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Abstract
This paper presents a robust method for evaluating boolean operations on triangle meshes. It is based on a fast
and reliable point-in-solid algorithm that works with B-Rep representations. With this method, several boolean
operations can be performed with almost the same processing cost as a single boolean operation. Moreover, the
presented approach can take advantage of the modern programable graphics hardware.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Graphics processors I.3.5
[Computer Graphics]: Boundary representations I.3.5 [Computer Graphics]: Geometric algorithms, languages,
and systems

1. Introduction

Triangle meshes have multiple applications. They are used in
CAD, virtual reality and videogames for representing poly-
hedral solids. This representation scheme is a standard in
several areas, due to its simplicity. A triangle mesh can rep-
resent almost any object with a given level of detail. More-
over, it can be directly processed by the graphics hardware.

This paper presents an algorithm for evaluating boolean
operations on triangle meshes. The method presented here
is based on a classical approach for B-Reps [MT83, PK89].
The boolean evaluation method performs several optimiza-
tions in order to simplify the process. It is based on a triangle
classification approach which is reduced to a point classifi-
cation problem. The point classification algorithm used takes
advantage of current programable graphics hardware (GPU).

2. Background

In order to perform the boolean evaluation of two solids A
and B, three separate set, called subdivision regions, must
be calculated: A−B, B−A, A

T

B. This operation is indis-
pensable for evaluating boolean operations on B-Rep solids
[Sha01]. When the subdivision is performed, a resulting re-
gion is selected depending on the desired boolean operation.
For example, to evaluate a boolean difference only the A−B
region is selected and processed. There are several tech-

niques for performing the subdivision of a triangle mesh.
They are based on using section lines [MT83] or triangle
trimming [PK89]. The method presented here uses the sec-
ond approach, that is, it divides all triangles from one solid
that intersect the other solid.

The rapid evolution of graphics hardware in the recent
years is allowing a great increment in the performance of
graphics applications. First, the GPU can be used in a wide
variety of computer graphics problems [BFHSFHH*04,
Lef04]. These problems can be resolved with high perfor-
mance solutions based on features implemented in the hard-
ware. Second, the programmable units of the GPU allow us
to accelerate several operations which are applied to graphi-
cal models. Current programable GPUs can be used to solve
generic problems. When using the GPU, the algorithms can
be parallelized in order to improve their performance. Fur-
thermore, the GPU can take charge of some portions of a
program, saving CPU processing time for other purposes. It
is important to note that graphics processors are optimized to
work with data related to classic rendering purposes. There-
fore the data used in a general purpose algorithm must be
converted in order to be correctly processed by the GPU.

The method presented here uses a GPU-based point-in-
solid test algorithm in order to accelerate the most time-
consuming process of the method. This point-in-solid test
algorithm is suitable for B-Rep representations based on
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planar faces [FT97, SFRTO*05]. This solution is robust
and does not have degenerated cases, which are present in
other algorithms such as crossing-count [Oro98, OSF05].
The boolean evaluation method presented here classifies the
triangles of each solid using several optimizations. First, it
only performs the classification of a selected triangle set.
Second, it reduces the triangle classification to a point clas-
sification problem, which is obviously much easier. Finally,
the point classification is carried out using a GPU based
implementation [OJSF06]. This last step is the most time-
demanding process, so a GPU based implementation allows
us to achieve a better global performance.

3. Fundamentals

Basically, the algorithm has three main steps. The first
step consists of intersecting the two solids involved in the
boolean operation. The second step performs the classifica-
tion of the triangle set resulting from the previous step. The
final step selects a triangle set and builds a new solid.

First, the solids are transformed into the euclidean space
and expressed using the same reference coordinate system.
A decomposition of each solid is performed in order to ob-
tain a resulting triangle set that meets several conditions:
each triangle of a solid must not intersect with other trian-
gle, and it must be completely inside, completely outside or
completely on the boundary of the other solid. To summa-
rize the whole process in a sentence, each triangle from one
object is intersected with all triangles of the other solid, and
the appropriate tessellation is performed when there is an in-
tersection.

When the triangulation of each solid is adapted to the in-
tersection regions with the other solid, the classification of
each triangle is performed. Every triangle from solid A is
logically on the boundary of A, and the same applies for B.
To test whether a triangle from A is inside, outside or on the
boundary of B, a point-in-solid test is carried out using the
triangle barycenter. This simplification is based on the fact
that every triangle is entirely contained or not in the solid
to be tested, due to the triangulation performed in the first
step. The method used for the point-in-solid test is presented
in [SFRTO*05], and is implemented using the GPU (see Ap-
pendix). The result of this test determines the classification
of the triangle with respect to the other solid, that is, inside,
outside or on the boundary.

When all triangles have been classified, a subset that
meets several conditions can be selected for each boolean
operation (see section 6). Figure 1 shows a diagram of the
entire procedure. The operations involved in the presented
method are robust and reasonably simple. Moreover, the sec-
ond step, which is the most time consuming process, can be
implemented on the GPU.

Mesh B

Transform A Transform B

Octree optimizer

Mesh (Refined)A Mesh (Refined)B

Mesh ClassifiedA Mesh ClassifiedB

Mesh A

Final Mesh

Boolean Operator

Union
Intersection
Difference

Symetric Difference

Triangles Intersection
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Figure 1: The boolean evaluation process.

Figure 2: A tessellation produced for adapting the rook tri-
angulation for a classification with a sphere.
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Figure 3: Mesh refinement for performing a boolean differ-
ence on two solids.

4. Mesh refinement

The mesh refinement process is the first step of the presented
evaluation of a boolean operation. The goal is to obtain a re-
sulting triangle set that meets the following conditions. Each
resulting triangle of the decomposition of a solid must not
intersect other triangle from the other solid. Besides, each
resulting triangle must be completely inside, completely out-
side or completely on the boundary of the other solid. This
resulting triangle set allows us to classify every triangle from
each solid with respect to the other solid. These classifica-
tions can be performed using a single point from each trian-
gle, more concretely, the barycenter is used for each trian-
gle inclusion test. As the triangle inclusion test is reduced
to a point-in-solid test, the process is more efficient than
other boolean evaluation methods [RF04], which often rely
on mesh connectivity information and edge subdivisions.

During the mesh refinement each triangle from one mesh
is intersected with every triangle from the other mesh. With
this process two new meshes are obtained. The triangulation
of these meshes is adapted to the intersection zone between
the two original solids. Figure 3 shows a sample. Note that

with the new triangulations, the classification of each trian-
gle can be reduced to a classification of a point included in
that triangle. Unfortunately, this process is too complex to
be implemented on the actual GPU, so it is implemented on
the CPU instead.

With each triangle-triangle intersection new vertices are
introduced into the B-Rep structure. This applies for both
meshes during the intersection process. Those new vertices
logically belong to the frontiers of both meshes, and they are
the base for the new triangulations. Each triangle affected by
an intersection must be decomposed into new triangles (and
vertices). Figure 2 shows how the triangles are divided into
smaller faces when they are over the intersection region.

The bottleneck of this stage is the triangle-triangle inter-
section algorithm, because it must be performed for every
combination of two triangles from both meshes. To solve
this a spatial optimization method must be used. In our im-
plementation, an octree has been used. This octree stores in
each leaf node the identifiers of the triangles of each mesh
that intersect the volume represented by that node. Note that
the octree is the same for both meshes, so it is adjusted to
cover all triangles involved in the boolean evaluation. When
a triangle-triangle test is to be performed, the nodes of the
octree where the triangle to be intersected is included have a
list of triangles from the other mesh that are also included in
those nodes. With this optimization the triangles intersection
step cost is dramatically reduced.

The mesh refinement increases the number of vertices and
triangles. The intersection and tessellation of a triangle with
a solid can be carried out in two forms. The first consist of
calculating the intersections between the triangle and each
face of the solid. With each intersection, new vertices are
created, and the triangle must be tesselated correctly. This
process is repeated for every face of the solid taking into
account the new triangles created in each step. With this ap-
proach several intermediate tessellations are obtained before
reaching the final result [RF04]. The second method con-
sists of calculating the intersection of the triangle with all
the faces from the solid with a single step. This is the ap-
proach implemented in this work. All the vertices created
with the intersections are included in the original triangle to
be tested, therefore a Delaunay [Lis94] triangulation can be
applied in order to obtain the tessellation. The triangles from
this tessellation replace the original triangle in the resulting
mesh.

Attention must be paid to intersections between coplanar
triangles because they can lead to special cases. In this work
Möller’s algorithm [Mol97] has been used, which efficiently
resolves possible issues. Nevertheless it needs the Delaunay
algorithm in order to complete the triangulation. Other meth-
ods such as [RF04] can complete this process with a single
step, but with the drawback of having some special cases.

c© The Eurographics Association 2006.

123



C.J. Ogayar & F.R. Feito & R.J. Segura & M.L. Rivero / GPU-based evaluation of boolean operations on triangulated solids

5. Triangle classification

The triangle classification is the second step of the boolean
evaluation process. There are two triangulated meshes as a
result of the previous step. These meshes are conveniently
tesselated so that every triangle from both meshes is totally
inside, outside or on the boundary of the other mesh. This al-
lows us to determine the classification of each triangle using
only a single point located on the triangle. This simplifica-
tion makes the algorithm extremely simple to implement and
gives an excellent performance.

The problem of triangle classification is reduced to a
point-in-solid test. To test whether a triangle from A is in-
side, outside or on the boundary of B, a point-in-solid test
is carried out using the triangle barycenter. For this pur-
pose we have used a GPU based point-in-solid implemen-
tation [OJSF06]. This algorithm is very efficient and does
not require precalculated data. Other choices for this pur-
pose are BSP based point-in-solid test or a method based on
the Jordan Curve Theorem [OSF05]. In any case, our GPU
implementation is robust and very efficient. In the appendix
a summary of our point-in-solid method is presented.

When the entire triangle set from each mesh is classified
with respect to the other mesh (with in, out or on state), new
solids can be obtained as a result of a boolean operation. To
build a new mesh using a boolean operation, a new set of
triangles must be selected from the two previously classi-
fied triangle sets. The new set of triangles must verify sev-
eral conditions which depend on the boolean operation used
(see section 6). This classification method allows us to cal-
culate both regularized and not regularized boolean opera-
tions [RR99].

5.1. Optimized classification

When the intersection of two solids is calculated (the first
step), there are triangles of a solid that are not divided
because they are totally inside or outside the other solid
from the beginning. Those triangles are located together in
groups, which represent a part of the surface of the solid.
These zones of the surface are normally surrounded by the
triangles involved in the tessellation, which are located over
the intersection line between the two solids. If the connectiv-
ity information between triangles is calculated, we can build
groups of triangles that are separated by the triangles that
form the tessellation zone. These groups are totally inside
or outside the other solid, and they can be classified using a
simple point-in-solid test.

Figure 4 shows the tessellations carried out for two inter-
secting solids. The figure on the right shows how each group
is painted with a different color, representing a part of the
solid that can be classified as a single point. With this op-
timization, the number of points to be classified greatly de-
creases. As the point-in-solid test is the most time demand-

Figure 4: A rook A - rook B boolean operation (left). Groups
of triangles obtained with the tessellation of a solid (right).
Each group is presented with a different color. The triangles
that belong to the intersection zone do not have any color
because they cannot be classified as a group.

ing task of the boolean evaluation solution, this optimization
is indispensable in order to achieve a good performance.

6. Boolean evaluation

This is the final step of the boolean evaluation solution. At
this point the solids involved in the boolean operation are
triangulated so that every triangle from each solid is com-
pletely outside, completely inside or on the boundary of the
other solid. The triangles from each solid are also classified
with respect to the other solid. This last step consists of se-
lecting a triangle set that meets several conditions (see bel-
low) and building a new solid with that triangle set.

Let TA be the set of triangles from the tessellation of the
mesh A, and TB the set of triangles from the tessellation of
the mesh B. Let T−n be a set of triangles with their normals
inverted and n(t) the normal vector of the triangle t. Each
boolean operation is defined with several conditions that the
triangles must verify:

{A
T

B}: {TAinB}
S

{TAonB}
S

{TBinA}. Intersection.

{A
T

∗B}: {TAinB}
S

{TBinA}
S

{TAonB/n(ti) =
n(t j); ti ∈ TA, t j ∈ TB}. Regularized intersection.

{A
S

B}: {TAoutB}
S

{TBoutA}. Union.

{A
S

∗B}: {TAoutB}
S

{TBoutA}. Regularized union. It is
the same as {A

S

B}.

{A−B}: {TAoutB}
S

{T−1
B inA}. Difference.

{A−∗B}: {TAoutB}
S

{T−1
B inA}

S

{TAonB/n(ti) 6=
n(t j); ti ∈ TA, t j ∈ TB}. Regularized difference.

{A	B}: {TAoutB}
S

{(TAinB)−1}
S

{TBoutA}
S

{(TBinA)−1}. Symmetric difference. It is the same as (A−B)
S

(B−A).
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{A	∗B}: {TAoutB}
S

{(TAinB)−1}
S

{TBoutA}
S

{(TBinA)−1}. Regularized symmetric difference. It is the
same as {A	B} and also (A−B)

S

(B−A).

In order to perform a boolean operation, a triangle set that
meets the corresponding conditions must be selected. Regu-
larized operations are preferred because they produce correct
solids. For example, to evaluate a regularized boolean differ-
ence, the following triangle set is selected: the triangles from
A that are outside B, the triangles from B that are inside A
(reversing their normals), and the triangles from A that are
on the boundary of B and have a different normal vector.
With this triangle set a B-Rep that represent the new solid is
built.

The final result will be obtained by copying the triangles
that meet the conditions of the boolean operation into a new
mesh. Note that all boolean operations are performed with
the same refined meshes obtained after the tessellations of
the original solids. That is, all boolean operations between
two solids share the results from the two first steps of the al-
gorithm, which includes the mesh refinement and the trian-
gle classification steps. The only difference is the third oper-
ation, that is, the final triangle set selection. For this reason,
all possible boolean evaluations can be obtained with almost
the same processing cost as a single one, because the last
step of the algorithm has a very low processing cost (only a
selection and a triangle set copy operation). This can be use-
ful in some situations, such as an optimized CSG evaluation.

7. Implementation and results

The presented method can be implemented in several forms.
As the whole process is divided into three steps, each one
can be implemented using several approaches. For example,
the mesh refinements can be built using other triangulation
algorithm than the method presented here, and the point-
in-solid algorithm can be GPU-based or not. Nevertheless,
we present a robust and reasonably efficient implementa-
tion, which intensively uses the GPU, in addition of some
optimizations.

The first step of the boolean evaluation method consists
of performing an intersection between the two objects, fol-
lowed by a triangulation of the result. The bottleneck of this
stage is the triangle-triangle intersection algorithm, because
it must be performed for every combination of two triangles
from both meshes. This leads to a O(n2) algorithm which
is very inefficient. To solve this, a single octree classifier is
used for the transformed meshes. The octree stores in each
leaf node the identifiers of the triangles of each solid that in-
tersect the volume represented by that node. With this opti-
mization the triangle-triangle intersection step cost is greatly
reduced. With an octree depth of 7 or 8 the performance
is dramatically improved, having a reasonably low structure
calculation time. This is the most important optimization of
the first step of the boolean evaluation method.

Figure 5: Some boolean operations. The first four fig-
ures show (front left to right, top to bottom) Bishop

S

Rook,
Bishop

T

Rook, Bishop−Rook and Rook−Bishop respec-
tively. The last four figures show (front left to right,
top to bottom) Armadillo A

S

Armadillo B, Armadillo
A

T

ArmadilloB, Armadillo A−Armadillo B and Armadillo
B−Armadillo A respectively.
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Triangles 3D Studio Max 8 New (CPU) New (GPU)
Rook 2256 0,5 0,8666 0,2203
Bishop 5814 2,2 3,6656 0,7708
Knight 15350 15,0 9,5663 1,7180
Golf Ball 46205 86,0 63,6881 6,7503
Armadillo 150000 1125,0 694,8313 102,5001

Table 1: Times in seconds for several intersections between two instances of the same solid. The other boolean operations
present very similar times, so they are not included. The translations and rotations used to setup the solids are the same for all
operations. The times for 3DStudio Max 8 have an error |e| < 0.25 seconds.

The GPU based point-in-solid test described in the Ap-
pendix is used for classifying the triangle set of each refined
mesh. As our algorithm reduces the triangle classification to
point classification, the barycenter of each triangle is used to
classify it. Floating point precision is very important to keep
the robustness of the method. This is because nearly zero
point-in-solid tests can determine that a point and the asso-
ciated triangle are exactly on the surface. If the precision for
the epsilon used in the operations is not enough, problems
arise when intersecting coplanar faces from both solids.

The last step of the algorithm produces a new solid as the
result of the boolean operation. This new solid is represented
by a mesh that is built using a select triangle set that meets
the boolean operation conditions (see section 6). When using
regularized operations, the resulting solid is represented by
a valid B-Rep.

The data structure used to represent meshes is very sim-
ple. The vertices are stored as an array of vectors. The trian-
gle list is an array of integer-based indices which reference
the associated vertices of each triangle. During the mesh
refinement new vertices and triangles are inserted into the
structure. There can be duplicated vertices which must be
removed in order to ensure that the resulting mesh will be
a valid representation of a solid. When removing duplicated
vertices its linked triangles must be adjusted to reference the
correct vertices. If several boolean operations are planed to
be carried out, the duplicated vertices can be removed only
after the final operation in order to improve the performance.

To test the method several meshes have been used. The
meshes have different polygon quantities and different topo-
logical properties. The tests have been carried out with an
Intel Pentium 4 3.4GHz with 1Gb of memory using SSE2.
The GPU used is a NVidia GeForce 7800GTX 256Mb
with PCI-Express x16. The implementation of the algo-
rithm has been completely written using C++ and NVidia
CG [KF05, FK03].

Table 1 shows the performance times of the tests. As ex-
pected, the algorithm depends on the number of polygons.
The performance of the GPU-based implementation of the
algorithm is better than the CPU-based implementation. The
CPU version is better for low polygon meshes, because this
version does not need the initialization of any structures

and buffers. However, the negative influence of the factors
that affect the GPU version is reduced when the number of
polygons increases. The performance of the GPU is higher
than the CPU because of its specialized parallelism. Table 1
shows how the higher the count of polygons the greater the
advantage of using the graphics hardware.

Figure 5 shows some examples of boolean operations be-
tween triangles meshes using our implementation. Table 1
shows performance tests for some boolean operations. A
comparison with the standard boolean operator of 3DStu-
dio Max 8 is also presented. Unfortunately, we do not have
detailed information of how 3DSMax performs the boolean
evaluations, therefore the comparison is presented for il-
lustrative purposes. Note that 3DSMax presents a perfor-
mance issue when processing very high detailed meshes.
The proposed algorithm times include the entire process as
described in previous sections, including the octree creation,
the mesh refinement, the triangle classifications (which in-
volves the GPU based point-in-solid tests in the GPU based
version), the boolean evaluation and the final mesh creation.

8. Conclusions

We have presented an efficient and robust method to evaluate
boolean operations on triangle meshes. The method can be
implemented in several ways. Nevertheless, the solution pre-
sented here uses the modern programable GPU to enhance
the performance. The data structure needed to represent the
objects is the simplest form of B-Rep, therefore almost any
3D file format can be used without the need of performing
complex data conversions.
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Appendix: Point-in-solid test

Feito [FT97] proposes a point-in-solid algorithm for poly-
hedral representations based on the study of signs. The
performance of this method is similar to the performance
of the crossing-count approach. However, Feito’s point-
in-solid algorithm does not have degenerated cases. Se-
gura [SFRTO*05] extends the algorithm with optimizations
for triangle meshes using minimal topological information.
Ogayar [OJSF05, OJSF06] adapt the algorithm to be imple-
mented on GPU. In this section we present a summary of
this graphics hardware based method. The boolean evalu-
ation method presented in this paper uses this GPU based
point-in-solid implementation in order to improve the global
performance.

The implementation is carried out using OpenGL and
NVidia CG [KF05, FK03]. This allows rapid development
and the possibility of using the advanced features of current
GPUs [ME93, PBMH*02, PDCJH*03]. In short, point-in-
solid algorithm involves the following steps [FT97, OSF05,
OJSF05, OJSF06]:

1. A simplicial covering of the solid is built [FT97,OSF05].
This structure is composed of tetrahedra. For each trian-
gle of the solid a tetrahedron is built using the triangle
vertices and an additional point, which is the same for all
tetrahedra. A good choice for this point is (0,0,0).

2. The inclusion of the point in each tetrahedron is calcu-
lated. Note that tetrahedra can overlap. The result for the
point in tetrahedron test will be -1 if the point is inside or
+1 if the point is outside the tetrahedron.

3. The inclusion value for all tetrahedra is accumulated. If
the sum is ≥ 1 the point is inside the solid. Otherwise, the
point is outside.

As stated previously, if the point is on an edge that con-
nects the reference point with a vertex from the solid, two
values must be associated with that edge. This is a special
case. Also, if the point is on a face shared between two tetra-
hedra the inclusion state is divided by two.
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In order to achieve the GPU-based implementation, the
algorithm is divided into two steps. This is because there
are serious limitations in current graphics hardware, that is,
the graphics pipeline is too inflexible. Note that in order to
render a graphic primitive using a programmable GPU, one
vertex shader and one pixel shader are used in that order. In
the first step a vertex shader is used to compute the inclusion
of the point in each tetrahedron of the solid covering. The
pixel shader performs a simple data conversion. The result
is stored in a buffer, typically the framebuffer. In the second
step, another pixel shader computes the final sum of the val-
ues calculated in the previous step. At this point, no vertex
shader is used. In the following section, the details of each
step are explained.

First Step

The first step of the algorithm uses a vertex shader to per-
form the point in tetrahedron test for all tetrahedra of the
simplicial covering of the solid. The pixel shader writes in
the framebuffer what it receives from the vertex shader. In
a standard rendering process the vertex shader transforms
vertices and the pixel shader writes data in the framebuffer
using interpolated values that depend on the current graphic
primitive (such as triangles). With this inclusion algorithm,
the purpose is to execute the vertex shader once per tetra-
hedron and to write the result onto the framebuffer. This is
achieved using the following operations:

1. The data of tetrahedra associated with the triangle mesh
are calculated and converted to an adequate format for
the GPU. An OpenGL display list has been used to cod-
ify tetrahedra as vertices with attributes, so that one ver-
tex and its attributes in the graphics pipeline will actually
contain the entire data for one tetrahedron. This data is
sent to the graphics hardware. For each of these OpenGL
vertices a vertex shader is executed in order to calculate
the point-in-tetrahedron algorithm. As the vertex actu-
ally contains the data of a tetrahedron, each vertex shader
execution resolves a point-in-tetrahedron test. Algorithm
from 6 shows appin structure which defines semantics for
the attributes of a vertex, that is, the purpose of each ver-
tex attribute in the vertex shader. Therefore three tetra-
hedron points can be codified using the normal, the color
and the texture coordinates of the vertex. The fourth point
of all tetrahedra is fixed as the origin of coordinates. The
real position of the vertex is used to place it in the view-
port according to its vertex index. The viewport is there-
fore used as if it were a standard 2D array. Finally, the z
coordinate of the transformed vertex is used to store the
sign of the corresponding tetrahedron.

2. A 2D array of point primitives is rasterized in the view-
port with Standard OpenGL commands activating the
point-in-tetrahedron vertex shader. A point primitive will
generate only one pixel. Consequently a ratio of one-to-
one is achieved between elements in the vertex shader

and elements in the pixel shader. In this way, the result-
ing pixels in the framebuffer will be aligned with an n*n
matrix, n power of 2. The reason for this is explained is
the second step of the algorithm. The inclusion state for
a tetrahedron in [-1,1] range is stored in the framebuffer.
Note that the framebuffer is configured in a floating point
format, so the stored values are not clamped to [0,1].

To sumarize this entire process as a whole: one tetrahe-
dron is codified as a vertex with attributes; then it is in-
troduced into the graphics pipeline and processed with the
vertex and pixel shaders. Finally, the result is stored in
the framebuffer. A one-to-one correspondence between the
tetrahedra and resulting pixels is maintained. Due to the fact
that a floating point framebuffer can contain up to 128 bits
per texel, four 32 bits values can be used in each shader. This
allows us to perform the processing for four points in a sin-
gle shader execution, and takes advantage of the streaming
nature of the GPU.

At the end of the first step of the algorithm the framebuffer
contains the inclusion state for all tetrahedra. The second
step of the algorithm performs the final sum of the data. This
process can be performed in two ways: copying the frame-
buffer content to main memory in order to handle the special
cases in the CPU, or processing the data in the GPU using a
pixel shader.

Special cases are handled in the GPU as follows: The
point-in-tetrahedron state of a point is 0 (inside) or 1 (out-
side). For the rest of the cases special codes must be used.
However, this codes cannot be used for performing the final
sum at the end of the algorithm. Therefore, this step must
be performed in the CPU. The problem is how to detect the
special case at the GPU level. In the first step which involves
the vertex shader that performs the point-in-tetrahedron test,
this vertex shader must calculate the final position of the
OpenGL point in the framebuffer. The solution to the de-
tection of special cases is to translate the resulting position
of the vertex to an unused location of the frame buffer, for
example, the upper right corner. This position does not corre-
spond to any tetrahedron, it is only used as a flag. This step is
only performed when a special case is detected at the point-
in-tetrahedron test. When the flag is activated a special case
has occurred. The flag is checked by performing a 1x1 pixel
transfer from the framebuffer to CPU memory. This check-
ing is performed only once and after all tetrahedra have been
processed. When a special case is detected, the first step of
the algorithm must be repeated deactivating the special cases
checking system to avoid the translation of some vertices to
the flag position. The second step of the algorithm must be
completed using the CPU. The frequency of special cases is
very low. Therefore the average performance is not severely
affected.
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#define TETRA_OUTSIDE 0
#define TETRA_INSIDE 1
#define TETRA_FACE 0.1
#define TETRA_EDGE1 0.2
#define TETRA_EDGE2 0.3
#define TETRA_EDGE3 0.4

struct appin {
float3 vertexData : POSITION;
float3 tetraVertex1 : NORMAL;
float3 tetraVertex2 : COLOR0;
float3 tetraVertex3 : TEXCOORD0;

};

struct vout {
float4 position : POSITION;
float4 color : COLOR0;
float4 signs : COLOR1;

};

vout tetraVertexProgram4 (
appin IN,
uniform float3 testPoint,
uniform float3 testPoint2,
uniform float3 testPoint3,
uniform float3 testPoint4,
uniform float3 v0,
uniform float4x4 ModelViewProjectionMatrix )

{
vout OUT;
OUT.signs = IN.vertexData.z;
OUT.color = float4 (

tetraPoint ( IN.tetraVertex3, IN.tetraVertex2,
IN.tetraVertex1, testPoint ),

tetraPoint ( IN.tetraVertex3, IN.tetraVertex2,
IN.tetraVertex1, testPoint2 ),

tetraPoint ( IN.tetraVertex3, IN.tetraVertex2,
IN.tetraVertex1, testPoint3 ),

tetraPoint ( IN.tetraVertex3, IN.tetraVertex2,
IN.tetraVertex1, testPoint4 )

);
OUT.position = mul ( ModelViewProjectionMatrix,

float4 ( IN.vertexData.x, IN.vertexData.y, 0.0, 1.0 )
);

return OUT;
}

Figure 6: CG Vertex shader for calculating the inclusion
state of 4 points in a tetrahedron. The tetrahedron data is
specified as a vertex with attributes.

float4 accum ( float2 texcoord : TEX0,
uniform samplerRECT img : texunit1 ) : COLOR

{
float4 a, b, c, d;
a = f4texRECT ( img, texcoord );
b = f4texRECT ( img, texcoord + float2(0,1) );
c = f4texRECT ( img, texcoord + float2(1,0) );
d = f4texRECT ( img, texcoord + float2(1,1) );
return a+b+c+d;

}

Figure 7: The accum CG pixel shader calculates the addi-
tion of the values of the framebuffer in the second step.

Second Step

In the second step no vertex shader is used, only a pixel
shader. This step consists of a sum of the floating point val-
ues stored in the framebuffer, which is considered a typical
2D array. To achieve this, several operations must be per-
formed:

1. The result of the first step of the algorithm must be avail-
able as a texture. This can be carried out with a render-
to-texture capability of the GPU in the first step, that is,
the framebuffer will actually be a texture. If this feature
is not available in a given graphics hardware a copy op-
eration between the framebuffer and a separated texture
is adequate although slower. The texture contains the in-
clusion states for every tetrahedron, and is available to be
used in the pixel shader.

2. A rendering process is started. The vertex shader is deac-
tivated and texturing is enabled.

3. A quad primitive is drawn. The size of the quad is n/2 x
n/2 for a n x n texture. The texture is mapped so that it en-
tirely covers the new quad. This is achieved by adjusting
the coordinate textures of the quad. The source texture is
a special texture which contains floating point values, so
the texture coordinates are specified in pixels instead of
standard [0,1] format. In this way the top right corner of
a 512x512 texture is (511,511) instead of (1,1). The algo-
rithm is easier to implement if the framebuffer has a size
of nxn, and n a power of 2. This can usually mean a little
wasted space for most cases, but the performance tends
to be faster because the shader is simpler.

4. At the pixel level of the rendering pipeline, the pixel
shader is executed for each pixel of the resulting image.
With the drawing of the quad with the mapped texture,
each pixel of the resulting buffer will be mapped to a 2x2
texture region in the pixel shader. This pixel shader will
access its four corresponding texels from the texture and
it will add them all. The result of the sum will be stored
in the framebuffer. Algorithm from 7 shows this process.

5. This process is actually a buffer reduction using a sum
operator. Each resulting pixel is in fact the sum of four
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texels of the source texture. With this method, an iteration
of the graphic pipeline performs a buffer reduction of n/2
x n/2. This process is repeated swapping buffers until the
resulting buffer has a size of 1x1, which contains the final
result of the sum.

For each iteration of this step the input buffer is reduced
to an output buffer by a factor of 2. This factor can be in-
creased by implementing loops inside the pixel shader. In
this way each sum involves more than four values, so fewer
executions of the pixel shader are needed. Moreover the sizes
of the buffers must be adjusted properly. Nevertheless it is
convenient to use all available graphics processor pipes to
maximize the parallelism of the GPU, so for the most cases
it is better to maintain the reduction factor at 2. The buffers
used have a 128 bits floating format. This allows us to store
up to four 32 bits floating point numbers per buffer position.
Therefore four point-in-tetraheron results can be stored in
each buffer element. The reduction of n2 elements using 4x4
partial sums is performed in O(log(n)) steps.
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