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Abstract

We present a coherent hierarchical level of detail (HLOD) culling algorithm that employs a novel metric to perform
the refinement of a HLOD-based system that takes into account visibility information. The information is gathered
Jfrom the result of a hardware occlusion query (HOQ) performed on the bounding volume of a given node in
the hierarchy. Although the advantages of doing this are clear, previous approaches treat refinement criteria and
HOQ as independent subjects. For this reason, HOQs have been used restrictively as if their result were boolean.
In contrast to that, we fully exploit the results of the queries to be able to take into account visibility information
within refinement conditions. We do this by interpreting the result of a given HOQ as the virtual resolution of a
screen space where the refinement decision takes place. In order to be able to use our proposed metric to perform
the refinement of the HLOD hierarchy as well as to schedule HOQs, we exploit the spatial and temporal coherence
inherent to hierarchical representations. Despite the simplicity of our approach, in our experiments we obtained
a substantial performance boost (compared to previous approaches) in the frame-rate with minimal loss in image

quality.
Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Viewing algorithms 1.3.7

[Computer Graphics]: Three-Dimensional Graphics and Realism

1. Introduction

Visualization of complex models comprising several million
polygons is a very active research area [RLO0, EMWVBO01,
GBBKO04, YSGMO04, CGG*04, GMO05]. For the interac-
tive rendering of such models, hierarchical level of detail
(HLOD) methods have proven to be the most efficient ap-
proach. Typically, a HLOD-based system is built perform-
ing two recursive offline steps: 1. Without assuming any-
thing about the topological genus of the underlying model,
a scene hierarchy is built in a top-down manner using spa-
tial subdivision driven solely by a user-defined target num-
ber of primitives per node. 2. For each node of this hierar-
chy a single, or a few levels of detail are generated using
offline simplification in a bottom-up manner. HLODs sup-
port out-of-core algorithms in a straightforward way, and al-
low an optimal balance between CPU and GPU load dur-
ing rendering [GBBKO04]. The HLODs either consists of a
point-based [RLOO], or polygon-based approximation of the
model [EMWYVBO1].
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During runtime visualization of the model two of the main
tasks needed to be accomplished are: the refinement of the
HLOD hierarchy and performing the occlusion culling.

The quantity that has traditionally driven the refinement
of the hierarchy is the screen projection error. This quantity
corresponds to the number of pixels obtained when project-
ing onto the screen a given model space error related to a
node (see Section 2.1).

The preferred method of performing the occlusion culling
has been through hardware occlusion queries (HOQs), (see
Section 2.2). To test the visibility of a node, a HOQ is issued
on the node bounding volume. The returning value of the test
corresponds to the precise number of pixels of the volume
that would result as being visible (see Section 2.2.2). Since
the main disadvantage of HOQs is that there is a latency be-
tween issuing a query and the availability of the result, the
scheduling of the queries should be performed carefully. The
preferred method for doing this has been the coherent hier-
archical culling algorithm{BWPPO4{Fer-theschedulingof
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queries, the method fully exploits the spatial and temporal
coherence of visibility (see Section 2.2.1).

Occlusion culling offers an excellent measurement for
HLOD refinement criteria. According to the degree of partial
occlusion of a node, it could be determined that there would
be no gain in the final appearance of the image obtained if
the node were further refined. However, to our knowledge
there are no HLOD approaches which take visibility infor-
mation as an integral part of the refinement condition (see
Section 3). With this purpose in mind, in this paper we pro-
vide the means to relate the previously stated refinement cri-
terion with HOQs (see Section 4). Moreover, in order to use
our introduced metric to perform the hierarchical refinement,
and to avoid latency times due to HOQs, we exploit the spa-
tial and temporal coherence of visibility inherent to hierar-
chical representations (see Section 5).

Some of the properties of our approach are: 1. Improved
performance with the same visual quality: we are able to ren-
der less primitives with minimal loss in image quality (see
Section 6); 2. Generality: our metric supports both polygon-
based as well as point-based HLODs; 3. Full use of the result
of the HOQ: our metric takes full advantage of the informa-
tion gathered in HOQs; 4. Full use of the spatial and tempo-
ral coherency inherent to hierarchical representations; and 5.
Straightforward implementation.

2. Related Work

2.1. Refinement criteria: model and screen projection
errors

2.1.1. HLOD refinement

The screen projection error is the quantity that has tradition-
ally driven the refinement of a HLOD-based system. In a
top down traversal of the hierarchy the refinement condition
may be written as follows: if (¢ < 1) then stop hierarchical
refinement (e.g., [CGG*04]), where: € corresponds to the
screen projection error, i.e., the projection onto the screen
of a model space measurement A, and T corresponds to the
user specified threshold given in pixels (sometimes known
as pixels of error [YSGMO04]). Observe that the proposition
(e < 1) is referred as StopHLODRefinement(node) in the al-
gorithms of Section 2.2.1.

In polygon-based HLODs, A corresponds to the model
space error due to the simplification of the geometry re-
lated to a given node in the hierarchy. Readers may refer to
Lindstrom [Lin03], for a possible estimation of A from the
quadric error metrics [GH97]. An upper bound of € could
be obtained by measuring in pixels the projected diameter of
a sphere with diameter equal to A and centered at the node
bounding sphere point closest to the viewpoint [CGG*04]
(see Figure 1).

In point-based HLODs, A corresponds to the bounding
volume of a given node, e.g., the node bounding sphere
[RLOO], or the node bounding box [GMO5].
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Figure 1: Screen projection errors in polygon-based
HLODs.

2.1.2. Refinement within the nodes

During runtime inspection of the model, in polygon-based
HLODs popping artifacts may appear when refining (or
coarsing) in a given frame a previous visible node. Those vi-
sual artifacts are prominent in hierarchies with fast growing
subdivision [Pas02]. To avoid their appearance, instead of a
single level of detail, a few levels of detail are related to each
node. Thus, an additional finer-grained refinement needs to
be achieved within the nodes of the hierarchy [YSGMO04].
To perform this refinement a range of model space errors
[Amins Mnax], s first (during the simplification step) related to
each node. When visiting a node during runtime, T is mapped
back from screen to model space to obtain Az, i.e., At simply
corresponds to the value of the model space error that when
projected onto the screen leads to € = 1. The value of A is
then used to: 1. Refine the hierarchy by means of the follow-
ing refinement condition: if (A < A < Apax) then stop
hierarchical refinement. 2. Refine the geometry within the
node. Readers may refer to Hoppe [Hop97] for the details
of how to accomplish the refinement of a geometric model
when A is given.

2.2. Hardware occlusion queries

The HOQ scan converts a set of graphics primitives (but does
not render them to screen), and determines whether or not
any pixels in the frame buffer would be affected if the prim-
itives were actually rendered to the screen [HGJ03]. HOQs
have several advantages: generality of occluders, occluder
fusion, generality of occludees, better use of GPU power,
and easy use. For this reason, HOQs have become the pre-
ferred method in those HLOD-based systems implementing
occlusion culling, e.g., [YSGMO04, GMO05]. However, their
main disadvantage is that there is a latency between issuing
a query and the availability of the result [BWPP04].

Currently, the two main supported properties of HOQs in
OpenGL are:

Property 1. Multiple occlusion queries may be sent at once.
See Section 2.2.1.

Property 2. The returning value corresponds to the number
of visible pixels of the queried object, but without telling
anything about their position. See Section 2.2.2.
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2.2.1. Coherent HLOD culling

By means of the first property stated above, authors have fo-
cused their attention on avoiding CPU stalls due to latency.
An elegant and powerful method to minimize them was in-
troduced by Bittner et al., [BWPP04]. The method fully ex-
ploits the spatial and temporal coherence of visibility, inher-
ent to hierarchical representations.

This method could easily be adapted to any HLOD-based
system, as it is done in Gobetti et al., [GMOS5] (see Algo-
rithm 1). The method, to be executed once per frame, com-
prises two parts: process finished HOQs (Algorithm 2), and
hierarchical traversal (Algorithm 3).

Algorithm 1 CoherentHLODCulling
1: PriorityQueue.Enqueue(hierarchy.Root)
2: while (not  PriorityQueue.Empty() or not
QueryQueue.Empty( )) do
3:  ProcessFinishedHOQs
4:  HierarchicalTraversal
5: end while

In Algorithm 2, HOQs are processed once their result is
available or when the priority queue is empty (see line 1 of
Algorithm 2). Only in the latter case the algorithm waits for
the result of HOQs. If a node is determined to be visible
(see line 4 of Algorithm 2): 1. The node and its ancestors are
marked as visible (see line 5 of Algorithm 2). 2. The node is
attempted to be rendered immediately or their children are
scheduled for traversal (see line 7 of Algorithm 2, and Algo-
rithm 4).

Algorithm 2 ProcessFinishedHOQs
1: while (not QueryQueue.Empty() and (ResultAvail-

able(QueryQueue.Front()) or PriorityQueue.Empty()))
do

2:  node<—QueryQueue.Dequeue()

3:  visiblePixels«—GetOcclusionQueryResult(node)
4. if (visiblePixels> 0) then

5: PullUpVisibility(node)

6: stopRefinement«—StopHLODRefinement(node)
7: TraverseNode(node, stopRefinement)

8: end if

9: end while

In Algorithm 3 the hierarchy is traversed in a top-down
and in an approximated front-to-back traversal order, i.e.,
the nodes are scheduled for traversal, using a priority queue
[BWPP04]. While performing the traversal: 1. HOQs are is-
sued (and enqueued in a query queue) only for the bounding
boxes of previous invisible nodes or for the bounding boxes
of those nodes where it was determined that the HLOD re-
finement had stopped (see line 9 of Algorithm 3). 2. Without
waiting for the result of HOQs, previous visible nodes are
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attempted to be rendered immediately, or their children are
scheduled for traversal (see line 14 of Algorithm 3, and Al-
gorithm 4).

Algorithm 3 HierarchicalTraversal
1: if (not PriorityQueue.Empty()) then
2:  node«PriorityQueue.Dequeue( )
3:  if (InsideViewFrustum(node)) then

4: wasVisible<—node.visible and (node.lastVisited =
framelD-1)

5: stopRefinement«—StopHLODRefinement(node)

6: stopRefinementOrWasInvisible«—not wasVisible
or stopRefinement

7: node.visible<—false

8: node.lastVisited<—framelD

9: if (stopRefinementOrWaslInvisible) then

10: IssueOcclusionQuery(node)

11: QueryQueue.Enqueue(node)

12: end if

13: if (wasVisible) then

14: TraverseNode(node, stopRefinement)

15: end if

16:  end if

17: end if

Algorithm 4 TraverseNode(node, stopRefinement)

1: if (stopRefinement) then

2 Render(node)

3: else

4:  PriorityQueue.EnqueueChildren(node)
5: end if

In the following we will only discuss the parts of the al-
gorithm that are most closely related to our work (see Sec-
tion 5). For a thorough discussion on the subject readers may
refer to Bittner et al., [BWPP04] and Gobetti et al., [GMO5].

2.2.2. Returning values of HOQs

To our knowledge the second property stated above has
received little or no attention. In all previous HLOD ap-
proaches to test the visibility of a node in the hierarchy, a
HOQ is issued on its bounding volume. If there are no vis-
ible pixels, the object related to the node is culled away. If
there is at least one visible pixel and if (¢ > 1), then the node
is further refined [YSGMO04, GMO05], i.e., HOQs have been
used as if their result were boolean. The main issue with this
approach is that it results as being too conservative, partic-
ularly when the number of visible pixels is low. Therefore,
our approach is to use the precise number of visible pixels re-
turned from HOQs as integral part of the HLOD refinement
criterion (see Section 4).
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3. Overview

Few approaches exist that integrate LODs with occlusion
culling. A cell/object-precision occlusion culling method
was introduced in Andujar ez al., [ASVNBOO] (readers may
refer to Cohen et al., [COCSDO02] for a taxonomy of occlu-
sion culling methods). The scene is divided into cells and
for each cell the objects are classified into sets according to
their visibility degree, i.e., a representative error that mea-
sures the possible contribution in pixels to the final image
is assigned to each set. From the selection of some objects
that act as occluders, the sets related to each cell are ob-
tained during a preprocess. During runtime the error is used
to: discard the objects of the sets not meeting a user defined
threshold; or, for the objects having a multiresolution repre-
sentation, to select the proper level-of-detail needed to dis-
play them. Unfortunately, this method is incompatible with
HLODs: to perform a fixed preselection of objects as oc-
cluders in a HLOD-based system seems a very difficult task,
i.e., every single node in the HLOD hierarchy represents po-
tentially both, a good occluder and an occludee. Thus, the
occlusion method should take into account the occlusions
caused by all the objects in the scene [COCSDO02].

Our idea of integrating occlusion culling directly into the
refinement criterion of a HLOD-based system is based on
the following observation. As previously stated, during ren-
dering time, state-of-the-art hierarchical refinement corre-
sponds solely to the comparison between a screen space er-
ror, given in number of pixels, and a user specified thresh-
old, (see Section 2.1). However, because of its advantages
the preferred method of performing the occlusion culling is
through HOQs, (see Section 2.2). Nevertheless, the result of
the queries is the number of visible pixels of a given object.
Since occlusion culling also offers an excellent refinement
criterion (see Section 1), it seems reasonable to integrate it
into the above refinement condition. In this way we expect
to obtain an increment in the average rendering frame-rate:
once we determine that there is no gain in further refining
a node, due to partial occlusion, we could stop the refine-
ment in advance, sending less primitives to the graphics card
while achieving the same approximated visual quality.

Observe that a naive approach to using the result (g) of a
HOQ, would be to redefine the refinement condition as fol-
lows: if ((e < 1) or (¢ <)) then stop refinement, where y
would be an additional user defined threshold given in pix-
els. The reason is that the new proposition (g < ), is view
independent, i.e., it does not take into account the viewpoint,
nor other viewing parameters; and thus it is incompatible
with the nature of the refinement criterion.

In Section 4 we introduce our proposed metric to use the
result of HOQs directly within refinement conditions, and in
Section 5 we show our approach to exploit the spatial and
temporal coherence to avoid latencies, meanwhile using our
introduced metric to perform the hierarchical refinement.

4. Virtual multiresolution screen space errors

In contrast to previous approaches our novelty is that we em-
ploy the result of HOQs as an integral part of the HLOD re-
finement criterion. We interpret the result of a given HOQ
as the virtual resolution of a screen space where we are go-
ing to project a given model space error A. In all previous
approaches A is directly projected onto the screen space S,
at its full original resolution, (see Section 2.1). Similar to
previous approaches we also use the value of the new error
metric, dubbed virtual multiresolution screen space error, as
the quantity that guides refinement.

Let M be the space on the screen defined as the subset of
S that corresponds to the projection of a given node’s bound-
ing volume B. Observe that M bounds the projection onto S
of the model space error related to B, A; and also the (even-
tual) projection of its related geometry G. Let us say that the
resolution of M, denoted by 0., corresponds to the number
of pixels of the projection of B onto S. Let ¢ be the number
of visible pixels on S obtained when a HOQ on B is issued,
i.e., the result of the query; and ¢’ be the number of invisible
pixels. Observe that ¢’ = ot — ¢, and that 0 < ¢ < o always
holds. Also note that, if in the moment when the query was
issued there were no objects between S and B, then o = g.

Suppose that the result of the HOQ performed on B is
available, i.e., we know ¢; and remember that we want to
use its value as an integral part of the refinement criterion,
i.e., we want to establish how ¢ could affect €. However, in
polygon-based HLODs A is not subject to occlusion: for the
sole purpose of projecting A we always need to assume that
all the pixels of M are visible (see Section 2.1.1). Our ap-
proach is therefore to coarsen the resolution of M by means
of ¢, i.e., we calculate from g a coarser virtual screen space
resolution 9, 8 = f(¢q) < ., for the screen space where we
are going to project A. The visual appearance obtained when
projecting G due to €, could then be approximated using & in
one of two ways:

1. Calculate € in the original (real) resolution o, while pro-
jecting G at the coarse (virtual) resolution d.

2. Calculate € in the coarse (virtual) resolution 8, while pro-
jecting G at the original (real) resolution o.

In terms of the biased (see below) visual appearance ob-
tained, the two statements above are almost equivalent.
However, in the latter case we would be able to stop the
refinement higher in the hierarchy allowing us to send less
primitives to the GPU, i.e., effectively taking into account
the result of the HOQ.

4.1. How much to coarsen a virtual resolution

To best decide how to calculate & it would be necessary to
measure the introduced bias, i.e., the loss in image quality.
However, to characterize the bias it would be necessary to
know the exact position of the pixels comprising g. Since
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this functionality is not currently present in HOQs (see Sec-
tion 2.2) in this paper we simply assume that § = ¢. That is,
in order to project A we coarsen the resolution of M from o
to g. Observe that for extreme visibility conditions this as-
sumption leads to reasonable results, i.e., if ¢ = O then the
value of € at the coarse virtual resolution would be 0; and
if ¢ = o then the value of € at the coarse virtual resolution
would be the same as if no visibility information would have
been gathered. Fortunately, for most practical purposes we
have found this to be a good approximation. Most likely be-
cause the closer g gets to 0, the bias gets a higher chance to
decrease (see Section 6).

4.2. Switching among multiple virtual resolutions

Since we can not allow an actual change in the resolution to
take place, we now seek to compute € at a virtual resolution
g, from its computation at o.. We can then take the value of
the former to effectively refine the hierarchy, without actu-
ally modifying the original resolution. For this, we show how
€ could be virtually switched among multiple resolutions.

We begin by extending the definition of the screen pro-
jection error according to a given screen resolution 7. First
suppose that when projecting A onto the screen space, each
of the obtained pixels occupy a position (i, j). Let us say
that the virtual multiresolution screen projection error € at
a given screen resolution v, is given by the following expres-
sion:

e =331
i

Where IZ ; corresponds to the intensity value of the pixel
at the screen position (i, ), and at the given screen resolution
v. Note that if 7 = o, then €" reduces to the original defini-

tion of €, i.e., in this case I;{' are 0 or 1, and thus €' simply
corresponds to the number of pixels of the projected error.

Now let a” be the area occupied by a single pixel at a
given screen resolution Y. To keep the estimation of the error
consistent when virtually switching the resolutions, the total
intensity due to €' should be maintained constant, i.e., this
will produce exactly the same effect on ¢, as if we were to
actually change the screen resolution. Therefore, since the
total intensity due to €' is given by a'¥,;¥; Izj, it follows
that:

q q _ O o
a ZZli,j =a 22117./
i i
However, since a? x g = a®+ o and € = €%, we finally get:

el =ex(q/0)

Thus, our hierarchical refinement condition that takes into
account HOQs may be simply written as: if (ex* (¢/a)) < 1)
then stop hierarchical refinement.
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4.3. Estimation of the number of pixels obtained when
projecting a node bounding box

It only remains to show how o could be calculated. The ex-
act computation of o (see the previous observation regard-
ing when o = ¢) suffers from a double drawback: we would
need to issue an additional HOQ on a reset z-buffer. While
there are several ways to approximate the value of ., our ap-
proach is to do it as follows. As a part of the preprocess: 1.
We first build a cube B with the same volume as B. 2. On
an orthogonal view direction from the center of one of the
faces of §, we calculate the shortest distance d, at which the
cube is completely visible and count the number of pixels f
of the face. 3. We keep at the node the values of f and d.
It is easy to see that the estimated value of o, to be used at
runtime, is then simple given by:

G =f*(d/d)*

Where d is the same distance used to calculate €, i.e., the
distance from the viewer to the center of the node’s bound-
ing sphere, at a given frame. Observe that the above estima-
tion leads almost always to an underestimated value of «.,
i.e., otherwise we would be underestimating the value of €7,
something that is better avoided.

4.4. Refinement within the nodes

So far we have only focused our attention on hierarchical
refinement. However, we can easily adapt our above frame-
work for those hierarchies where it is necessary to further
refine the model within the nodes (see Section 2.1.2). Since
the user specified threshold is given in screen space, we can
use the result of the query to adjust T exactly in the same
way as we did with €, i.e., we can simply: 1. Compute 17 as
1 = 1% (g/0); 2. Compute A by mapping back 17 to the
model space; and, 3. Use A to refine the model.

5. Coherent HLOD culling algorithm

In order to exploit the spatial and temporal coherence of vis-
ibility inherent to hierarchical representations while using
our above introduced metric, we have departed from Algo-
rithm 1 (see Section 2.2.1). Remember that we use the result
of HOQs (g) as integral part of the refinement condition, i.e.,
we use €7 instead of € as integral part of the hierarchical re-
finement condition (see line 6 in Algorithm 2 and line 5 in
Algorithm 3). In order to do this, we will show our approach
adapting both parts of this algorithm in the following.

5.1. Process finished HOQs

We process finished occlusion queries in the same way as in
Algorithm 2, but in order to test the hierarchical stop con-
dition (line 6 of Algorithm 2) we simply use €7 instead of
€.
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5.2. Hierarchical traversal

Since at the moment of performing the hierarchical traver-
sal (Algorithm 3) we do not know the result of HOQs, we
need to predict when the refinement should stop. Observe
that the ratio ¢/o. simply represents the visible fraction of
the given node bounding box. We call this ratio the visibility
coefficient of the node u, u = (g/o). Since 0 < g < o (see
Section 4) then 0 < u < 1 always holds. Now let i be the
predicted value of u. Our approach is to use the value of u to
perform the hierarchical traversal, i.e., we use the value of u
as an integral part of the right hand side condition of line 5
of Algorithm 3. Before showing our approach to compute g,
we have identified the following cases relating to the quality
of the prediction:

1. If g = p for all the nodes in the hierarchy then we are in
the ideal case, i.e., we would be able to render the small-
est number of nodes with minimal loss in image quality.
In terms of visual quality, this case is equivalent to as
if we were using the hierarchical stop-and-wait method
[BWPP04], using our new screen space error metric €7
(see Section 6.1).

2. If g > u for all the nodes in the hierarchy, then in terms
of visual quality a conservative case will follow, i.e., we
would render more nodes than the ideal number, but ar
least with the same visual quality obtained in the first
case stated above. Also observe that in this case we would
never be rendering more nodes than if we used Algo-
rithm 1, i.e., if @ = 1 for all the nodes in the hierarchy
then we would render exactly the same number of nodes
as if we used Algorithm 1.

3. If for a given hierarchy node 1 < u then a potential source
of visual artifacts arises, i.e., if the node was determined
visible in the previous frame, then it is immediately ren-
dered in the current frame (see line 14 of Algorithm 3).
However, later on in the same frame when the result of
the HOQ performed on the node is available, the node is
traversed and thus some of its descendants get the chance
to be also rendered within the same frame (see line 7 of
Algorithm 2).

We exploit the spatial coherency inherent to the traversal al-
gorithm to compute the value of . Our observation is that
the position of the node in the priority queue gives a hint of
its visibility coefficient. The reason is that the nodes in the
priority queue are scheduled in an approximated front-to-
back traversal order (see Section 2.2.1). Thus, our assump-
tion to compute 4 is that it linearly decreases from 1 to 0 with
the position of the node in the priority queue, i.e., we simply
employ the following expression g = 1 — (s/S), where s is
the scheduled position of the node in the priority queue in
the current frame (as defined in line 4 of Algorithm 4) and
S corresponds to the total number of scheduled nodes in the
previous frame.

Fortunately, although its simplicity we have found this ap-
proach to be both effective and conservative in terms of vi-
sual quality (see Section 6).

6. Results

An experimental software supporting our new metric and our
coherent HLOD culling algorithm has been implemented on
Linux using C++ with OpenGL. To evaluate the performance
boost and the image quality obtained in our approach, we
have extensively tested our system with a number of scenes
with different depth complexities. We have implemented a
geometry-based HLOD with an octree with nearly 2000 tri-
angles per node. We have also employed the quadric error
metrics (see [GHI97]) to simplify the geometry, and to derive
the model space errors [Lin03]. All tests were run on a win-
dow size of 640%480 and T = 1, and on a Pentium M 1.7GHz
with a nVidia GeForce Go 6200.

6.1. Tests

For our discussion in this paper we have built three scenes
with low, middle and high depth complexities, respectively
named as scene 1, scene 2, and scene 3 (see Figures 8, 9 and
10). For each scene we have designed a session representing
typical inspection tasks. Our inspection sequences include
rotations and changes from overall views to extreme close-
ups that heavily stress the system. For each scene we have
played the sequence to collect data: frame rates and number
of drawn nodes. Depending on the traversal algorithm and
the metric used to refine the hierarchy, we have evaluated
the following configurations:

1. CHLOD-€7: the hierarchy was traversed with our coher-
ent HLOD culling algorithm (see Section 5) using our
new screen space error metric (€7) to refine the hierarchy
(see Section 4).

2. CHLOD-¢: the hierarchy was traversed with the coherent
culling algorithm version of Gobetti et al., [GMO5] (see
Section 2.2.1). The metric used to refine the hierarchy
was €.

3. SW-g?: the hierarchy was traversed with a top-
down/front-to-back traversal algorithm based on bit tog-
¢gling using our new screen space error metric (g7) to re-
fine the hierarchy. Observe that under this configuration
there is no avoidance of latency time (see Section 2.2.1),
i.e., the traversal algorithm corresponds to the hierarchi-
cal stop-and-wait method referenced in Bittner er al.,
[BWPPO4]. Also note that this configuration gives the
ideal number of nodes to be drawn.

4. SW-e: the hierarchy was traversed with a top-down/front-
to-back traversal algorithm based on bit toggling using €
as the screen space error metric to refine the hierarchy.
Observe that under this configuration there is no avoid-
ance of latency time (see Section 2.2.1).
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Figure 2: Frame rates for scene 1 (low depth complexity).
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Figure 3: Drawn nodes for scene I (low depth complexity).

6.2. Performance boost
6.2.1. Scenes with low depth complexities

In scene 1 we have obtained an average of 17%, 36%, and
79% of performance boost in the frame rate when using
CHLOD-¢%, respectively to CHLOD-¢, SW-¢7 and SW-¢.
Figure 2 shows the whole frame rate values of the inspec-
tion sequence. The main reason for this improvement was
that we were able to send less primitives to the GPU: in re-
spect to CHLOD-¢, we saved an average of 14% of the total
number of nodes that needed to be rendered. On average, we
rendered only 25% more nodes than in SW-g7, which gives
the ideal number (see Section 6.1). Figure 3 shows the whole
sequence of drawn nodes. All scene statistics have been sum-
marized in Table 1.

6.2.2. Scenes with middle depth complexities

In scene 2 we have achieved similar results. We obtained an
average of 16%, 42%, and 82% of performance boost in the
frame rate when using CHLOD-€7, respectively to CHLOD-
€, SW-g7 and SW-¢. Figure 4 shows the whole frame rate
values of the inspection sequence. In respect to CHLOD-¢,
we saved an average of 14% of the total number of nodes
that needed to be rendered. We were able to render only 18%
more than the nodes found by SW-g4, which gives the ideal
number. Figure 5 shows the whole sequence of drawn nodes.
All scene statistics have been summarized in Table 1.
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Figure 5: Drawn nodes for scene 2 (middle depth complex-
ity).

6.2.3. Scenes with high depth complexities

In scene 3 we have achieved more impressive results. We ob-
tained an average of 31%, 44%, and 122% of performance
boost in the frame rate when using CHLOD-¢7, respectively
to CHLOD-¢g, SW-g7 and SW-¢. Figure 6 shows the whole
frame rate values of the inspection sequence. In average, we
were able to save 21% of the total number of nodes that
needed to be rendered, in respect to CHLOD-¢. However,
we rendered 53% more than the nodes found by SW-e7. We
found that this increment in the average arose under extreme
close-up visibility conditions where the number of rendered
nodes in CHLOD-€? was a lot higher than in SW-g9, see
frames 350-500 in Figure 7 (the figure shows the whole se-
quence with the number of drawn nodes). All scene statistics
have been summarized in Table 1.

In general, we have found that the higher the depth com-
plexity of a scene is our metric performs better. However,
we have found that our culling traversal algorithm performs
too conservative in scenes with higher depth complexity un-
der extreme close-up viewing conditions. Under these cir-
cumstances, even SW-¢7 could sometimes perform a little
better, e.g., (see frames 450-500 in Figure 6). This is one
of our main research avenues (see Section 7). For some
frames of the inspection sequences (frames 200-400, 450-
520, and 250-500 in Figures 2, 4 and 6, respectively) we have
also found that SW-¢7 performs equally or even better than
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Figure 7: Drawn nodes for scene 3 (high depth complexity).

CHLOD-¢. SW-¢ always gives the poorest performance, as
expected. Since our algorithm is always able to render less
nodes than CHLOD-¢, it almost always performs better than
CHLOD-¢.

6.3. Image quality

Figures 8, 9 and 10 illustrate the image quality of the three
scenes obtained when using CHLOD-g and CHLOD-g.
Note that the use of our technique does not alter the final
image quality perceived in these close-up frames of the in-
spection sequences.

To show the effect of the degree of correction of € when
refining the hierarchy using €7, the view-frustum view of the
bounding boxes of the nodes selected to be drawn are shown
in the top row of Figures 8, 9 and 10. Moreover, we have
coloured the node bounding boxes from blue to magenta to
red according to the degree of correction of €: blue means
low correction (¢ 2 €), magenta means middle correction
(€7 < €) and red means high correction (¢7 < €), see the top
of Figures 8(b), 9(b) and 10(b). Because of the visibility in-
formation gathered with HOQs, observe that the errors of
the nodes near to the view point, fend to get lower correc-
tion than those that are farther. This tendency is not always
strictly respected, as it is illustrated in the nodes farthest to
the view point that gets low correction in top of Figure 9(b).
The reason for that is in CHLOD-&? (and in CHLOD-¢ as

well) we use a compatible (but not exact) version of a front-
to-back traversal algorithm [BWPPO04]. The only issue with
this approach, in respect with our prediction task (see Sec-
tion 5) is that it could result as being too conservative (see
Sections 5 and 6.2). Thus, in CHLOD-£7 as well as in SW-¢g7
the introduced bias in the final image due to the correction
of € gets alleviated, i.e., the higher the correction of € is,
the harder the chance that the geometry related to the node
would result as being visible.

The only source that could hinder the visual quality in
CHLOD-€? is when there is an important number of nodes
that need to be refined once they have been rendered in the
same frame (see Section 5). Fortunately, we have found this
value to be negligible when using our CHLOD-&? algorithm:
the average number of drawn nodes that need further refine-
ment once they have been rendered for the three scenes are
only 0.9%, 1.19% and 1.85%, respectively (see Table 1).

7. Conclusions

We have introduced a coherent HLOD culling algorithm
that employs a novel metric to perform the refinement of a
HLOD-based system that takes into account visibility infor-
mation. Our approach supports both polygon-based as well
as point-based HLODs. Our main contributions are:

e Improved performance with the same visual quality: we
are able to render less primitives with minimal loss in im-
age quality.

e Full use of the result of the HOQ: our metric takes full
advantage of the information gathered in HOQs.

e Full use of the spatial and temporal coherency inherent
to hierarchical representations to avoid latency times in
HOQs meanwhile using the introduced metric to perform
the hierarchical refinement.

e Straightforward implementation.

For future work we are researching how to integrate other
view-dependent parameters (different from the distance to
the viewpoint) into the refinement criterion. Regarding our
approach to perform the coherent HLOD culling, we plan to
investigate means to better anticipate when the hierarchical
refinement should stop.
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