the grid use
its CPU cycles for the rendering of the scenes submitted by
Yafrid clients.

Yafrid server is developed over an architecture in which,
in general, four layers can be distinguished (Figure 2). This
design is slightly based on the architecture that appears
in [FKTO02]. Those layers are 'Resource Layer’, ’Service
Layer’, ’Yafrid Server’ and ’User Layer’ from lowest to
highest level of abstraction. It is in the third one of these
layers where the actual Yafrid server resides. The other lev-
els are considered to be supporting layers but are also in-
dispensable for the implantation of the system in an actual
environment.

e Resource Layer
This layer has the lowest abstraction level and it is the

most related with the operating system issues. Resource
layer has the following components:

— Database system. It is in this database where the nec-
essary tables for the correct operation of the sys-
tem are maintained. Some of these tables are used to
obtain statistics about the system performance while
other ones store the data associated to users, groups,
projects, etc. This database is accessed from the lev-
els above by means of a database server. The current
implementation uses MySQL.

— Filesystem. Sometimes, it is necessary to access di-
rectly to the filesystem from the layers above. Basi-
cally, the system distinguishes two types of directo-
ries. There are some directories which are used to store
the workunits of the launched projects that will be ac-
cessed via SFTP by providers. Those directories com-
pose the workunits POOL. The other category of di-
rectories is composed by those ones that contains the
information about the users and their projects.

— Network system. The module dedicated to the commu-
nications that belongs to the main layer hides the uti-
lization of the network resources of the computer by
using a middleware (the current implementation uses
ICE).

e Service Layer
Basically, this layer contains the different servers that al-
low modules from the layers above to access the resources
that belongs to the layer under this one. There are the fol-
lowing servers in this level:

— HTTP Server. Yafrid-WEB module is established over
this server. As Yafrid-WEB has been developed using
dynamic web pages written in a web-oriented scripting
language (the current implementation has been done
using PHP), the web server has to have support for this
language. It is also necessary to have support for com-
position of graphics and for accessing to the database.

— Database server. This server is used by the different
modules of Yafrid to access the indispensable data for
the system operation.

— SFTP server. Accessed by the service providers to ob-
tain the necessary files to carry out the rendering of the
workunits. Once the rendering has finished, the SFTP
server will be used to send to the Yafrid server the re-
sultant image.

e Yafrid Layer This is the main layer of the server and it is
composed by two different modules which work indepen-
dently one of the other. These modules are Yafrid-WEB
and Yafrid-CORE.

— Yafrid-WEB.
It is the interactive module of the server and it has been
developed as a set of dynamic web pages written using
HTML and a wed-oriented scripting language.
In terms of access to the system, three user roles has

(© The Eurographics Association 2006.

J. A. Ferndndez-Sorribes, C. Gonzdlez-Morcillo, L. Jiménez-Linares / YAFRID (Yet Another Free Render griID) 145

User Laver Provider
@ent) (Provldar] (Admin]J [GUI)
Provider

Browser

(Resource Layer]

-

Yafrid-WEB

Controller | |
Identificator

Yafrid-CORE Distributor l

pmmmsmmsss=s===—,
Communication
o

s
L)

Service ;) [

Layer
liiiHH%iIl

Base
Layer

Figure 2: Yafrid General Architecture.

been defined which determine the access privileges
that the user has. Those user roles are:

projects can be created within a group in order to have
a set of providers working for them and not for other
projects.

o Client. Having this role allows an user to submit
works to the grid. A client is also able to create and
manage render groups which are groups to which
clients and providers can subscribe. When a project
is created, it can be created as belonging to a group.
In this case, only providers belonging to the same
group can take part in the rendering of the project.
Moreover, some statistics are generated with the in-
formation of the projects.

o Administrator. This user is necessary to oper-
ate the whole system and has complete privileges
which implies:

Figure 3: (Left) Artifacts without interpolation between

& Access to the information about all the users of workunits.(Right) Using lineal interpolation
the system (providers and clients) and about the
existing render groups.

¢ Creation of sets of tests (a special type of com-
posed projects which are made up of single
projects with slight differences). Those tests are
tools by means of which conclusions about the

system performance can be reached.

— Yafrid-CORE.
This is the non-interactive part of the server. This mod-
ule has been mainly developed using Python but there
are also some scripts written in Bourne shell for man-
agement tasks. It is composed by three submodules:

o Provider. The provider is a user that has installed o Distributor.

the necessary software to allow the grid to sent
works to be done. Providers can access their infor-
mation and some use statistics.

This is the active part of the server. It implements
the main algorithm that is aimed to do the following
indispensable tasks:

o Generating the workunits. It basically con-
sists in launching the active projects that exist in

The mentioned render groups have a special impor-
tance in such a render grid. With this simple control,

(© The Eurographics Association 2006.

146

J. A. Ferndndez-Sorribes, C. Gonzdlez-Morcillo, L. Jiménez-Linares / YAFRID (Yet Another Free Render grID)

the system by generating the necessary worku-
nits according to the parameters that the user
has introduced for the launching.

o Assigning the generated workunits to
providers. This is the main task of the schedul-
ing process. The algorithm must take into
account issues such as the software that will
be necessary to render the scene, the software
installed in the providers and its specific
version or the group which the provider and the
project belong to. With all this information, the
distributor has to decide which workunit goes
to which provider.

o Composing results. With the results generated
by the different providers, the distributor has to
compose the final image. Each 10 seconds, the
core could generate a preview with the avail-
able fragments (as shown in Figure 1). This pro-
cess is not trivial because slight differences be-
tween fragments can be distinguished when ob-
tained from distinct computers due to the ran-
dom component of Monte Carlo based meth-
ods (like Pathtracing). For that reason, it is nec-
essary to smooth the joint between fragments
which are neighbors using a lineal interpolation
mask. We define a zone in the workunit that
is used to combine with other workunits in the
server. In Figure 3 on the left, we can see prob-
lems when joining the workunits if we don’t use
a blending method.

< Finishing projects and deletion. All the partial
results are deleted from the system, the files in
the POOL, etc.

¢ Timeout control. When timeout is over, it is
check if the workunits sent to the providers are
still being processed or not. If any of the worku-
nits has got lost it has to be activated again to be
sent to another provider.

o Identificator.

This is the passive part of Yafrid-CORE whose
mission consists in waiting for the communica-
tions from the providers. This is the module that
is responsible for the necessary protocol between
the server and the providers to guarantee the cor-
rect operation of the system. It maintains all the
communications with the providers except the one
where a workunit is sent to a provider, which is
done by the distributor.

The first time a provider try to connect to the
Yafrid server the Identificator generates an object,
the provider controller, and returns a proxy to this
object. Each provider has its own controller. The
subsequent interactions between the provider and
the Yafrid server will be made by means of this
controller. Some of these interactions are Identifi-

cation, Subscription, Activation, Reporting the fi-
nalization of the rendering and Disconnection.
o Statistics.

The statistics that the system stores have mainly
two sources. There are some sections in Yafrid-
WEB that show statistics about the operation of
the system which are generated from the database.
On the other hand, there are also a submodule
that belongs to Yafrid-CORE that registers statis-
tics which depend on the time like, for example,
the users that have been connected for the last half
an hour.

e User Layer
This layer is not part of the system in a strict sense. Basi-
cally consists of the different types of users that can access
the system. There are three roles in Yafrid:

— Yafrid Provider.
Yafrid Client.
— Yafrid Administrator.

These users can access all the information related to the
system which is offered by the module Yafrid-WEB by
means of any browser (Figure 1). The characteristics of
each one of these roles and its interaction with the system
will be explained in next sections.

5.2. Provider

The provider is the software that the users who wants to give
CPU cycles to be used by the grid in rendering tasks must to
be installed in the computer. It can work in both visual and
non-visual mode. The first thing that a provider has to do
is to connect to the grid. Once activated, the provider waits
until the server sends a workunit to be processed. After fin-
ishing the rendering, the provider sends the file via SFTP and
tell the controller the work is done.

Photon Mapping + Irradiance Cache
10:48:00

09:36:00
08:24:00
07:12:00

06:00:00 = 128 Samples
« 512 Samples
04:48:00 ¥ 1024 Samples

& 2048 Samples
03:36:00

02:24:00 f
01:12:00 —a——

g —
00:00:00
50 100 150 200 250

Workunit Size

Figure 4: Results with Photon Mapping.

(© The Eurographics Association 2006.

J. A. Ferndndez-Sorribes, C. Gonzdlez-Morcillo, L. Jiménez-Linares / YAFRID (Yet Another Free Render griD) 147

6. Results

In order to test the behavior of the system, 16 computers with
the same characteristics have been connected to the grid.
These providers (Pentium IV 2.80 GHz, 256Mb RAM) were
connected to the grid during the execution of all tests. Each
test was composed by a set of individual projects that differs
in the size of the workunit. Each test had its own quality pa-
rameters (like the number of light samples or number of rays
per pixel) and rendering method.

The image to be constructed using Pathtracing with Pho-
ton Mapping [Jen01] and Irradiance Cache (Figure 6) and
classical Raytracing [Whi80] with an Ambient Occlusion
implementation (Figure 7) was a bit complex. The scene
contained more than 100.000 faces, 4 levels of raytracing re-
cursion in mirror surfaces (the dragon) and 6 levels in trans-
parent surfaces (the glass). Finally, 200.000 photons were
shooted in order to construct the Photon Map structure.

Before studying the results obtained with the grid of 16
computers, we will present the rendering time of each test
using only one provider (rendering in local machine):

Method Quality Time (hh:mm:ss)
Pathtracing 128 Samples 02:56:56
Pathtracing | 512 Samples 07:35:28
Pathtracing | 1024 Samples 14:23:07
Pathtracing | 2048 Samples 23:16:12
Classic. RT. 1 Ray/Pixel 00:17:50
Classic. RT. | 8 Rays/Pixel 00:20:39
Classic. RT. | 16 Rays/Pixel 00:26:47

As we can see in Figure 4, the rendering time in the best
case is more than eight times better using the grid, and only
twice in the worst case. The results could be better if the
render engine stored the irradiance cache to share it between
providers (but this is not our case).

Whitted Raytracing + Ambient Occlusion
00:08:38
00:07:55
00:07:12
00:06:29
D0:05:46

00:05:02
= 1 Sample

00:04:19 * B Samples
00:03:36 * 16 Samples
00:02:53

00:02:10

00:01:26

00:00:43

00:00:00

B

100 150 200 250
Workunit Size

Figure 5: Results with Classical Raytracing.

Analogous to previous analysis, using Whitted raytracing
algorithm (Figure 5), the rendering time in the best case

(© The Eurographics Association 2006.

is seven times smaller using the grid, and only three times
better in the worst case.

With these results it is clear the importance of choosing an
appropriate workunit size (it’s also critical to achieve a good
performance in a single-frame division method).

Figure 7: Image generated with Classical Raytracing (1
Sample).

7. Conclusions and future works

According to the results obtained that have been examined
before, the system has clearly a better performace than a
single computer system even in the worst selection of the
workunit size.

Yafrid delivers significantly better throughput (number
of rendered entities, frames or fragments of frame, per time
unit) than a single computer because each independent unit
is generated in parallel by different providers. This through-
put depends on the workunit size.

On the other hand, the latency of each of the fragments
(time they take to be done) increases because there are some
issues that don’t have to be taken into account in a single
computer. In a distributed system like this one, besides the
time dedicated to render the scene, also the transfer time (the
time for the completion of the data transmission between
server and providers) is important. Transfer time depends on

148 J. A. Ferndndez-Sorribes, C. Gonzdlez-Morcillo, L. Jiménez-Linares / YAFRID (Yet Another Free Render grID)

the amount of data to transfer and the speed of the network
connection.

Generally, the more fragments a scene is divided into, the
more parallelism is achieved, and the less time is needed to
render the whole scene. It is not always accurate in some
cases. If a scene is divided into such small pieces that the
time that rendering takes is inconsiderable, it would be pos-
sible that the time spent transferring and processing is bigger
than the time dedicated to render. In this case, the results ob-
tained by a distributed system are worse than the ones that
a single computer can supply. In other cases, selecting a bad
workunit size can degrade the throughput of the grid.

Yafrid is the first system of this characteristics, having
some important advantages:

e There is no cluster. What it means is that the providers
can be heterogeneous (in terms of software and hardware)
and geographically distributed (like peer-to-peer applica-
tions).

e With the fine-grained approach, we can make local op-
timizations in each frame. In future works, we could
study the scene and make an intelligent partitioning of
the workunits, rendering each one with different quality
settings. With this approach and using N machines in the
grid, if X is the time taken by one machine to render the
whole scene, we could obtain a rendering time smaller
than X /N.

e One of the main advantages of this distributed approach
is its scalability. The performance perceived by the user
depends on the number of subscribed providers and the
characteristics of them in a global way. The more and bet-
ter providers Yafrid has, the better results will be obtained.

e Yafrid is Free Software. This system could be used in any
research work or working in production projects.

7.1. Future works

An enhancement that would improve the performance of the
system would consist in making an analysis of the scene be-
fore scheduling. In this previous step it would be analyzed
how long each part of the scene takes to be done. According
to the information obtained, the system would be able to use
variable granularity when dividing a frame into fragments to
increase efficiency.The zones of the scene which take more
time to be done will be divided into smaller pieces in order
to decrease the output time by balancing the time each frag-
ment takes.

Each workunit could be calculated using different quality
settings. In this way we can obtain better global rendering
time (the sum of rendering time of each machine) than con-
structing the image with one processor.

8. Acknowledgement

This work has been funded by the Spanish ministry of
Science and Technology under Research Project "DIMO-
CLUST” TIC2003-08807-C02-02.

References

[Bro02] BROWN M. C.: Buil a Grid App with Python.
ibm.com/DeveloperWorks (2002).

[BSO5] BUYYAR., SRIKUMAR V.: A Gentle Introduction
to Grid Computing and Tecnologies. CSI Communica-
tions 29, 1 (July 2005), 9-19.

[DPH*03] DEMARLE D., PARKER S., HARTNER M.,
GRIBBLE C., HANSEN C.: Distributed interactive ray
tracing for large volume visualization. Proc. IEEE Sym-
posium on Parallel and Large-Data Visualization and
Graphics (2003), 87-94.

[FK98] FOSTER I., KESSELMAN C.: The Grid: Blueprint
for a New Computing Infrastructure. Morgan Kaufman,
Elsevier, 1998.

[FKT02] FOSTER I., KESSELMAN C., TUECKE S.: The
Anatomy of the Grid: Enabling Scalable Virtual Organi-
zations. International Journal of Supercomputing Appli-
cations 15, 3 (2002).

[FosO2] FOSTER I.: What is the Grid? A Three Point
Checklist. Web pages http://www-fp.mcs.anl.gov/
~foster/Articles/WhatIsTheGrid.pdf.

[GAW04] GRIMSTEAD I. J., Avis N. J., WALKER
D. W.: Automatic distribution of rendering workloads
in a grid enabled collaborative visualization environment.
ACM/IEEE SC 2004 Conference (SC’04) (2004), 32-38.

[JenO1] JENSEN H. W.: Realistic Image Synthesis using
Photon Mapping. A.K Peters, 2001.

[LMV*04] LEISTER W., MAZAHER S., VESTGARDEN
J. 1., JOHANSEN B., NORDLUND B.: Grid and related

technologies. Norwegian Computer Center Report (June
2004).

[LSSHO3] LEDLIE J., SHNEIDMAN J., SELTZER M.,
HuUTH J.: Scooped Again. In 2nd International Work-
shop on Peer-to-Peer Systems (IPTPS’03) (Berkeley, CA,
USA, February 2003).

[MABO5] MADHAVAN K. P. C., ARNS L. L., BERTO-
LINE G. R.: A distributed rendering environment for
teaching animation and scientific visualization. [EEE
Computer Graphics and Applications (2005), 32-38.

[RSO02] REINEFELD A., SCHINTKE F.: Concepts and
Technologies for a Worldwide Grid Infrastructure. Lec-
ture Notes in Computer Science 2400 (2002), 62-71.

[Whi80] WHITTED T.: An improved illumination model
for shaded display. Communications of the ACM 33, 6
(June 1980), 343-349.

(© The Eurographics Association 2006.

http://www-fp.mcs.anl.gov/~foster/Articles/WhatIsTheGrid.pdf

