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Abstract
This paper presents an efficient rendering technique for translucent materials using caches. The proposed caching
scheme, inspired by the irradiance caching method, is integrated into a hierarchical rendering technique for
translucent materials. We propose a split-disk model to determine the cache distribution and derive the subsurface
illuminance gradient used for interpolation by reformulating the equation of dipole diffusion approximation as a
3D convolution process. Our experiments show that only a few caches are required to interpolate the entire image,
while the visual difference is negligible. The speedup could be achieved up to one order of magnitude.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Tech-
niques I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism

1. Introduction

Accurately modeling the behavior of light to produce real-
istic images is a great challenge in computer graphics. Over
the years, many illumination models have been developed
for realistic image synthesis, trying to describe the scattering
of light from materials. Most of them focused on develop-
ing models using BRDFs (Bidirectional Reflectance Distri-
bution Function), which assume that light enters and leaves a
material at the same point on the surface. In some cases like
metals, this assumption is valid and results in convincing vi-
sual appearances. But when accounting for translucent mate-
rials that exhibit significant light transport below the surface,
BRDF is not enough. Light hitting a translucent material did
not just bounce from surfaces. Instead, light beams penetrate
below the surface, scatter inside the material, and leave the
object at a different point on the surface. This phenomenon
is known as subsurface scattering.

Traditionally, subsurface scattering has been approxi-
mated as Lambertian diffuse reflection that makes final im-
ages look hard and distinctly computer-generated. In com-
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puter graphics, the first model dealing with subsurface scat-
tering was proposed by Hanrahan and Krueger [HK93].
They proposed an analytic expression for single scattering in
a homogeneous, uniformly lit slab. Dorsey et al. [DEL∗99]
later used photon mapping to simulate full subsurface scat-
tering for the rendering of weathered stones. Pharr and
Hanrahan [PH00] proposed the idea of non-linear scatter-
ing equations and demonstrated how the scattering equation
could be used to simulate subsurface scattering more effi-
ciently than does a traditional Monte Carlo ray tracing. For
highly scattering material, Stam [Sta95] first introduced the
diffusion theory to computer graphics and proposed a multi-
grid method to solve a diffusion equation approximation.

A major breakthrough was recently proposed by Jensen
et al. [JMLH01] with an analytic BSSRDF (Bidirectional
Surface Scattering Reflection Distribution Function) model
for subsurface scattering. Based on this model, Jensen
and Buhler [JB02] dramatically reduced computation
time from several minutes to a few seconds. The BSS-
RDF model was then adopted for interactive rendering
with mesh-based objects using various rendering algo-
rithms [LGB∗03, CHH03, DS03, HBV03, MKB∗03, HV04].

Although recent researches have improved the speed of
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rendering translucent materials to some extent, none of them
could be easily integrated into existing renderers. They re-
quire either complex rendering algorithms or some specific
data structures. In other words, most of them are isolated sys-
tems for the pure purpose of experiments. The algorithms
used in these rendering systems are not suitable for movie
industry, where some specific renderers must be used and
objects are often not mesh-based.

To devise an efficient rendering technique for the film in-
dustry, we investigate the effect of subsurface scattering and
find that it has distinguishing characteristics just as the ef-
fect of indirect lighting in the global illumination. They both
tend to change slowly and require a lot of sample points
to compute. This inspires us to use the classic irradiance
caching technique introduced by Ward et al. [WRC88] as a
basis, and to extend it for calculating the subsurface illumi-
nance. Irradiance caching was originally designed for accel-
erating the computation of indirect illumination in a Monte
Carlo ray tracer [WRC88, WH92]. It is a method for caching
and re-using irradiance values (via interpolation) on Lam-
bertian surfaces. The irradiance caching technique was later
extended to accelerate the computation of ambient occlusion
in production [Chi03]. In this paper, we show that it is feasi-
ble to extend the irradiance caching technique to accelerate
the computation of the subsurface illuminance as well.

2. The Dipole Diffusion Approximation

The dipole diffusion approximation, which approximates the
volumetric source distribution using a dipole (i.e. two point
sources), was originally developed in medical physics com-
munity. Farrell et al. [FPW92] used a single dipole to rep-
resent the incident source distribution for the noninvasive
determination of tissue optical properties in vivo. Jensen et
al. [JMLH01] then introduced the dipole diffusion approx-
imation to the computer graphics community for modeling
the subsurface light transport.

The dipole diffusion approximation consists of position-
ing two point sources near the surface to approximate an in-
coming light. One point source, the positive real light source,
is located at a distance zr beneath the surface, and the other
one, the negative virtual light source, is located above the
surface at a distance zv. By using dipole diffusion approx-
imation to solve the diffusion equation, we can get the fol-
lowing expression for the radiant exitance at surface location
po due to incident flux Φ(pi) at pi (see [JB02] for the details
of derivation):

dMpi(po) = dΦ(pi)
α′

4π
[zr(1+σsr)

e−σsr

s3
r

+zv(1+σsv)
e−σsv

s3
v

],

(1)
where α′ = σ′

s/σ′
t is the reduced albedo; σ′

s = σs(1− g) is
the reduced scattering coefficient and g is the mean cosine of
the scattering angle; σ′

t = σ′
s + σa is the reduced extinction

coefficient; σa is the absorption coefficient; σ =
√

3σaσ′
t is

the effective transport coefficient; sr =
√

r2 + z2
r is the dis-

tance from po to the positive real light source; sv =
√

r2 + z2
v

is the distance from po to the negative virtual light source;
r = ‖po − pi‖ is the distance from po to pi; and zr = lu and
zv = lu(1+(4/3)A) are the distances from the dipole sources
to the surface. The mean-free path lu = 1

σ′

t
is the average

distance at which the light is scattered. Finally, the bound-
ary condition for mismatched interfaces is taken into account
by the A term that is computed as A = (1 + Fdr)/(1−Fdr),
where the diffuse Fresnel term Fdr is rationally approxi-
mated from the relative index of refraction η by [JMLH01]:

Fdr(η) = −1.440
η2 +

0.710
η

+0.668+0.0636η.

By using Equation 1, the subsurface illuminance, which is
defined as the light flux per unit area arriving at an inner
surface point within materials via subsurface scattering from
the nearby surfaces, then could be computed as:

S(po) =
Z

pi∈A

dΦ(pi)
α′

4π
[

zr(1+σsr)
e−σsr

s3
r

+ zv(1+σsv)
e−σsv

s3
v

]

=
Z

pi∈A

Ê(pi)
α′

4π
[

zr(1+σsr)
e−σsr

s3
r

+ zv(1+σsv)
e−σsv

s3
v

]

d pi

=
Z

pi∈A

Ê(pi)Rd(pi, po)d pi,

(2)

where Ê(pi) = Fdt(η)E(pi) and E(pi) is the irradiance
at point pi within the material. The diffuse Fresnel trans-
mittance Fdt(η) is defined as Fdt(η) = 1 − Fdr(η), and
Rd(pi, po) is the diffuse BSSRDF defined as the ratio of ra-
diant exitance to incident flux [JMLH01].

Finally, since the diffusion approximation already in-
cludes a diffuse Fresnel transmittance, the diffuse radiance
L is computed as:

L(po,ω) =
Ft(1/η,ω)

Fdt(η)

S(po)

π
,

where Ft is the Fresnel transmittance.

Alternatively, we could omit the Fresnel terms and assume
a diffuse radiance:

L(po,ω) =
S(po)

π
. (3)

3. A Caching Technique for Rendering Translucent
Materials

3.1. Dipole Diffusion Approximation as a Convolution
Process

Recall that the subsurface illuminance function (Equation 2)
is

S(po) =
Z

pi∈A

Ê(pi)Rd(pi, po)d pi, (4)
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where Ê is the transmitted irradiance function over the sur-
face and Rd is the diffuse BSSRDF:

Rd(pi, po) =
α′

4π
[zr(1+σsr)

e−σsr

s3
r

+ zv(1+σsv)
e−σsv

s3
v

].

In the assumption of semi-infinite plane-parallel medium, Rd
becomes a function of only the distance between pi and po.
By replacing parameter pi and po with the offset ‖pi − po‖
and expressing the vector parameter in terms of scalar val-
ues, we can rewrite Rd as follows:

Rd(pi, po) = Rd(pi,x, pi,y, pi,z, po,x, po,y, po,z)

= Rs(pi,x − po,x, pi,y − po,y, pi,z − po,z),

where

Rs(x,y,z)

=
α′

4π
{zr(1+σ

√

z2
r + x2 + y2 + z2)

e−σ
√

z2
r +x2+y2+z2

(
√

z2
r + x2 + y2 + z2)3

)

+ zv(1+σ
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z2
v + x2 + y2 + z2)

e−σ
√

z2
v+x2+y2+z2

(
√

z2
v + x2 + y2 + z2)3

}.

Note that Rs is a three-dimensional radial function with
its value decaying exponentially with the distance. The orig-
inal equation (Equation 4) integrates pi over the surface A.
It seems that the integration is a two-dimensional process.
But actually the integration is reformed in three-dimensional
space because pi is a three-dimensional point. So we change
the integral domain and rewrite Equation 4 in a form of three
dimensions:

S(px, py, pz) =
ZZZ

XY Z

Ê(x,y,z)Rd(x,y,z, px, py, pz)dxdydz.

Then replacing Rd , we get:

S(px, py, pz) =
ZZZ

XY Z

Ê(x,y,z)Rs(x− px,y− py,z− pz)dxdydz.

Because Rs(x− px,y− py,z− pz) is a symmetric function,
we can change the sign of the parameter:

S(px, py, pz) =
ZZZ

XY Z

Ê(x,y,z)Rs(px−x, py−x, pz−z)dxdydz.

(5)

Obviously, the resultant equation is in the form of a three-
dimensional convolution of two functions. Finally we arrive
at:

S = Ê ⊗Rs.

3.2. Derivation of the Subsurface Illuminance Gradient

Given the subsurface illuminance function (Equation 4), it is
not clear how to calculate the gradient of the subsurface illu-
minance. With the reformulated convolution form in Equa-

tion 5, the gradient could be derived straightforwardly. Re-
call that the derivative of a convolution function is

d
dx

( f ⊗g) =
d f
dx

⊗g = f ⊗ dg
dx

The gradient of the subsurface illuminance is then derived as
follows

∇S = (
∂S
∂x

,
∂S
∂y

,
∂S
∂z

)

= (
∂
∂x

(Ê ⊗Rs),
∂
∂y

(Ê ⊗Rs),
∂
∂z

(Ê ⊗Rs))

= (
∂Ê
∂x

⊗Rs,
∂Ê
∂y

⊗Rs,
∂Ê
∂z

⊗Rs) (6)

or

= (Ê ⊗ ∂Rs

∂x
, Ê ⊗ ∂Rs

∂y
, Ê ⊗ ∂Rs

∂z
). (7)

As shown in Equation 6 and Equation 7, once we get either
∇Ê or ∇Rs, we could calculate the gradient of subsurface il-
luminace. Unfortunately, since ∇Ê does not have an analytic
form, it is infeasible to calculate ∇Ê in practice. Therefore,
in our implementation, we choose Equation 7 to calculate
the gradient of subsurface illuminance. To better clarify the
following formulation, we change notation, replacing zr and
zv with hr and hv, respectively. Note that

∂Rs(x,y,z)
∂x

=
α′

4π
x
[
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s4
r
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3
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)

+hv
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3
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)
]

,
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=
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4π
y
[
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3
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3
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]

,
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=
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4π
z
[
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3
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]

,

sr =

√

x2 + y2 + z2 +h2
r ,

and

sv =

√

x2 + y2 + z2 +h2
v .

Thus the problem is reduced to the evaluation of the inte-
gral of convolution:

∂S(px, py, pz)

∂x

=
ZZZ

XY Z

Ê(x,y,z)
∂Rs(px − x, py − y, pz − z)

∂x
dxdydz,
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∂S(px, py, pz)

∂y

=
ZZZ

XY Z

Ê(x,y,z)
∂Rs(px − x, py − y, pz − z)

∂y
dxdydz,

and

∂S(px, py, pz)

∂z

=
ZZZ

XY Z

Ê(x,y,z)
∂Rs(px − x, py − y, pz − z)

∂z
dxdydz. (8)

Although the integrals still do not have an analytic solution,
by exploiting the properties of ∇R (see Figure 1), we could
use some integration techniques such as Monte Carlo and
quadrature methods to get a good approximation.

-2 -1 1 2
distHmmL

-0.4

-0.2

0.2

0.4

Rd’Hmm^-3L

Skimmilk B channel

Skimmilk G channel

Skimmilk R channel

Figure 1: The graph of ∂Rs/∂x.

3.3. Applying the Gradient to Interpolation

Once we calculate the gradient of subsurface illuminance,
we could use the gradient to interpolate the subsurface illu-
minance more accurately. We use the same weighted average
as proposed in [WH92] to interpolate the subsurface illumi-
nance value:

S(p) =
∑k∈C wk(p)[Sk +(p− pk) ·∇Sk]

∑k∈C wk(p)
, (9)

where p is the position of the point to be computed; pk
is the position of cache k; wk(p) is the weight of cache
k with respect to p; C is the set of valid caches such that
{cache k : wk(p) > 1/a}; Sk is the computed subsurface il-
luminance of cache k; ∇Sk is the computed gradient of sub-
surface illuminace of cache k; and a is a user-specified error
bound.

The next problem is how to determine the spacing of sam-
ples, i.e., how to determine the weight of each sample or how
to estimate the error of each sample. The simplest and the-
oretically most accurate solution is directly using the inner
product of the offset (p− pk) and ∇Sk derived in last section

as our error estimate of cache k (assuming that the error due
to interpolation is proportional to the estimated directional
change rate of subsurface illuminance from pk to p), i.e.,

ε ∝ S′p = lim
h→0

∆S
h

= ∆px
∂S
∂x

+∆py
∂S
∂y

+∆pz
∂S
∂z

= ∆p ·∇S,

where S′p is the directional derivative of S in direction p.

Unfortunately, this will lead to bias the calculation. Since
gradient is a very local property, areas that just happen to
have small subsurface illuminance gradient would be sam-
pled at low density, even though there could still be sudden
changes in the subsurface illuminance value due to nearby
surfaces. A possible solution is to use some approximation
models to capture the largest expected gradient in determin-
ing the sample density so that we could not miss anything
relevant.

To estimate the largest expected gradient, we introduce
a split-disk model analogous to the split-sphere model pro-
posed by Ward et al. [WRC88]. The split-disk model, based
on the assumption that the geometry is locally flat, relates
the subsurface illuminance gradient to the variance V of the
irradiance values within nearby surfaces. It assumes that a
surface element is located at the center of a disk that ap-
proximates nearby surfaces (see Figure 2). The radius of the
disk, R, is heuristically determined according to the mate-
rial scattering property. Half of the disk is totally bright with
constant irradiance K and the other half is totally dark with
constant irradiance of zero. Because the variance of the ir-
radiance values within the disk is V , we can conclude that
K = 2V . The split disk has the largest expected gradient pos-
sible for surfaces with variance V .

An approximate bound to the change rate of subsurface
illuminance in the split disk, ε, is just given by the first order
Taylor expansion of the function S of one variable:

ε(u) ≤ |(u−uo)
∂S
∂u

|,

where uo is the center of the disk and u is some other point
on the disk. Note uo and u are both one-dimensional value
because we only care about the distance between two points.
To derive

∂S
∂u

= lim
h→0

S(u+h)−S(u)

h

= lim
h→0

∆S
h

,

we firstly consider a surface element moving from uo to u,
the change of S could be computed as twice of an integral
over sector of circle A plus an integral over right triangle B
(see Figure 2):

∆S = 2(∆SA +∆SB),
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Right Triangle B

E=0

R

θR
Sector of circle A

∆u

u0 u

E=2V

Figure 2: The split-disk model. A surface element is located
at the center of a half-dark disk.

where

∆SA =
Z θR

0

Z R

0
E(r)Rd(r)rdrdθ

and

∆SB =
1
2

Z

√
R2−∆u2

0

Z ∆u

0
E(x,y)Rd(

√

x2 + y2)dxdy.

Unfortunately, we cannot find an analytic solution of the
integral describing subsurface scattering over right triangle
∆SB. Inspired by [MKB∗03], where Mertens et al. derive
a semi-analytic integration method to solve the integral de-
scribing subsurface scattering over an arbitrary triangle, we
can approximate ∆S by an integral over four sectors of circle:

∆S ≈ 4∆SA.

The derivation of ∆S is as follows:

∆S≈ 2V
α′

π
arcsin(

∆u
R

)(e−σzr − zr

Rr
e−σRr +e−σzv − zv

Rv
e−σRv),

where Rr =
√

R2 + z2
r and Rv =

√

R2 + z2
v . Since ∂S

∂u =

limh→0(
∆S
h ), we get

∂S
∂u

≈V
2α′

πR
(e−σzr − zr

Rr
e−σRr + e−σzv − zv

Rv
e−σRv).

And the error estimate εk(p) of cache k with respect to p can
be computed as

εk(p) = |p− pk|Vk
2α′

πR
(e−σzr − zr

Rr
e−σRr +e−σzv − zv

Rv
e−σRv),

where Vk is the variance of irradiance values within the disk
of cache k. As in [WRC88], the inverse of the error estimate

wk(p) =
1

εk(p)

=
1

|p− pk|Vk
2α′

πR (e−σzr − zr
Rr

e−σRr + e−σzv − zv
Rv

e−σRv)

(10)

is then used as our weight. Substituting Equation 10 into
Equation 9, the subsurface illuminance of some point of in-
terest then can be computed by interpolating nearby caches.

3.4. A Three-Pass Technique for Rendering Translucent
Materials

To integrate our model into Jensen’s hierarchical evaluation
method [JB02] , we use a three-pass approach, in which the
first pass consists of computing the irradiance at selected
points on the surface, the second pass generates all the nec-
essary cache samples, whose values including subsurface il-
luminance, gradient of subsurface illuminance, and variance
of irradiance over nearby surface, are computed by using the
precomputed irradiance values, and the last pass re-uses the
caches to produce the final image via interpolation.

Note that the second pass in our three-pass approach only
generates caches. It doesn’t use caches to interpolate any
value. The interpolation using caches is done in the third
pass.

Pass 1: Sampling the Irradiance

To solve Equation 4, firstly, we need to sample the irradi-
ance function E(x). There are a number of methods to gen-
erate sampling positions on the surface. In [JB02], Turk’s
point repulsion algorithm [Tur92] is used to obtain a uniform
sampling of points on a polygon mesh. However, a uniform
sampling seems irrelevant in their hierarchical approach as
each sample point is weighted by the area associated with it.
Instead of using the Turk’s point repulsion algorithm, which
is hard to implement, we use a very simple method to obtain
the sampling positions on the polygon mesh. We directly use
the centroid of each face as our sample point and assign the
area of the face as the area associated with this sample point.
If a model is too coarse and results in low-frequency noise
in final image, we subdivide the model until the noise disap-
pears.

For each sample point, we store the position, the area as-
sociated with the point, and a computed irradiance estimate.
Since we focus on caching technique in this paper, we do
not use any rendering technique that accounts for global il-
lumination (such as photon mapping and distributed ray rac-
ing) to compute the irradiance. We simply sum up irradiance
contributions from each light source for evaluating direct il-
lumination on each sample point.

As stated in [JB02], these irradiance samples should be
stored in a hierarchical structure so that by clustering distant
samples, we can exploit the exponential shaped fall-off
property of Rd . Here we choose an octree as proposed by
Jensen et al. [JMLH01] in our implementation. Each octree
node contains the average position, the average irradiance,
and the total areas of its sub-nodes.
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Pass 2: Generating Necessary Caches

Before we state when and where all the necessary caches
should be generated, we present how to compute the values
stored in each cache. The values we stored in each cache
are subsurface illuminance S, gradient of subsurface illumi-
nance ∇S, and variance V of irradiance over nearby surface.
All these values are computed by using the precomputed ir-
radiance values (distributed in Pass 1) stored in a hierarchical
structure.

The subsurface illuminance S is computed using the rapid
hierarchical integration technique proposed by [JB02]. As
for evaluating the gradient of subsurface illuminance ∇S,
ideally, we should devise some integration technique ex-
ploiting the properties of ∇Rs(Figure 1) to solve Equation 8;
and the integration technique has to be evaluated very fast,
or the cost for computing the gradient will cancel out the
gain from the interpolation. Fortunately, directly using the
hierarchical integration technique proposed by [JB02] yields
reasonable results and the variance V could be evaluated at
the same time.

To determine when and where all the necessary caches
should be generated, we firstly use ray casting to find a set of
visible points X . For each point xi in X , we check if there is
any previously computed cache at nearby surface that could
be used for interpolation, i.e., any cache k with wk(xi) > 1/a.
If any, we leave xi to next pass; otherwise, we generate a new
cache at point xi, evaluate S(xi), ∇S(xi), and V associated
with the cache. Note that checking each point xi in X in a
different order could change the resulting distribution of the
caches. Here we choose the bottom-up scan-line order in our
implementation.

As stated in [WRC88], each previously computed cache
is only valid for interpolation in some finite space. A
hierarchical structure is required for efficiently searching
nearby valid caches. Here we use the same data structure as
proposed by [WRC88], an octree, to store the caches.

Pass 3: Reusing Caches to Interpolate the Image

After we generate all the necessary caches, we use Equa-
tion 9 to calculate the subsurface illuminance of each point
xi in X (which is a set of visible points computed by ray cast-
ing) via interpolation. Finally, the radiance of each point xi
is obtained using Equation 3.

4. Results

In this section we present several results from our imple-
mentation of the rendering technique. All the images are
rendered by a Monte Carlo ray tracer at the resolution of
1024x1024 pixels. Our timings are recorded on a PC with an

Model Buddha Dragon Igea Teapot
N 293,232 202,520 268,686 261,632
C 7698 9454 11654 7646
H 342601 446151 491830 315883
R 2.25% 2.12% 2.37% 2.42%

RMS 0.0068 0.0061 0.0046 0.0049
T1 (sec.) 25.80 30.86 35.80 16.75
T2 (sec.) 2.34 2.7 2.91 1.88
Speedup 11.03 11.43 12.30 8.91

Table 1: Overview of performance with different models.

AMD Athlon XP 1800+ (1.53 GHz) processor and 512 MB
main memory.

To validate our algorithm, we have implemented Jensen’s
hierarchical rendering technique [JB02] and compare the im-
ages generated by Jensen’s hierarchical rendering technique
with ours (Figure 3). The Dragons are rendered with ma-
terial Skimmilk [JMLH01]. Our approach gives almost the
same visual appearance while achieving about one order of
magnitude speedup.

Table 1 illustrates the performance and timing statistics of
our approach with different models. N is the number of sam-
ples for sampling irradiance. C is the number of total caches.
H is the number of total hit pixels. R is the ratio of C to H.
RMS is the root-mean-squared error with respect to the av-
eraged RGB value of each pixel. T1 and T2 are the rendering
times used in Jensen’s approach and ours, respectively. The
time for sampling the irradiance and computing the specular
term is not taken into account. Note the ratio of total caches
to total hit pixels is about 2%. Almost 98% pixels could be
calculated via interpolation. While we only use such small
amounts of caches, we still get very good visual appearances
with RMS smaller than 0.01. The speedup ratio is dependent
on the average cost for computing subsurface illuminance
of each cache. The more the computation of subsurface il-
luminance costs (e.g. for better image quality), the higher
speedup we get. Typically, it varies from 5 to 15.

Figure 4 shows the distribution of the caches, the visual-
ization of the subsurface illuminance gradient, and the visu-
alization of the variance V . Figure 5(a) shows Teapot with
material Marble and Figure 5(b) shows Igea with material
Skin1 [JMLH01].

5. Conclusion

We present an efficient caching technique for rendering
translucent materials. Our approach is efficient for produc-
ing high-quality images with high resolution and is particu-
larly useful in animations. It also integrates seamlessly with
Monte Carlo ray tracing, scanline rendering, and global il-
lumination methods. Our results demonstrate the speedup
could be achieved up to one order of magnitude compared

c© The Eurographics Association 2005.
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to the hierarchical rendering technique proposed by Jensen
and Buhler [JB02] with negligible visual difference in the
final images. The success of our approach is mainly due to
the caching technique using the gradient of subsurface illu-
minance.

Further improvements include exploring more complex
models to determine the cache distribution and devising a
reasonable model to determine the radius of split-disk and
the upper bound of valid domain of each cache, which are
set heuristically in our implementation. Finally, it would also
be useful to investigate the accuracy of the dipole diffusion
approximation in the presence of complex geometries and
to find the solution methods for the heterogeneous materi-
als.
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(a) (b)

Figure 3: (a) The image rendered using Jensen’s hierarchical rendering technique. (b) The image rendered using our caching
technique.

(a) (b) (c)

Figure 4: (a) The cache distribution. (b) The visualization of the subsurface illuminance gradient. The world coordinate of the
gradient is mapped to the RGB channel in the image. The brightness of a pixel corresponds to the magnitude of the gradient.
(c) The visualization of variance.

(a) (b)

Figure 5: (a) Teapot with material Marble. (b) Igea with material Skin1.
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