
EG UK Theory and Practice of Computer Graphics (2005)
L. Lever, M. McDerby (Editors)

The Data Surface Interaction Paradigm

Rikard Lindell and Thomas Larsson

Department of Computer Science
Mälardalen University

Sweden

Abstract
This paper presents, in contrasts to the desktop metaphor, a content centric data surface interaction paradigm
for graphical user interfaces applied to music creativity improvisation. Issues taken into account were navigation
and retrieval of information, collaboration, and creative open-ended tasks. In this system there are no windows,
icons, menus, files or applications. Content is presented on an infinitely large two-dimensional surface navigated
by incremental search, zoom, and pan. Commands are typed aided by contextual help, visual feedback, and text
completion. Components provide services related to different content modalities. Synchronisation of data surface
content sustains mutual awareness of actions and mutual modifiability. The prototype music tool was evaluated
with 10 users; it supported services expected by users, their creativity in action, and awareness in collaboration.
User responses to the prototype tool were: It feels free, it feels good for creativity, and it’s easy and fun to use.

Categories and Subject Descriptors(according to ACM CCS): H.5.2 [Information interfaces and presentation]: User
Interfaces

1. Introduction

The graphical user interface of today’s computers has its
origin in the findings and inventions of Alan Kay at Xe-
rox PARC in the 70s. With it came a lot of interaction ele-
ments, techniques, and metaphors to explain and convey the
behaviour of the computer. With the limited computational
power and memory capacity then available they succeeded
to make machines “user friendly”. They were so success-
ful in the process that their design has remained a constant
factor for graphical user interfaces since then. However, the
desktop metaphor suffers from several drawbacks related to
how content information is retrieved, visualised, and manip-
ulated. Therefore, there is a constant need to explore and
develop the area of graphical user interfaces. In this study
we have constructed a different interaction paradigm for the
graphical user interface of computers, which we call the Data
Surface Interaction Paradigm (DSIP). It is designed to work
for large deposits and flows of information, user collabora-
tion, open-ended creative tasks, and multi modal interfaces.

The DSIP is content-centric instead of tool-centric, which
means that small embedded software plug-in components
implement the functionality. The idea has many similarities
with the now discontinued OpenDoc project, which brought

a component framework for creating compound documents
that removed the need of monolithic applications on desktop
platforms [CDE95].

With the DSIP users do not have to conduct any explicit
file management. Further, the user is not forced to initiate
the transfer of data from the machine’s primary memory to
its secondary memory through an explicit save action. And
finally, the system takes care of the information for the user
in the same manner as with handheld devices for instance
the heap storage framework of the Palm OS or the data soup
storage framework of the Newton OS [Smi94]. For this type
of bookkeeping of users content neither file systems, nor re-
lational databases, are suitable [GSL00].

For the DSIP, all content remains visually present in its
context and the surrounding set of elements for a specific
content sets its context. All content is visualised on a flat,
infinitely large surface. The content may have varied scaling
that permit hierarchical relations between different content
information elements. Tversky has shown that people map
hierarchical relations to differently scaled objects of a flat
image [Tve91]. People view small-scaled objects as sorted
under large-scale objects in the hierarchy. On the basis of
cognitive maps [DS73] and cognitive collage [Tve93] spatial

c© The Eurographics Association 2005.

http://www.eg.org
http://diglib.eg.org


Rikard Lindell and Thomas Larsson / The Data Surface Interaction Paradigm

semantics helps navigation. People’s different spatial abili-
ties, reported by Dalbäck et. al. [NHS96], have been taken
into consideration by not relying on geometric 3D.

The content is navigated by graphical trajectory zoom and
pan. The graphical zoom we use, in contrast to semantic
zoom used in various applications [KP93,BBB95,PLVB00,
BMG00], visualises all the details even in de-zoomed state,
thus colour and static structure (shape and geometric rela-
tions) serve as cues to the content and users navigation ex-
perience, which does not have to be broken by e.g. popping
information elements. Large-scale annotations can help nav-
igation. Algorithms for level of detail (LoD) efficiently re-
duce the amount of data that must be filtered from database
to image buffer, and can be designed to avoid popping ef-
fects or other artifacts. The trajectory zoom [Spe01] allow
zoom and pan in one single action, however, usability eval-
uations have shown that a specific pan action is more satis-
factory when the subjects are pleased with the zoom scale
and familiar with the context. Hyper structured informa-
tion visualisation can be solved with inspiration from lex-
ivisual communication found in newspapers, comics, and
movies [Kin91]. Zoom allow “linked” content to be visu-
alised per se in context, thus users does not need to break
their navigation context to get the information. Although
Barreau and Nardi [DB95] reported that users in most cases
rely on spatial semantics for information navigation of their
file systems, Ravasio et. al. [RSK04] found that Barreau and
Nardi’s conclusion came from the poor usability of system
search tools, which requires users to search manually. With
the large flows and deposits of information today and in the
future, improved search tools are required. Navigation of the
data surface is further aided by incremental search. All con-
tent is in the search scope not just meta-data. Feedback for
search condition satisfaction reminds users of content locus.
The feedback is immediate for each keystroke, and informa-
tion that is not of interest becomes transparent. The search
also selects the content for command invocation and manip-
ulation. We use the affordance of the selected content for
command invocation, i.e. the commands available for the
user to invoke are provided by the content of the selected
component. Pook et. al. showed that this also works in a se-
mantic zoom system [PLVB00].

However, by removing the command selection menu and
replace it with typed commands, the tools of a data surface
system are said to be non-visual. Context help and text com-
pletion aid the users to quickly find the suitable command.
A single model sustains recognition for learning and recol-
lection for efficient use. Users who have formulated their in-
tentions can directly invoke the correct command without
navigation for it. Pre-visualisation of the command results
allows users to investigate the outcome of their actions be-
fore the actions take place. This mechanism is advantageous
to creative tasks and actions [TM02].

In the data surface environment, shared synchronised sur-

face areas favour collaboration. Users can more easily work
together on a project on the shared surface [MIEL99]. Ac-
cording to Mynatt a flat surface is also suitable for creative
and open-ended collaborative tasks [MIEL99]. Visual feed-
back make users aware of each other’s actions and provides
an external referent for negotiations [NBK03]. The interac-
tion styles in a data surface environment favour multi modal
user interfaces instead of pixel precision and window ma-
nipulation. By removing the WIMP-components (There are
no overlappingWindows, noIcon bars, and noMenus) that
make the desktop interface so well designed for the mouse
Pointing device, the paradigm allows other interaction tech-
niques such as eye gazing, gestures, handwriting and speech
recognition.

2. Scenario

The following scenario was retrieved as result from inter-
views with professional music tool users: David and Lisa
plan to perform their music live at a dance club. On each of
their music creativity devices they have all samples, sounds,
and songs in a shared synchronised content data surface en-
vironment. Most of the time they sit together, but sometimes
they create music at different locations connected through
the Internet. During collaboration the synchronised visual
and acoustic space of the devices help by providing an exter-
nal referent to their discussion, when online they use the em-
bedded chat component. They zoom in on sounds that need
to be examined, copy sound from songs to empty regions of
the surface as repository for their performance. They zoom
out from the region to get an overview of what they have
collected, and annotate content reminders and cues. The
system’s beat alignment eliminates rhythmic glitches. They
rehearse a couple of times before conducting their perfor-
mance.

3. Design Values

The design of the DSIP was inspired by the values in the
Human Interface Principles chapter of the Macintosh Hu-
man Interface Guidelines [Com92]. It states 11 design values
that have brought the success of the desktop metaphor inter-
face. However, although these values - despite Gentner and
Nielsens’ attack on them [DG96] - in themselves are sound,
they were to compromised by the technology available in the
late 70s. Today with hardware accelerated graphics, power-
ful CPUs, and vast storage capacity we can reassess these
values into new designs. Here we will focus on user control
and modelessness. For the DSIP we have added the values of
creativity and collaborativity. Defining the meaning and the
implication of these qualitative values in this context helps
understanding the DSIP.

3.1. Creativity

A value for design creativity holds within itself both the ac-
tivity of the user, and the activity the tool affords. Users

c© The Eurographics Association 2005.



Rikard Lindell and Thomas Larsson / The Data Surface Interaction Paradigm

creativity, within their activity, may it be writing a report
or a piece of music, should not be challenged, but encour-
aged by the tool. The creativity afforded by the tool connects
to users’ expectations. For instance, if we imagine another
model than the typewriter used for word processors, why not
something similar to “fridge poetry”.

Schön’s theory of how peoples’ creative work [Sch83] and
Mynatt’s et. al. design implications for creative and open-
ended task software [TM02] were also taken into consider-
ation. The implication of their work was to allow users to
evaluate their actions in advance before they happen; the en-
vironment is designed to go with the flow.

3.2. Collaboration

Collaboratively working on a report, or a piece of music, is
done today by turn-taking; mailing files back and forth or
putting the latest version on a server. Current systems are
designed for one on one interaction [DFAB98,L0̈1] and, de-
spite the success of Internet, does seldom support collabora-
tion for other tasks than communication. In observations of
and interviews with computer music creators, we have seen
that collaboration at the same place and time were done by
one primary user controlling the computer and with a sec-
ondary user as adviser. This impedes creativity. Collabora-
tively - as design value - must therefore be supported as a
part of the fundamental interaction paradigm for computer
systems.

3.3. User Control

In a strict sense user control means that the user, not the com-
puter, initiates all actions [Com92]. This may be true for of-
fice applications, however, the process the user interacts with
may very well be dynamic or collaborative. User Control -
in context of the work for this paper - means the users con-
trol the process, they may be over-viewing (zoomed out) or
inspecting its details (zoomed in) and in control of what is
going on with the process, but not necessarily initiating all
actions. User control isolates the process from the tools by
which users interact with the process. Tools should not initi-
ate actions. Illustrated by an example, a tool should not auto-
correct misspelled word (but can of course indicate possible
misspells), whereas, game avatars may trade nova-crystals
for ore with you.

3.4. Modelessness

Many of the most devastating user errors come from the
user not recognising the mode of the system; these errors are
known as mode-errors [Nor92]. The desktop paradigm bring
about a number of different modes, such as, for instance, di-
alogue boxes that prevent users from further actions in an
application until they have completed the dialogue. Gentner
and Nielsen advocates one should yield to that it is impossi-
ble to create a modeless interface [DG96]; they point out that

even in the Macintosh Human Interface Guidelines the big-
ger part of the modelessness section is devoted to guide the
correct use of modes. The argument against modelessness;
that humans concentrate and focus at one task at hand, does
not sustain the design for the user to give away overview and
context. To concentrate and to focus transfers to be zoomed
in, which means to be within the information and activity, in
contrast to de-zoomed i.e. overview.

4. Method

We have used a variety of methods in order to fully grasp the
potential positive or negative outcomes. Each method has
been adopted to the specific needs in the process and fall in
one of these three categories: conceptual studies, empirical
studies, and technological studies. The conceptual studies
contain related work and the field of cognitive psychology.
Empirical studies were in-depth interviews, focus groups,
qualitative evaluations in controlled environments as well as
through field studies. The in-depth and focus group inter-
views were based on open form questionnaires with six (6)
interviewees. Interviews of users revealed that they find mu-
sic software tools based on the desktop metaphor cumber-
some and constraining for their creativity. The primary qual-
itative evaluation criteria for these studies were the users’
attitudes toward these tools. The technological studies were
implementation of a series of prototypes with increasing in-
teractivity and complexity.

5. Prototype Music Tool Design

The prototype tool was designed and implemented to test
the DSIP approach. It has a set of available components.
One text component allows users to write text in any empty
region of the data surface. One sound component plays
and displays streamed sound contents. One sound controller
component is used for manipulation of sound length, pitch,
volume level and pan. And finally one song arrangement ma-
trix component helps in the arrangement of sound controller
components to form a song. Note that since the subject users
were all Swedish, text displayed in some of the screen shots
in the figures is in Swedish.

5.1. Components

An overview of the visual appearance of the content for
which music tool components were created is displayed in
figure1. The small clustered rectangles in the top of figure1
(1) show all the sound loops in the experiments. The bottom
half of the figure shows the song arrangement component
(2). Loop components that are copied to the arrangement be-
comes embedded in a loop controller component (3).

5.2. Sound Loop Component

The loop data is visualised by the loop component illustrated
in Figure2. At the top, the loop caption is shown (1). The

c© The Eurographics Association 2005.



Rikard Lindell and Thomas Larsson / The Data Surface Interaction Paradigm

Figure 1: Overview (zoomed out) of the data surface, (1)
shows the loop clusters, (2) the arrangement, (3) the loop
component embedded into a loop controller component in
the arrangement.

Figure 2: The loop component (zoomed in), (1) the caption,
(2) play/stop button and indicator triangle, (3) pie diagram
animation of loop progress, (4) loop waveform and progress
indicator (thin vertical line), and (5) the base tempo of the
loop.

loop’s play state is displayed by the intensity of the triangle
(2) opaque saturated green for playing and transparent green
for not playing. The triangle also behaves as a direct manipu-
lation push button. The circle (3) animates a pie diagram for
how much was left to play in a loop sequence; a non-playing
loop displays a full circle. The loop component also displays
the loop’s waveform, and a progress indicator is visualised
as a thin vertical line (4). Finally, there is text information
about the base tempo for the loop (5).

5.3. Sound Loop Controller Component

When a user copy a loop to the arrangement it becomes em-
bedded into a loop controller, see Figure3. The loop is dis-
played as usual (1), but there are three new controllers. A
controller for volume and pan (2), the vertical axis holds the
volume and the horizontal holds the left/right pan. There is a
controller for transposing the loop -12 to 12 semi tones (3),
and a fine tune controller (4).

Figure 3: The sound loop controller component, embeds the
sound loop component (1) and adds volume/left-right-pan
(2), transpose (3), and fine-tune (4).

5.4. Arrangement Component

In the arrangement component, see Figure1 (2), loops are
organised in rows and columns. Loops in the same column
are mutually exclusive. These rules allow users to move for-
ward in the song only by starting the next loop. Furthermore
each row has a launch button that starts all the loops in the
same row at once, while stopping all the rest of the playing
loops. Start and stop of loops align to bars, so the user does
not have to worry about timing mouse clicks or commands.
The arrangement also has a tempo controller, which affects
all loops in real-time for auto tempo correction.

5.5. Navigation

Navigation of the content is done through a zoom and pan
technique called trajectory zoom [Spe01]. Trajectory zoom
allows both pan and zoom in one action. Think of it as fol-
lowing a trajectory from the viewer through the surface at
the cursor point (in reality the scale is simply centred to the
cursors position). We use graphic zoom where no details are
hidden, thus, both popping of information and user context
breaks are avoided. De-zoomed content show miniaturised
details that provide a visual cue of it. Zoom interaction is
done with the scroll wheel of the mouse. An example of how
the zoom action is visualised is shown in Figure4. A sepa-
rate pan action was implemented with the right mouse button
by drag-and-drop of the entire surface.

5.6. Search

Users can also navigate by search with the find command;
the argument substring is used as a filter to select all the con-
tent information elements that contain the argument. This
is done incrementally with immediate feedback, thus each
appended character tightens the condition, which grey out
more and more information elements. In Figure5 this search
procedure is illustrated. There is also a leap command al-
lowing users to zoom in and inspect a detailed view of each
consecutive information element of the selection.

5.7. Commands

In the design of how command should be evoked, we consid-
ered both the desktop paradigm and command line interfaces

c© The Eurographics Association 2005.



Rikard Lindell and Thomas Larsson / The Data Surface Interaction Paradigm

a)

b)

c)

d)

Figure 4: (a) Before the zoom action. The user aim with the
cursor at the position marked with a white cross. (b) The
user has started to turn the scroll wheel. (c) Almost there.
(d) The users has reach the desired level of zoom.

(CLI). In the desktop environment, commands are selected
from menus by point and click. There are key chord short-
cuts for commands that are expected to be used frequently.
Whereas CLI commands are typed with the keyboard. There
are two distinct differences: visual vs. non-visual presence
and recognition vs. recollection. Command selection from
menus is more easy to use by its visual presentation; the
users do not have to remember the command only recog-
nise it. The drawback in this design is that menu navigation
is slow for users who already know the command they want
to invoke. Shortcuts patch this problem for most frequently
used commands. Menus take screen real estate, which is why
there are menu bars and hierarchical menus. For CLI users
have to remember exactly how to type the commands; on-
line help, “man”, guide only the right use of commands. For
efficiency commands are often named with acronyms, for
instance “list” is “ls”, “remove” is “rm”, and “change direc-

a)

b)

c)

d)

Figure 5: (a) The user has typed the ’h’-key and thus initi-
ated search for the find command named ’hitta’ Swedish for
find. (b) The user typed the colon-key that leaps to argument
input. (c) The user typed ’o’, which selected every informa-
tion element containing the substring ’o’ and filtered away
the rest which became transparent. (d) The user typed yet an-
other ’o’, which selected everything containing the substring
’oo’. Notice how few element this short substring selected.

tory” is “cd”. This impedes learning. CLI force users to ask
for feedback.

5.8. Commands in the Data Surface Environment

We designed a text-based command evocation method. The
idea behind typed command was that the users should not
have to look at the tool, only the content information. The
number of available commands is limited by the selected
content. We can think of it as a noun, whereas commands
can be regarded as what-can-we-do-with-this-noun-verbs,
following the idea of a noun-then-verb interaction gram-
mar [Com92]. For each key press, a feedback help list dis-
plays the commands that contain the written substring. The
first command item of the feedback list is due to be evoked
when the user press the command completion key. In Fig-
ure 6 (top) the user typed: “k”, which resulted in a list of
two commands. In Figure6 (bottom) the user typed: “ko”,
which selected the command “kopiera” (Swedish for copy),
and pre-visualised immediate feedback enable users to in-
vestigate the results of their intended action in advance. This
has been shown as particularly usable for creativity tools

c© The Eurographics Association 2005.



Rikard Lindell and Thomas Larsson / The Data Surface Interaction Paradigm

[TM02]. A help key is also available displaying all the com-
mands for the selected content context. A unique enough
substring selects the desired command rapidly, for instance
with “kopiera” (copy) the user may type “o” and then the
command completion key to evoke it.

a)

b)

Figure 6: First and second key press while the cursor hover
over a sound component. (a) Feedback of the command that
in this context match the typed key is displayed. (b) The first
command of the list is due to be invoked, indicated by the
stronger contrast. Note that a pre-visualisation of the copy
command is also shown.

5.9. Collaboration

Real-time synchronisation of data surface contents on dif-
ferent devices supports collaboration, mutual awareness of
action, and mutual modifiability. All actions and commands
are echoed to the other collaborating participant’s machine.
The appearance of the visual and acoustic contents is ex-
actly the same on all machines, thus all participating users
are aware of all actions. To further help and support the col-
laboration, users can annotate the contents by typing mes-
sages onto the data surface. The author of the message is
indicated by colour.

6. The technology of the prototype

In the implementation of the prototype, the Simple Direct
Media Layer (SDL) is used as platform for events, timers,
threads, network, and sound. SDL makes it easy to set up an
OpenGL context. It is also designed for game development,
which gives some further advantages, for instance, it makes
it easy to develop custom user interfaces and it runs natively
with little overhead.

The basic functionality of SDL is very simple; more ad-
vanced features are built as add on libraries. In case with

audio output, SDL simply sets up a stream buffer for the au-
dio card and generates a callback whenever the buffer needs
to be filled. We use 16 bit stereo samples, and the latency
for our prototype is 10 ms, which is responsive enough for
the task. In our implementation of the mixer and sequencer,
the SoundTouch library, running in a background thread, is
used for time stretching and pitch shifting of the sound sam-
ples. The SDL_Net library is used to send UDP-packages
containing commands for synchronisation of collaborating
participants’ machines.

The data surface information content is linked to a
database containing components arranged in hierarchical
scene graphs providing the components relative position and
scale. We note that scene graph structures have already be-
come the de facto data structure in 3D graphics simulation
and animation packages, due to their flexibility and per-
formance features. For example, classic scene graph pack-
ages like Open Inventor [SC92] and Performer [RH94] have
found widespread use within many 3D graphics applica-
tions. However, together with commodity graphics hard-
ware, the scene graph programming paradigm is suitable for
many more applications. It seems natural to use the power
of today’s graphics hardware in our implementation. Scene
graphs and standard OpenGL allow dynamic features with-
out compromising performance.

In the rendering traversal of the scene graphs, we use the
components bounding quads to perform hierarchical view-
frustum culling. As the traversal progresses, the compo-
nents’ transformation matrices are push and popped on the
OpenGL model view matrix stack. An automatic selection of
an appropriate LoD is also done per component; currently a
choice between rendering the components geometry or using
cached texture mapped versions is done. Note that this way
of rendering provides interactive performance for pan and
zoom actions, even on graphically rich data surfaces, which
is a key feature for the DSIP. Furthermore, during the ren-
dering traversal, the components are visited in back to front
order, which enables utilisation of the alpha-channel, for in-
stance the transparency of unselected contents.

The selection or picking mechanism is also implemented
as a search traversal in the scene graphs, the main difference
being the usage of the OpenGL selection buffer, for which
we set up a limited frustum, centred at the image space pick-
ing coordinates, and we also invert the normal rendering or-
der.

Finally, for the text component, we use true type fonts
that allows sophisticated text to be rendered. Font rendering,
however, is an involved and complicated task. Fortunately,
the FreeType and FreeType OpenGL (FTGL) libraries sup-
port texture mapped font rendering as one of its rendering
styles, which turned out to give us an acceptable balance be-
tween visual appearance and rendering speed.

c© The Eurographics Association 2005.



Rikard Lindell and Thomas Larsson / The Data Surface Interaction Paradigm

7. Evaluation

The described design ideas behind the DSIP were tested on
ten (10) subject users: six (6) solo user experiments and two
collaboration pair experiments. The screen area was set to
1024 x 768 pixels on 14" displays. Among the users were
four studio producers, with expertise in computer aided mu-
sic production. The users were observed for their emotional
expressions towards navigation, command invocation, and
collaboration. The subject users were handed a written intro-
duction that described the prototype and a few simple tasks
to carry out to get them acquainted to the interface, naviga-
tion, command invocation, the loops, and the arrangement.
Then, during the solo-test, the subject users where instructed
to think aloud, whereas collaboration test users were allowed
to engage in verbal communication with each other.

The criteria for the evaluation were: usability of the inter-
faces in general; usability of the command invocation; de-
gree of satisfaction (enjoyment vs. frustration); what roles
were taken by the users; and tools effect on collaboration.
The evaluation was divided in two phases, first the users
completed a set of task by themselves, and secondly they
created a song together. The users who collaborated sat in
the same room; they could see each other but not each oth-
ers’ screens. During the collaboration phase, one set of loud-
speakers played the synchronised sound from one computer.

Each evaluation was followed up by debriefing interviews.
The collaboration test users were interviewed in focus group
pairs. They were asked what they thought of five different
aspects, what they liked and disliked. The aspects were: nav-
igation, layout and design, command invocation, note writ-
ing, and collaboration.

8. Evaluation results

The usability of the navigation tools was satisfactory to all
the users. Note that in previous investigations [Lin03] of a
desktop paradigm music tool, the users where bored and un-
satisfied with the navigation style. The users for these tests,
however, really enjoyed themselves, one user even shouted
out: “this is fun!”. During the second phase the users started
to look for sounds. After having found a set of sounds they
felt comfortable with they started to create their song. The
users negotiate what sounds to select and collect. They liked
the layout and design of the sound components; the expert
users were really fond of the combined volume/pan con-
troller. All the users reported difficulties with the arrange-
ment component due to implementation bugs. Two users,
one expert and the other a novice, hailed the command in-
vocation style. One expert user disapproved it. On the other
hand, the novice user, without any pre-knowledge about
command-line interfaces, thought it was really “cool” and
revolutionary to write commands.

A few stray comments from the other subject user were:

“you are free - good for creativity”, “I loved to have every-
thing on top”, “good to not to have to load loops”, “super
nice to escape menus”, “easy and fun”, “fun to see what
the other one was doing”. The collaboration users commu-
nicated with each other both by talking and by chat anno-
tations. The annotations worked as referent in their verbal
communication. They were very pleased with this form of
collaboration opposed to sit together by one computer. Un-
fortunately, the arrangement component revealed to have a
number of bugs that made the users less satisfied with it. One
user totally neglected the arrangement and copied loop com-
ponents freely onto an empty space of the surface and used
the commands to launch and stop the loops to create a song.
Eight (8) out of ten (10), created songs with the arrangement
component as expected.

9. Conclusions

The Data Surface Interaction Paradigm showed very good
results for a loop-based improvisation and live music creativ-
ity tool. Users were very pleased with the navigation and the
approach support their creativity for the task. The command
model was not fully embraced, on the other hand visual and
audio content synchronisation simplified collaboration. With
visual synchronisation an external referent to sound modali-
ties enables users to engage in negotiations for their creative
work. Clearly, the users enjoyed the music tool implemented
based on the Data Surface Interaction Paradigm. There were
strong indications that the content centric Data Surface Inter-
action Paradigm approach can serve as an efficient, benefi-
cial, and pleasant interaction paradigm for graphical user in-
terfaces of computers. However, to fully understand the po-
tential benefits and pitfalls other application areas and larger
data sets have to be investigated before the general case can
be proved.

References

[BBB95] BENJAMIN B. BEDERSONJ. D. H.: Advances
in the Pad++ Zoomable Graphics Widget. InThird Annual
Tcl/Tk Workshop sponsored Toronto, Ontario, Canada
(July 1995). 2

[BMG00] BEDERSONB. B., MEYER J., GOOD L.: Jazz:
an extensible zoomable user interface graphics toolkit in
java. InUIST (2000), pp. 171–180.2

[CDE95] CURBOW D., DYKSTRA-ERICKSON E.: The
OpenDoc User Experience. InDevelop, the Apple Tech-
nical Journal Issue 22(1995), pp. 83–93.1

[Com92] COMPUTER A.: Macintosh Human Interface
Guidelines. Addison-Wesley, 1992.2, 3, 5

[DB95] DEBORAH BARREAU B. A. N.: Finding and re-
minding:Êfile organization from the desktop. InACM
SIGCHI Bulletin archive(July 1995), vol. 27, pp. 39–43.
Issue 3, ISSN:0736-6906.2

c© The Eurographics Association 2005.



Rikard Lindell and Thomas Larsson / The Data Surface Interaction Paradigm

[DFAB98] DIX A., FINLAY J., ABOWD G., BEALE R.:
CSCW and Social Issues, 2 ed. Prentice Hall, 1998.3

[DG96] DON GENTNER J. N.: The Anti-Mac Interface.
In Communications of the ACM(Aug. 1996). ACM Press.
2, 3

[DS73] DOWNS R. M., STEA D.: Cognitive Maps and
Spatial Behavior. InImage and Environments(1973).
ISBN 0-202-10058-8 Aldine Publishing Company.1

[GSL00] GRIMM R., SWIFT M. M., L EVY H. M.: Revis-
iting Structured Storage: A Transactional Record Store.
Tech. Rep. UW-CSE-00-04-01, University of Washing-
ton, Department of Computer Science and Engineering,
April 2000. 1

[Kin91] K INDBORG M.: Visual techniques for orientation
in hypermedia structures, 1991. Lic. thesis Stockholm
University Department of Computer & System Sciences
(DSV) ISSN 1101-8526 1991.2

[KP93] KEN PERLIN D. F.: Pad an Alternative to the
Computer Interface. InProceedings of SigGraph 93, ACM
Press 93(1993). 2

[L0̈1] LÖWGREN J.: "Från MDI till interaktionsdesign",
2001. Event: STIMDI’01: Svenska tvärvetenskapliga in-
tresseföreningen för människa dator-interaktion.3

[Lin03] L INDELL R.: Users Say: We Do Not Like to Talk
to Each Other. InGraphical Communication Workshop
(2003), pp. 87–90.7

[MIEL99] MYNATT E. D., IGARASHI T., EDWARDS

W. K., LAMARCA A.: Flatland: New Dimensions in
Office Whiteboardsm. InProceedings of CHI99(1999),
pp. 346–353.2

[NBK03] NICK BRYAN-K INNS PATRICK G. T. HEALEY

M. T.: Graphical Representations for Group Music Im-
provisation. InSecond International Workshop on Inter-
active Graphical Communication(2003). Queen Mary
University of London. 2

[NHS96] N. D., HÖÖK K., , SJÖLINDER M.: Spatial
Cognition in the Mind and in the World - the case of hy-
permedia navigation. InThe Eighteenth Annual Meeting
of the Cognitive Science Society(1996). 2

[Nor92] NORMAN D. A.: The Design of Every Day
Things. Basic Books, New York, 1992.3

[PLVB00] POOK S., LECOLINET E., VAYSSEIX G.,
BARILLOT E.: Context and Interaction in Zoomable
User Interfaces. InPublished in the AVI 2000 Confer-
ence Proceedings (ACM Press)(May 2000), pp. 227–231.
Palermo, Italy. 2

[RH94] ROHLF J., HELMAN J.: Iris performer: a high per-
formance multiprocessing toolkit for real-time 3d graph-
ics. In SIGGRAPH ’94: Proceedings of the 21st annual
conference on Computer graphics and interactive tech-
niques(1994), ACM Press, pp. 381–394.6

[RSK04] RAVASIO P., SCHÄR S. G., KRUEGER H.: In
Pursuit of Desktop Evolution: User Problems and Prac-
tices with Modern Desktop Systems. InTo Appear
in: ACM Transactions on Computer-Human Interaction
(TOCHI) (2004). 2

[SC92] STRAUSSP. S., CAREY R.: An object-oriented 3d
graphics toolkit. InSIGGRAPH ’92: Proceedings of the
19th annual conference on Computer graphics and inter-
active techniques(1992), ACM Press, pp. 341–349.6

[Sch83] SCHÖN D. A.: The Reflective Practitioner: How
Professional Think in Action. Basic Books, NY, 1983.3

[Smi94] SMITH W. R.: The Newton Application Archi-
tecture. InProceedings of the 1994 IEEE Computer Con-
ference, San Francisco(1994). 1

[Spe01] SPENCE R.: Presentation (Chapter 6). InInfor-
mation Visualization(2001). 2, 4

[TM02] TERRY M., MYNATT E. D.: Recognizing cre-
ative needs in user interface design. InProceedings of the
fourth conference on Creativity & cognition(2002), ACM
Press, pp. 38–44.2, 3, 6

[Tve91] TVERSKY B.: Distrotions in Memory for Visual
Displays. InPictorial Communication in Virtual and Real
Environments(1991), S. R Ellis M. K. Kaiser A. D., (Ed.),
pp. 61–75. London: Tayler and Francis.1

[Tve93] TVERSKY B.: Cognitive Maps, Cognitive Col-
lage and Spatial Mental Models. InProceeding of the
European Conference COSIT(1993). Springer-Verlag.1

c© The Eurographics Association 2005.


