
Ibero-American Symposium on Computer Graphics - SIACG (2006)
P. Brunet, N. Correia, and G. Baranoski (Editors)

Data-driven Tetrahedral Mesh Subdivision

L. Rodríguez† and I. Navazo and Á. Vinacua

Department of Software, Universitat Politècnica de Catalunya, Spain

Abstract
Given a tetrahedral mesh immersed in a voxel model, we present a method to refine the mesh to reduce the dis-
crepancy between interpolated values based on either scheme at arbitrary locations. An advantage of the method
presented is that it requires few subdivisions and all decisions are made locally at each tetrahedron. We discuss
the algorithm’s performance and applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling

1. Introduction

There are a number of applications (especially in medical
imaging, and scientific visualization) that require support for
alterations (deformations, cuts and time-evolution) of vol-
ume data.

The volume data are often sampled on a regular rectangu-
lar grid in 3D space, and stored in a voxel model. Each point
on the grid has an associated (scalar or vector) value of a
property, that we can think of as a function f whose domain
contains the portion of space that we are modelling. To sup-
port further computations, or to afford topological flexibility,
a simplicial-cells complex would be preferable, and indeed
one often immerses into the voxel space such a network of
tetrahedra for those purposes. These meshes may be a result
of subdividing the voxels into tetrahedra, or may result from
tetrahedralizations of a volume extracted from the model (for
instance the volume bound by certain iso-surface).

When this kind of mixed models are used, one needs to
address the difference in the way voxel models and tetrahe-
dral meshes compute property values away from the sample
points. In fact, in the case of voxels the most often used inter-
polation method to compute values inside a cell is a trilinear
interpolation of the sample values known at the vertices of
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the cell. Analogously, for tetrahedral meshes the most often
used method to compute a value inside a tetrahedron is the
linear interpolation of the four vertices of that tetrahedron.

It is obvious that even if the initial values assigned to the
vertices of the tetrahedra in the immersed mesh are com-
puted from the values in the original volume data, these two
different interpolation methods will yield different values of
the property f at points interior to the tetrahedra.

In this paper we present an algorithm to adaptively subdi-
vide a tetrahedral mesh immersed in a voxel model in order
to reduce the discrepancy of these two approximations of the
function f below a user-specified tolerance ε . Both the input
and output tetrahedral meshes are conformal (i.e. a conform-
ing mesh is one in which two tetrahedra Ti,T j, i 6= j, of the
mesh may only intersect at a vertex, along a complete edge
or have a common triangular face). Our algorithm works
by locally subdividing tetrahedra where the discrepancy ex-
ceeds the tolerance. This paper presents the following con-
tributions:

• Analysis of the discrepancy between the two interpola-
tions within a tetrahedron

• A scheme for locally subdividing tetrahedra with large
discrepancies that ensures a conformal resulting mesh and
a reduction of the discrepancy within the resulting tetra-
hedra

• The subdivision scheme aims at minimizing the number
of tetrahedra needed to meet the requirement

• The subdivision is designed to yield good quality tetrahe-
dra (not too skinny and elongated)
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The rest of the paper starts by presenting an overview of pre-
vious work in the next section, In Section 3, we report on our
analysis of the locations of the largest discrepancies and the
subdivision patterns (see Section 3.2) used to achieve local-
ity and convergence. Section 4 then discusses some aspects
of the implementation of this algorithm, before moving on
to the results on our test models, discussed in Section 5, and
closing with some conclusions.

2. Previous Work

A subdivision scheme can be seen as a procedure
to construct a collection of n different meshes M =
{

M1 < M2 < .. . < Mn
}

, such that the mesh Mi+1 is ob-
tained from the previous one(Mi) by a local refinement. At
each level, an element is refined if it exceeds a preset error
criterion (appropriate for the problem) at that level.

In the context of finite elements, tetrahedral meshes are
sometimes subdivided to improve their quality or suitabil-
ity for the computation at hand. One of the first subdivi-
sion schemes that was proposed for two-dimensional tri-
angle meshes, is the red/green method, by Bank and Sher-
man [BSW83]. In the red phase, triangles are subdivided
into four similar triangles by splitting all three sides at their
midpoint. The green phase is subsequently applied to all
the neighboring elements that have not been subdivided, but
which share exactly one edge with a subdivided triangle.
These triangles are split in two joining the midpoint of the
edge they share with a subdivided triangle with the opposite
vertex. Triangles that have not been subdivided but that share
more than one edge with a subdivided triangle are then sub-
divided using the red strategy, and a subsequent green pass
is needed to blend them properly with their neighbors.

Another group of algorithms focuses on the edges, rather
than the triangles. This is the case of the work of Ri-
vara [Riv84, Riv89, RI96], in the two-dimensional case.
They iteratively apply the longest edge bisection technique.
In [Riv84] they use it in its pure form, where the longest edge
of each triangle that needs to be subdivided is split at the
midpoint, adding an edge to the opposite vertex. In [RI96]
they use instead the 4-Triangles subdivision, where after
subdividing a triangle by its longest edge, the midpoint of
the longest edge is also joined with two additional edges with
the midpoints of the other two edges, resulting in a subdivi-
sion into 4 triangles. Both schemes are supplemented by a
pass to insure conformacy. The authors show numerical ev-
idence that both strategies yield conformal triangulations of
good quality.

These strategies have subsequently been extended to the
three-dimensional case. Zhang [Zha95], Bey [Bey95], Liu
and Joe [LJ96] have extended the strategy of Bank and Sher-
man [BSW83] to the 3D case. In a first step, they subdivide
a tetrahedron in eight subtetrahedra. Four subtetrahedra sim-
ilar to the one being subdivided result from cutting out the

four corners of the tetrahedron, at the midpoint of the edges.
The remaining four are obtained by subdividing the central
octahedron that results from this corner-cutting. The way in
which this octahedron is subdivided, and the schemes used
to conformally blend the subdivided part of the mesh with
its unsubdivided neighbors are the elements that differenti-
ate the proposals listed above. More recently Greiner and
Grosso [GG00] used a similar scheme, but the interior octa-
hedron is subdivided into six octahedra and eight tetrahedra
on demand.

The edge bisection methods have also been extended into
3D. Rivara and Levin [RL92] extended first the pure bisec-
tion method by simply bisecting tetrahedra by splitting the
longest edge and joining the split point with the opposite ver-
tices of the adjacent faces. Liu and Joe [LJ95] later showed
by numerical experiments that this may lead to the bisection
of many tetrahedra, which not only increases the cost of the
subdivision, but more importantly may severely impact the
finite elements computation. Instead, they propose to map
the tetrahedron onto a canonical one, and show how to use
this to subdivide the tetrahedron into eight similar pieces, in
a three steps process.

Plaza and Carey [PC96, PC00] have extended to three di-
mensions the 4-Triangle algorithm. They insert new vertices
at the midpoint of each edge. Then they explore the neigh-
bors to verify their conformity and they insert new vertices
at the midpoint of the longest edge of each non conform-
ing face and add a new vertex to the midpoint of the longest
edge of the tetrahedra. From this points, it makes the subdi-
vision of each face using the 4-Triangle algorithm, obtain-
ing the skeleton. Once the set of faces have been consis-
tently triangulated in this way, they complete the subdivi-
sion of the interior of the tetrahedra based on a set of 51
different precomputed patterns. More recently, they propose
a new method denominated “8-Tetrahedra longest edge par-
tition” [PR03, PPSF04].

In Computer Graphics applications, refinement algo-
rithms used for multiresolution purposes are intended to
allow the acceleration of the visualization and interaction
processes. These algorithms use both subdivision and fu-
sion techniques [DFLS02, ZCK97]. In Danovaro et al.’s
work [DFLS02], unstructured meshes are refined with vertex
split rule. On the other hand, Zhou et al. [ZCK97] propose
a hierarchy of tetrahedra obtained by a recursive subdivision
of the volume. Three subdivision rules and an error satura-
tion strategy are defined for the multiresolution.

On the other hand, adaptive subdivision of triangle
meshes for deformable models is presented by Ruprecht
et al. [RNM95]. They apply adaptive subdivision for de-
formable models used in volumetric data matching or vol-
umetric morphing. The subdivision is carried out when the
distance between the edge midpoints in real space and the
same points in the deformed space is greater than certain ε .
They use this adaptive subdivision strategy in [RM98], to
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subdivide tetrahedral meshes. Their subdivision scheme is
similar to the one we propose, although we solve differently
the cases with additional degrees of freedom.

Yet another field of application where a need for these
subdivisions arises is surgery simulation. Here one wants to
simulate cuts into volumetric models based on tetrahedral
meshes. Cuts are simulated by subdividing the tetrahedra
intersected with the virtual scalpel. These techniques dif-
fer slightly from the previous methods because the subdi-
vision points are given by the user interaction, and have to
be duplicated in order to separate the mesh along the cutting
line [GCMS01, BG00, FDA02, MK00].

Neither of the previous subdivision techniques takes into
account in the subdivision process the volumetric informa-
tion contained in the interior of the tetrahedra. In our appli-
cation we focus on the extraction of a tetrahedral mesh from
the volume data, and are therefore concerned with how well
does the extracted mesh agree with the model in terms of
the estimates of the property of interest in its interior points.
Thus, we define the subdivision rules according to the inte-
rior information of the volumetric data. We are not aware of
previous results in the literature that address this problem in
these terms.

3. Our proposal

As we have previously introduced, we are interested in the
case where we have a hybrid model, consisting on volume
data in the form of a voxelization, and a tetrahedralization
of a portion of the same volume, where the vertices of the
tetrahedralization are in arbitrary positions within the vol-
ume. For instance, these tetrahedralization may come from
the computation of an active-contour-like triangle mesh de-
limiting a portion of interest of the volume, followed by a
subdivision of that volume compatible with the triangulation
of the boundary. Notice that in this general setup a tetrahe-
dron may span several voxels, or several tetrahedra may be
completely contained inside a voxel.

In this section we present an algorithm to adaptively sub-
divide a tetrahedal mesh immerse in a voxel model in order
to reduce the discrepancy between interpolated values com-
puted using either scheme at arbitrary positions.

The next subsection discusses the nature of these discrep-
ancies in a formal way. However, we have not reached a
useful closed-form solution for the optimal way to subdi-
vide tetrahedra, therefore we have resorted to experiments,
which are discussed in Section 5. From these numerical ex-
periments, we have seen that most of the time the point of
maximum discrepancy happens near the midpoint of a face
or edge. When the maximum occurs at the midpoint of a
face, a similar value of the discrepancy appears near the mid-
point of at least one of its edges. For this reason, and in the
interest of speed, we chose to analyze only the edge mid-
points of the given tetrahedron, splitting an edge at its mid-

point if the discrepancy there exceeds a threshold. This has
the interesting property of providing a completely local test.

3.1. On the computation of discrepancies within a
tetrahedron

Let M be a tetrahedral mesh immersed in a voxel model V .
Let us further assume that we assign to each vertex v ∈M a
property value obtained by trilinear interpolation of the cor-
ners of the cell that contains v in the voxel model. A tetra-
hedron T ∈M is called a good predictor if for any point
P∈T the discrepancy between the property value computed
at P from the voxel model (by trilinear interpolation of the
vertices of the cell that contains it) and from the tetrahedral
mesh (by linear interpolation of the property values at the
vertices of T ) is below a user-specified threshold ε .

That is, if P has coordinates (x,y,z) within its cell (i.e.
x,y,z ∈ [0,1]), then we define

realValue(P) = (1− x)(1− y)(1− z)I000 +(x)(y)(z)I111 +

(1− x)(y)(1− z)I010 +(x)(1− y)(z)I101 +

(1− x)(1− y)(z)I001 +(x)(y)(1− z)I110 +

(x)(1− y)(1− z)I100 +(1− x)(y)(z)I011 (1)

where the Ii jk, denote the values at the corresponding corners
of the cell.

Moreover, let bi, i = 0 . . .3 be the barycentric coordinates
of the point P with respect to its tetrahedron T (which sat-
isfy 0 ≤ bi ≤ 1∀i and b0 + b1 + b2 + b3 = 1), and let Ivi be
the values assigned to the vertices of T . Then we define

aproxValue(P) = b0Iv0 +b1Iv1 +b2Iv2 +b3Iv3 (2)

The condition that T is a good predictor can then be writ-
ten as

∀P ∈T :
|realValue(P)−aproxValue(P)|

normCoe f f
≤ ε (3)

where normCoeff is a normalization coefficient so that all
values are in [0,1] (and discrepancies measure relative error).

We shall also denote the discrepancy at a point P
by error(P) = |realValue − aproxValue|/normCoeff. If
error > ε the tetrahedron is not a good predictor and must
be subdivided. Choosing ε is relatively straightforward for
the user, as it represents relative error. A value of 0.1, for
example, indicates that errors below 10% are acceptable.

3.2. Subdivision scheme

In this subsection we present a scheme for subdividing bad
predictor tetrahedra that minimizes the number of resulting
tetrahedra. It is based exclusively on computing the discrep-
ancy on the edge midpoints of a given tetrahedron, splitting
an edge if the discrepancy exceeds a relative error.

We need to consider the different configurations of edges
of a tetrahedron that need to be split. We would like to
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achieve a scheme that does not impose a subdivision of an
edge that was not marked for splitting to begin with. This is
both related to minimizing the number of resulting tetrahe-
dra and to making the scheme local (an edge needs to be split
based on an intrinsic property, and not on the configuration
of its neighbors).

Let us first linger for a moment in the simpler two-
dimensional case, where triangles are subdivided by break-
ing their edges. Since a triangle has three edges, there are
23 = 8 different configurations. The extreme configurations,
in which no edge is subdivided and all three edges are sub-
divided, only happen once each one. The cases where only
one edge is subdivided and where two edges are subdivided
occur three times each. The 8 configurations are thus re-
duced to 4 due to symmetries, shown in Figure 1. Notice
that the quadrilateral region in case 2 can be triangulated in
two different ways. Some authors solve the ambiguity by us-
ing the memory addresses of the different vertices. Instead,
we choose to add the shortest of the two diagonals of the
quadrilateral region to split it into two triangles. This yields
better shaped tetrahedra (see [Riv84]).

0
 2
 3
1
0
 2
 3
1


Figure 1: Configurations for triangle subdivision

We can therefore construct a Look Up Table with eight
entries (indexed by the vertex classification), sorting the dif-
ferent configurations into one of the four cases depicted
above. However, when we reach configuration number two,
we need to also compute the shortest diagonal of the quadri-
lateral portion in order to decide the sub-case applicable.
This yields a total of 11 possible triangulations.

Let us now consider the three-dimensional case. Our tetra-
hedron subdivision scheme is based on producing exactly
these subdivisions on the faces of the tetrahedra it subdi-
vides. Since neighboring tetrahedra share a face, and they
both get subdivided in a way that is consistent with that
face, the result is automatically conformal. Tetrahedra have
6 edges, so there are 26 = 64 possible edge refinement pat-
terns. Removing cases that differ by a symmetry or a rigid
motion, the 64 cases are reduced to 11 different configura-
tions, shown in Figure 2. As in the two-dimensional case,
when splitting a face we get a quadrilateral region we com-
pute the length of its both diagonals and then split the quadri-
lateral along the shortest diagonal. This yields better trian-
gles, and therefore tetrahedra with better quality. If both di-
agonals have equal length, the one containing the vertex with
smaller id on the mesh data structure is selected. This allows
us to guarantee that these faces, when shared by two tetrahe-
dra, are triangulated without ambiguity. Let us now examine
these 11 configurations in detail.
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Figure 2: Configurations for a tetrahedron subdivision

Configuration 0 in Figure 2 corresponds to the trivial
case where no edge needs refining, and the tetrahedron is not
subdivided further. Almost as simple is the case of Config-
uration 1, where a single edge needs subdividing. Two sub-
tetrahedra are obtained by joining the new midpoint with the
opposite vertices.

There are two distinct cases where two different edges
need to be subdivided:

Configuration 2a: The two edges belong to the same face.
This case yields a subdivision into three tetrahedra as
shown in Figure 3. The quadrilateral region is split ac-
cording to the previously explained criteria (shortest di-
agonal).
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Figure 3: Possible tetrahedralizations for Configuration 2a

Configuration 2b: The two edges to divide are opposite
edges of the tetrahedron. This case can be solved by ap-
plying the solution for configuration 1 twice in succes-
sion. In this simple way the tetrahedron is split in four
sub-tetrahedra.

In the case where three edges exhibit errors above the cho-
sen threshold, three different configurations may arise:
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Configuration 3a: The three edges needing subdivision be-
long to the same face. The face is divided in four trian-
gles with new edges connecting the error points (see Fig-
ure 2). Each new triangle is joined with the opposite ver-
tex and the tetrahedron is thus subdivided into four sub-
tetrahedra.

Configuration 3b: The three edges have a common ver-
tex. All three triangular faces sharing that common ver-
tex have two edges with errors above the threshold value
(See Figure 4). A sub-tetrahedron is formed by that vertex
and the three midpoints of the converging edges. The re-
maining prism can be subdivided in two different ways,
depending on the lengths of the diagonals of each of
the three quadrilateral faces of the prism. The two pos-
sible resulting cases are shown in Figure 4 at right. The
first one (the top right sub-figure) arises when two of the
shorter diagonals converge at a splitting point (p03 in the
figure). In that case the prism is subdivided into three
tetrahedra (i.e. in the figure, the tetrahedra with vertices
(v2, p01, p02, p03), (v1,v2, p01, p03), and (v1,v2,v3, p03)).
The second possibility occurs when no two of the shorter
diagonals of the three quadrilaterals begin/finish at the
same point. In this case, an untetrahedralizable region
known as a Schönhardt prism is formed. This prism can-
not be broken up into tetrahedra whose vertices are ver-
tices of the prism unless the triangulation of one of the
three quadrilateral facets is changed by doing an edge
flip [RNV02]. We want our tetrahedron subdivision to de-
pend only on local information, so we cannot afford this
edge flip (which would go unnoticed to the neighbor tetra-
hedron). Instead, we add a point inside the prism to guar-
antee coherence of the subdivision. Then, each triangular
face is joined with the inserted point. As a result, the prism
is subdivided into eight tetrahedra.

Configuration 3c: Two of the three edges where the error
exceeds the threshold are opposed. The third edge shares
two different facets of the tetrahedron, one with each of
these two opposed edges, as shown in Figure 5 at left. We
break up these tetrahedra in five sub-tetrahedra as follows:
first, consider the facets of the tetrahedron that have only
one splitting point (v0,v1,v2 and v1,v2,v3 in the figure),
and split these faces adding an edge from the splitting
point to the opposite vertex. We thus obtain the first sub-
tetrahedron, whose edges are these four points (v1,v2, p01
and p23 in the figure). What remains is the union of two
pyramids with apices at these two splitting points (p01
and p23), and with quadrangular bases (v0,v2, p23, p03 and
v3,v1, p01, p03 respectively). These two pyramids share a
triangular face whose vertices are the three splitting points
as shown on the right of Figure 5. Each of these pyramids
is broken up into two tetrahedra by splitting its base along
the shortest diagonal.

There are two different cases where four edges need to be
subdivided:

Configuration 4a: In this case three of the four edges with
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Figure 4: Two possible tetrahedralization for Config. 3b
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Figure 5: Tetrahedralization of Configuration 3c

split points belong to the same face of the tetrahedron.
The fourth one necessarily shares one vertex with that
face. This configuration is depicted at the left side of Fig-
ure 6. We subdivide this configuration by forming two
tetrahedra sharing the triangle p01, p02, p03 in the fig-
ure (i.e. the triangle formed by the split points on three
converging edges). These tetrahedra are (v0, p01, p02, p03)
and (p01, p02, p03, p12) in Figure 6. The remaining vol-
ume within the tetrahedron consists again of two pyra-
mids with quadrangular bases separated by the triangle
p12, p03,v3. These pyramids are finally subdivided into
two tetrahedra each one using the shortest diagonal cri-
terion (see Figure 6 at right). Finally, six sub-tetrahedra
are obtained.
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Figure 6: Configuration 4a

Configuration 4b: Each face of the tetrahedron has exactly
two edges with split points. The split points are the ver-
tices of a quadrangle that splits the tetrahedron into two
similar prisms (see Figure 7).
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To tetrahedrize each of the two prisms, we consider the
shortest diagonal of each of the quadrangular faces con-
tained in the boundary of the tetrahedron. For the first
prism to be tetrahedrized, two cases are possible, depend-
ing on whether its two shorter diagonals of the exterior
quadrangles have a point in common or not. If they do
(Figure 7, top right) then we are still free to split the cen-
tral quadrangle, so we look at the tetrahedralization of the
second prism, in order to minimize the probability of pro-
ducing Schönhardt prisms. If they do not (Figure 7, down
right) then the interior quadrangle is split joining the end-
points of these diagonals. The second prism will inherit
the choice of diagonal for the interior quadrangle. If it
forms a Schönhardt prism, we have no degree of free-
dom left, and we must introduce an interior point to tetra-
hedrize it. The number of the resulting sub-tetrahedra is
six or eleven when it is needed to insert an interior point.
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Figure 7: Configuration 4b

Configuration 5: This is the case where there are five split
points on the edges of the tetrahedron (see Figure 8). The
figure shows how the tetrahedron is naturally split into a
prism, a pyramid with quadrangular base, and two tetra-
hedra. The prism is tetrahedrized like the first prism in
case 4b, determining the diagonal to use in the interior
quadrangle shaded in grey, which determines the splitting
of the pyramid and hence the whole tetrahedralization.
Seven sub-tetrahedra are obtained.

Configuration 6: All six edges of the tetrahedron contain a
split point. Joining the split points on the edges that con-
verge to each vertex of the tetrahedron, we obtain four
small corner tetrahedra, and a central octahedron. The oc-
tahedron is tetrahedrized inserting the shortest of the three
internal diagonals that join split points on opposed edges,
and thus dividing it into four more tetrahedra (see Fig-
ure 9). The tetrahedon is split in eight sub-tetrahedra.

The Table 1 summarizes the subdivision process. The col-
umn labeled “Case” lists the configuration number. The sec-
ond column shows the number of sub-tetrahedra into which
the standard tetrahedron being considered is split. In cases
3b and 4b, where a Shönhardt prism may arise, include in
parenthesis the number of tetrahedra needed in that case. The
third column indicates the number of entries corresponding
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Figure 8: Tetrahedralization of Configuration 5
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Figure 9: Tetrahedralization of Configuration 6

to each base case (taking symmetries and rigid motions into
account), and adds up to the 64 edge possible refinement pat-
terns. The last column, finally, indicates the number of dif-
ferent tetrahedralizations (NDT) that can arise in each base
case because of the different possible subdivisions of the
quadrangular facets. Notice that the 11 subdivision patterns
yield thus 269 different tetrahedralizations (the sum of the
products of columns NE and NDT).

Case ‖T ‖ NE NDT

0 1 1 1
1 2 6 1
2a 3 12 2
2b 4 3 1
3a 4 4 1
3b 4 (9) 4 8
3c 5 12 4
4a 6 12 4
4b 6 (11) 3 22
5 7 6 6
6 8 1 1

Table 1: Summary of the subdivision process
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An analysis of the different cases just discussed will con-
vince the reader that when a triangular facet is shared by
two tetrahedra, the splitting on both neighbors will be con-
sistent at the facet: every facet with just one splitting point
will have been broken up in two triangles by joining that
splitting point with the vertex opposed to it; every facet with
two splitting points will have been broken up into three tri-
angles, by adding an edge joining the two splitting points,
plus the shortest of the two diagonals of the remaining quad-
rangle; and every facet with a splitting point on each edge
will have been broken up into four triangles by adding the
three edges defined by the three splitting points. Therefore
this subdivision scheme allows for completely local deci-
sions and automatically produces conformal tetrahedraliza-
tions. Note that the discrepancies along edges will coincide
regardless of which tetrahedron is used to compute them, so
indeed all neighboring tetrahedra see the same configuration
and therefore consistent decisions are made on all neighbors.

4. Implementation details

Our algorithm proceeds as follows. Initially, we compute
values for each vertex of the given tetrahedralization from
the voxel data, using trilinear interpolation. Then the error at
the midpoint of each edge is computed and compared with
the threshold. For each tetrahedron, the collection of edges
exceeding the threshold determines an index into a lookup
table of 64 entries. The lookup table store five different val-
ues. The first value represents the subdivision case. The re-
maining four values are the order in which the vertices must
be sorted so as to match the standard configuration for that
case. This maps each possible rotation or symmetry onto a
canonical position so the algorithm does not worry about
these transformations. A pseudo-code description of the al-
gorithm is shown in Algorithm 1.

Figure 10 shows an example of the program at work with
a tetrahedron with configuration 3b. The example shows how
the code computes the resulting subdivision without comput-
ing the transformation from the given setting to the standard
configuration. Instead, intrinsic properties are used to find
the vertices of the new tetrahedra, greatly simplifying the
code.

5. Experimental Results

We have performed two different kinds of experiments. The
first one was addressed at studying the distribution of the dis-
crepancy inside tetrahedra, and the second at measuring the
performance of our subdivision algorithm on real testcases.

5.1. Discrepancy analysis

To determine the behaviour of the discrepancy within a tetra-
hedron, we computed the value of the left-hand side of in-
equality (3) at regularly spaced points (those with barycen-

tric coordinates of the form
(

i
n , j

n , n−i− j
n

)

, i, j ∈ {0, . . . ,n}).

Algorithm 1 General algorithm
for all tetrahedronT ∈M do

errorEdges← /0
for all i such that 0≤ i < 6 do {each edge of the tetrahedron}

realValue = CalculateRealValue(split pointi) {with eq. 1}
aproxValue = CalculateAproxValue(split pointi) {with
eq. 2}
error = |realValue−aproxValue|/normCoe f f
if error > ε then

errorEdges← errorEdges∪ edgei
end if

end for
if errorEdges.size() > 0 then

lookU pEntry = LookU pCode(errorEdges)
SubdivisionProcess(lookU pEntry)

end if
end for
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Figure 10: Example of a subdivision process for case 3b

First we tested regular subdivisions of voxels —into five
tetrahedra each— to measure the part of the discrepancy due
to the difference in interpolation schemes. We estimated the
error in each tetrahedron by sampling 165 equally spaced
points (n = 8 in the formula above).

In this experiment, 93% of the time the maximum discrep-
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ancy happened at the midpoint of one of the edges. In the re-
maining cases the maximum occurred at a face of the tetra-
hedron (i.e. one of the barycentric coordinates was zero). In
these cases, however, at least one of the edges of the face ex-
hibiting the maximum discrepancy had a discrepancy of the
same order.

To assess the contribution to the discrepancy coming from
the higher sampling rate of the voxels, we run further tests
with coarse tetrahedralizations of volume models. We set a
threshold for the relative error such that discrepancies below
that threshold were ignored. The results obviously presented
more variability. However, for a threshold of 0.001, we still
found that in over 73% of the cases (again computed taking
n = 8), the maximum discrepancy occured large at the mid-
point of some edge or in a point near to this one. Increasing
the threshold to 0.05 increased the number of hits to 85%.

Based on these results we concluded that a more precise
estimation of the position of maximum discrepancy would
probably not yield substantial performance benefits, and de-
cided to proceed with a straightforward test based on com-
paring the errors at the midpoints of the tetrahedra to decide
wich edges to split. This choice seems to be confirmed by
experiments on medical datasets that are the subject of the
next subsection.

5.2. Performance for medical data

We have tested our algorithm on several medical datasets.
The heart models were obtained with SPECT and the liver
was obtained with MRI. The MRI model has been under-
sampled to a low resolution. Table 2 shows the resolutions
and voxel sizes for three of these models.

For the heart data we also had reconstructions of the inner
and outer surfaces of the ventricle, and proceeded to build a
tetrahedralization between them, as presented in [RNV02].
For the liver model, a tetrahedralization of the voxels was
performed instead.

We tested all models with different relative errors. Due to
space limitations we can not report here overall tests in de-
tail, but the interested reader can see a complete description
in report [RNV06]. Table 3 summarizes the results obtained
using a threshold of 0.1 (i.e. a relative error of 10%). The
table shows the number of tetrahedra of each configuration
found for the first three iterations of our algorithm, and for
each of the example models. Notice that the first row corre-
sponds to case zero, where no further subdivision is required.
The last row indicates the number of Shönhardt prisms found
in each iteration.

It can be noted that after the second subdivision, most of
the tetrahedra that require further subdivision correspond to
the cases in which the subdivision process produces fewer
tetrahedra (refer to the discussion in Section 3.2). Nonethe-
less the discrepancy quickly decreases below the specified

Resolution voxel size (in mm.)

heart1 64x64x24 2.87x2.87x5.74
heart2 32x32x11 10.776x10.776x10.776
liver 16x16x16 24.5624x24.5624x3.19998

Table 2: Medical data sets used

threshold, as shown in Table 4. In this table INT designate
the number of tetrahedra at the beginning of each iteration,
and FNT the number of tetrahedra after one step of subdi-
vision. NTE shows the number of tetrahedra that exceed the
threshold and must be subdivided. Finally, “max. err” and
“av. err” columns show the maximum relative discrepancy
in the model at the start of the iteration and the average of
the relative error. Also notice that for the chosen thresholds
(see report [RNV06]), it is reasonable that the average errors
to stop decreasing as shown.

INT FNT NTE max. err av. err

It 1 1009 3176 728 0.47172 0.17986
heart1 It 2 3176 4496 723 0.25994 0.07201

It 3 4496 4554 44 0.18381 0.04910
It 4 4554 4566 10 0.13882 0.04872
It 1 988 3263 744 0.53082 0.19967

heart2 It 2 3263 4043 519 0.25771 0.07193
It 3 4043 4116 53 0.23537 0.06140
It 4 4116 4162 30 0.18470 0.06066
It 1 10955 20482 3648 0.54084 0.10795

liver It 2 20482 25552 3333 0.44306 0.06128
It 3 25552 26613 813 0.23997 0.05033
It 4 26613 26836 171 0.16655 0.04844

Table 4: Evolution of discrepancies at each iteration
(Threshold = 10%)

In order to visualize the meaning of these discrepancies,
Figures 11 and 12 show perfusion levels at two slices of a
heart model. In each case, subfigure (a) displays the original
perfusion levels stored in a voxel model, and subfigures (b)
the linear interpolation with the initial tetrahedral mesh. In
subfigures (c) we show the result after four iterations of our
algorithm with a threshold of 10%, and in (d) the result after
four iterations for a threshold of 5%. Notice that the sub-
figures (d) are in both cases very similar to the original (in
(a)), showing the quick convergence of the algorithm. The
extreme right subfigures show the discrepancies between (a)
and (d), scaled by a factor of 20 in Figure 11 and by a factor
of 15 in Figure 12.

Initial quality thrshld. 10% thrshld. 5%

heart1 0.565231 0.578719 0.574900
heart2 0.499718 0.508499 0.507415
liver 0.333292 0.313060 0.309224

Table 5: Quality of the meshes
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Case heart1 heart2 liver
Iter. 1 Iter. 2 Iter. 3 Iter. 1 Iter. 2 Iter. 3 Iter. 1 Iter.2 Iter. 3

0 281 2453 4452 244 2744 3990 7307 17149 24739
1 110 348 31 117 327 33 984 1793 566
2a 130 212 12 145 148 20 638 1354 246
2b 2 9 1 3 0 0 40 157 1
3a 1 0 0 3 0 0 15 9 0
3b 325 114 0 280 28 0 1355 11 0
3c 36 21 0 29 12 0 120 7 0
4a 13 0 0 15 0 0 89 1 0
4b 97 19 0 143 4 0 331 1 0
5 14 0 0 9 0 0 75 0 0
6 0 0 0 0 0 0 1 0 0

SP 7 0 0 10 1 0 0 0 0

Table 3: Distribution of tetrahedra among the different configurations at each iteration. Threshold=10%

(a) (b) (c) (d) (e)

Figure 11: Perfusion levels of a heart’s slice. (a) Original, (b) Original tetrahedral mesh, (c) Threshold=10%, (d) Thresh-
old=5%, (e) Scaled discrepancies by a factor of 20

The time needed to process a model varies linearly with
the number of tetrahedra and the number of tetrahedra with
error. At each iteration seeing if a tetrahedron exceeds the
threshold costs approximately 0.14ms in an Intel Pentium 4
at 1.70GHz and each tetrahedron that we subdivide costs
approximately 1ms.

Finally, we conducted an experiment to measure the qual-
ity of the resulting tetrahedra. We measure the quality of the
tetrahedra in a standard way, using the mean ratio, defined
by Liu and Joe [LJ94], that has the advantage of being in-
variant under traslation, rotation and uniform scaling, and is
efficient to compute. For a tetrahedron T , its quality is de-
fined as η = 12(3v)2/3/∑0≤i< j≤3 l2

i j , where v is the volume

of T and l2
i j are the lengths of their edges. This measure is

always a number between 0 and 1, where 1 corresponds to a
regular tetrahedron.

Our last Table 5, shows the resulting qualities for the two
threshold values used in our experiments. Notice that in all
cases the final qualities are similar (within 8%) to the initial
qualities. This is all that can be expected of an algorithm
designed to minimize subdivision.

6. Conclusions

A method of adaptive subdivision has been developed to
refine a tetrahedral mesh immersed in a voxel model (and
which inherits from the voxel model the property values
stored at its vertices) until the discrepancy of the volume
property of interest computed from the tetrahedral mesh
and from the original volume data is below a user-specified
threshold.

The subdivision process is local, and requires no propa-
gation from one cell to another. As such, each iteration is
computed in a single sweep of the model, and requires no
backtracking. Also for this reason, it does not require any
additional information about the connectivity of the tetrahe-
dral mesh to be stored.

If the initial mesh is conformal, the algorithm produces
a conformal mesh as a result. Although the algorithm is lo-
cal, its behavior on a facet of a tetrahedron depends solely
on the information within that facet, and not the rest of the
tetrahedron, which ensures that neighboring tetrahedra will
be handled in a consistent way automatically.

The algorithm has shown a fast convergence to the desired
discrepancy level in all models tested.
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(a) (b) (c) (d) (e)

Figure 12: Perfusion levels of a heart’s slice. (a) Original, (b) Original tetrahedral mesh, (c) Threshold=10%, (d) Thresh-
old=5%, (e) Scaled discrepancies by a factor of 15
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