
EG UK Theory and Practice of Computer Graphics (2013)
Silvester Czanner and Wen Tang (Editors)

Acquisition, Representation and Rendering of Real-World
Models using Polynomial Texture Maps in 3D

E. Vassallo1, S. Spina1 and K. Debattista2

1 Department of Computer Science, University of Malta
2 WMG, University of Warwick

Abstract
The ability to represent real-world objects digitally in a realistic manner is an indispensable tool for many ap-
plications. This paper proposes a method for acquiring, processing, representing, and rendering these digital
representations. Acquisition can be divided into two processes: acquiring the 3D geometry of the object, and ob-
taining the texture and reflectance behaviour of the object. Our work explores the possibility of using Microsoft’s
Kinect sensor to acquire the 3D geometry, by registration of data captured from different viewpoints. The Kinect
sensor itself is used to acquire texture and reflectance information which is represented using multiple Polynomial
Texture Maps. We present processing pipelines for both geometry and texture, and finally our work examines how
the acquired and processed geometry, texture, and reflectance behaviour information can be mapped together in
3D, allowing the user to view the object from different viewpoints while being able to interactively change light
direction. Varying light direction uncovers details of the object which would not have been possible to observe us-
ing a single, fixed, light direction. This is useful in many scenarios, amongst which is the examination of cultural
heritage artifacts with surface variations.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Digitizing and scanning I.3.3 [Computer Graphics]: Picture/Image Generation—Viewing Algo-
rithms I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Physically based modeling
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Color, shading, shadowing, and texture

1. Introduction

There is an increasing demand for ways to represent real-
world objects digitally. Digital representation of objects can
enable their examination by anyone from anywhere. How-
ever, there are several factors which are posing challenges in
each of the three phases involved in the process.

Figure 1: Pipeline showing the three phases required to dig-
itally represent a real-world object

During the first phase, acquisition, the main challenges
are the affordability of the hardware required to gather the
data, the skill required to operate the hardware, and being

able to capture the information on the site itself. The main
challenges during the second phase, processing and repre-
sentation, are the skill and time required to process the ac-
quired data such that it is storage-ready, and then being able
to store it using reasonable file sizes. Finally, during the ren-
dering phase, the acquired and represented data needs to be
presented to the user using realistic rendering with reason-
able performance on commodity hardware.

Our work attempts to tackle these challenges. The contri-
butions of this paper are outlined below:

• For the acquisition phase we propose a method in which
3D geometry, texture and reflectance behaviour can all
be captured using only Microsoft’s Kinect device, three
coloured reflective spheres, and a light source.

• We propose a processing pipeline through which the ac-
quired 3D geometry can be processed to obtain a model
covering a 360◦ view of the object. Since this pipeline is
almost entirely automatic, it can be carried out by anyone.

c© The Eurographics Association 2013.

DOI: 10.2312/LocalChapterEvents.TPCG.TPCG13.077-084

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/LocalChapterEvents.TPCG.TPCG13.077-084


E. Vassallo, S. Spina & K. Debattista / Representation of Real-World Models using PTMs in 3D

• We propose a way to take advantage of overlapping Poly-
nomial Texture Maps (PTMs), in order to add detail to a
relatively coarse 3D model. This also contributes to alle-
viating the problem of large file sizes.

• Finally our work proposes a method for mapping the 3D
geometry and the overlapping PTMs, and presenting the
result in a viewer which would allow the observer to move
the camera and change light direction to uncover object
details. The proposed method can be programmed to be
executed on the GPU in almost its entirety, greatly im-
proving rendering performance.

2. Background and Previous Work

A method that is often used to capture 3D geometry is laser
scanning. Although it is claimed that data gathered using this
method is very precise [DCCS06], disadvantages of laser
scanning include the cost of the equipment [MG02] and that
the process requires demanding skill sets [MMSL06]. Our
work provides a framework in which the Microsoft Kinect
sensor, a relatively cheap device, can be used to capture the
3D geometry. In a previous project, the Kinect device has al-
ready been used as a 3D scanner [TFS∗12]. Although results
were satisfactory, besides the Kinect sensor this method re-
quires an optical tracking system and four ceiling-mounted
infra-red cameras. This leaves the challenges of hardware
affordability and demanding skill sets untackled.

In another similar project, called KinectFusion, the Kinect
sensor can be moved through space so that it creates 3D
surface reconstructions of real-world environments in real-
time [IKH∗11]. While the sensor is moved, depth and
RGB data are continuously read, as are the 6 degrees-
of-freedom (6DOF) of the camera (forward/backward,
up/down, left/right, pitch, yaw, roll). Using this information
the depth data from the different viewpoints is fused, using
the Iterative Closest Point algorithm. The colour information
is used to build textures which are then mapped to the 3D re-
construction. Reflectance information however, is not being
captured in this work.

Texture representation plays a big part in creating a re-
alistic digital render. Using normal image files as textures
(traditional textures) is usually not enough for realistic ren-
dering of more complex materials [MMK03]. This is be-
cause the lighting conditions in which the texture would
have been photographed/created, would have been embed-
ded inside the texture [HOMG03]. If it is rendered in those
same lighting conditions, it would look realistic, but this is
hardly ever the case and precludes the use of the texture in
other lighting scenarios, which is the primary goal of many
rendering systems. Using bump maps, specular maps and/or
normal maps along with traditional textures does allow re-
lighting as light is moved around the object, making the sur-
face look rough and bumpy when it is actually flat. However,
creating maps, for example bump maps, of real-world tex-
tures from photographs is very difficult [MGW01]. Besides,

the existing methods for this purpose are unable to capture
effects resulting from large surface variations, such as self-
shadowing and intra-object interreflections [MGW01].

A Polynomial Texture Map (PTM) is a type of texture
in which each texel, instead of being defined as having a
fixed colour value, is defined by a second-order bi-quadratic
polynomial function [MGW01]. PTMs are created by cap-
turing a set of photographs of an object in which the camera
viewpoint is fixed but the light direction is varied. There-
fore PTMs preserve self-shadowing and interreflection of
light [MVSL05]. Creating the PTM requires the precise vec-
tor of the light direction in each photograph. A technique
to extract the light direction after taking the photographs
is Highlight Reflectance Transformation Imaging (HRTI).
In this technique the object is photographed together with
one or more glossy spheres around it. During processing,
the light direction is recovered from the specular highlights
produced on the sphere/s [MMSL06]. During rendering, the
polynomial functions for each texel would yield different
colour values for different light directions [MGW01].

At the time of writing, PTMs have mostly been treated
as simply light-adjustable image files. However, in a pre-
vious experiment PTM textures were used to add detail to
coarse, low-resolution 3D models [RN10]. However, in this
work they do not capture texture and reflectance behaviour
of the whole object, but rather capture a "patch", and then
synthesise it using specific algorithms to make it cover the
whole object. While this might simplify the capturing pro-
cess, it will only create satisfactory results in cases where
the object has a homogeneous texture. Inscriptions or other
features that are not consistent along the surface of the object
will not be represented correctly, questioning the suitability
of such method for cultural heritage purposes.

c-h-i have introduced the concept of multi-view re-
flectance transformation imaging, which is a set of PTMs of
the same object, captured from multiple camera viewpoints.
Optical flow data makes it possible to view the PTMs as if
they were one file [Cul10]. However, since PTMs are not be-
ing mapped to 3D geometry, allowing the user to move the
camera would create unrealistic results.

3. Acquisition, Processing and Representation

3.1. 3D Geometry

The first phase in our pipeline is the acquisition of the shape
of the object, i.e. the 3D geometry. As illustrated in Figure 2,
in our proposed method the object is surrounded by three dif-
ferently coloured reflective spheres, and placed at least 1m
in front of any background/wall. The Kinect sensor is then
positioned such that the object and the spheres are within the
camera’s viewport. Both depth and RGB data are read from
the sensor. This process is repeated for a number of overlap-
ping viewpoints around the object and spheres.

c© The Eurographics Association 2013.

78



E. Vassallo, S. Spina & K. Debattista / Representation of Real-World Models using PTMs in 3D

Figure 2: The capturing setup

During processing the spheres will serve three purposes:
filtering the object from background noise, registering scans
from different viewpoints, and calculating light direction by
detecting highlights.

The captured geometry is then processed through a
pipeline as described below.

3.1.1. Sphere Detection and Adjustment

Since RGB data is read using the Kinect’s camera, a cir-
cle detection algorithm can be used to automatically detect
the spheres. Since the depth sensor and RGB camera are
mounted in different positions on the device, the detected
positions from the camera need to be projected to the equiv-
alent positions in the depth map, using the equations below.

d′ = rawToWorld(d)

dx = ((xc − cxd)∗d′)/ f xd

dy = ((yc − cyd)∗d′)/ f yd

dz = d′

(1)

where rawToWorld is a function which converts raw depth
values (0-2048) to world metric space, xc and yc is the 2D
coordinate detected from the RGB camera, d is the depth
value at that particular 2D coordinate, and cxd , f xd , cyd , f yd
are constants specific for every Kinect device which can be
discovered using a calibration process.

3.1.2. Filtering

The sphere centres calculated from the previous phase are
used to filter the object from any background noise. As il-
lustrated in Figure 3, the mean position of the two spheres
which are furthest from each other is calculated and only
points which are close enough to the mean point are retained.
The sphere centres are also used to remove the points repre-
senting the actual spheres.

The value which defines “close enough” might need to be
changed for different objects. Also, our method implies that

Figure 3: The filtering process

the object needs to be placed quite some distance away from
any background. If the spheres were placed surrounding the
object (i.e. forming a triangle around it), filtering would have
been much more straightforward as it would have solved the
two issues outlined above. However, placing them in that
manner would mean that they will not all be visible from
viewpoints around the object, complicating registration.

3.1.3. Registration

In this phase the vertices obtained from different viewpoints
need to be registered into one complete point cloud. Since
the three spheres are present in every scan, their 3D location
in each scan is used to calculate the transformation matrices
required for registration.

Registering point cloud A with point cloud B would re-
quire the following calculation:

B = RA+T (2)

where R is the rotation matrix and T is the translation matrix.

The centroid of each set of 3 spheres (a set for each view-
point), CA and CB, is calculated, and subtracted from each
sphere in the respective point cloud. This eliminates trans-
lation, leaving only the rotation component. The covariance
matrix is then calculated as follows:

Q =
N

∑
i=1

(Pi
A −CA)(P

i
B −CB)

T . (3)

Singular Value Decomposition (SVD) is then used to fac-
torise matrix Q into U, S and V:

(U,S,V ) = SV D(Q). (4)

The rotation matrix is calculated using the V and U com-
ponents resulting from SVD:

R =VUT . (5)

Finally, the translation matrix is calculated by subtracting
the rotated centroid of cloud A from the centroid of cloud B.

T =CB −RCA. (6)

c© The Eurographics Association 2013.

79



E. Vassallo, S. Spina & K. Debattista / Representation of Real-World Models using PTMs in 3D

3.1.4. Vertex Clustering

In this phase the amount of vertices in the point cloud are re-
duced while still retaining the approximate shape. Reducing
the amount of points would yield certain advantages, such as
make the rest of the processing pipeline more efficient, and
allow for faster rendering. The method used is vertex cluster-
ing, in which the bounding space of the object is partitioned
into cells, and then a representative vertex is computed for
every cell. If P1,P2, ...,Pk are points in the same cell, the
representative point P for that cell is calculated by:

P = (P1+P2+ ...+Pk)/k. (7)

During vertex clustering, those cells which contain ver-
tices from more than one point cloud are marked as over-
lapping regions. This information is used while generating
texture coordinates (Section 3.1.5).

3.1.5. Texture Coordinate Generation

Texture coordinates are generated for each vertex in the sim-
plified cloud. The vertices in the overlapping regions will
have texture coordinates for two textures, and all other ver-
tices will only have a texture coordinate for a single texture.
Texture coordinates are calculated linearly as follows:

texu = (x− xmin)/(xmax − xmin)

texv = (y− ymin)/(ymax − ymin)
(8)

where x and y is the vertex’s 2D location, while xmin, xmax,
ymin, and ymax are the minimum and maximum x-coordinate
and y-coordinate of the vertices, respectively (see Figure 4).

Figure 4: Texture Coordinate Generation

3.1.6. Triangulation

Finally the point cloud is converted to a surface. There is a
lack of implementations of triangulation algorithms which
can handle 3D point clouds. Those which were found which
claim they do, are actually used to create terrain surfaces,
and thus only do z-value approximation (2.5D triangula-
tion). One such implementation is the one implemented by
[BM05], which is the one we utilised in our implementation.
The z-value approximation as implemented in this library

was not good enough for our purpose, as it resulted in trian-
gles being created across the object, instead of resulting in
a decent continuous surface. Our solution included unwrap-
ping the point cloud onto a plane, such that it resembles a
terrain, the main purpose the library had been intended for.
The library is then used to triangulate the unwrapped cloud,
and afterwards it is re-wrapped to its original shape, along
with the generated triangles.

Figure 5: An example of the triangulation process for a
cylindrical topology

3.1.7. Representation

Finally, the processed information is exported as a single
.objv file. We wanted to create a file format to specifically
suit our needs, yet ideally the file would be able to be opened
via other programs. Therefore we chose to create a variant to
the standard .obj file format. This includes the vertex and
face information, texture coordinates, the camera position
and direction of each viewpoint, as well as the translation
and rotation matrices used during registration.

3.2. Texture and Reflectance Behaviour

For each viewpoint, apart from capturing the depth map, we
also capture around 40 images (as suggested in the original
PTM paper [MGW01]) using the Kinect RGB camera with
the object lit from varying light directions. The captured data
is then processed through the pipeline described below.

3.2.1. Highlight Detection

Since our method uses HRTI to estimate the light direction
vector, first the highlights on the spheres have to be detected.
The highlight on every sphere is detected by calculating the
luminosity of every pixel in the area of the sphere. Bright
pixels are considered to be candidates, and in cases where
there are multiple candidates, the highlight is taken to be the
candidate pixel closest the centre of the sphere, since accord-
ing to [Gar09], fake highlights caused by inter-reflection are
usually away from the centre.

The brightness calculation is based on the contribution of
every component to the perceived luminance. The contribu-
tion values used are those defined in Rec. 709 [Int90], which
standardizes the format of high-definition television:

L = 0.2126R+0.7152G+0.0722B. (9)

c© The Eurographics Association 2013.

80



E. Vassallo, S. Spina & K. Debattista / Representation of Real-World Models using PTMs in 3D

3.2.2. Light Direction Extrapolation

From the position of the highlights, Hx and Hy, the center of
the sphere, Cx and Cy, and the radius of the sphere, r, the light
direction vector is calculated using the method proposed by
Mudge et al. [MMSL06].

First, the highlight location is normalised:

Sx = (Hx −Cx)/r

Sy = (Hy −Cy)/r.
(10)

The inclination of the surface normal is given by:

φ = cos−1(

√
1−Sx

2 −Sy
2). (11)

The inclination of the light source is twice the inclination
of the normal thus:

φL = 2cos−1(

√
1−Sx

2 −Sy
2). (12)

The other (azimuthal) angle of the light source is calcu-
lated:

θL = sin−1(Sy/sin(φ)). (13)

Finally, the normalised light direction vector is given by:

Lx = sin(φL)cos(θL)

Ly = sin(φL)sin(θL).
(14)

3.2.3. Image Filtering

All of the captured images contain the object as well as the
three spheres and other background information. Since the
light direction vectors have already been extrapolated, this
phase processes each image to retain only the object part
of the image. Since for each viewpoint we captured a point
cloud, which has been processed and filtered, using a map-
ping operation the system can calculate which pixels are to
be cropped.

3.2.4. Image Upsampling

Since the captured images have a resolution of 640x480 pix-
els, and moreover they are cropped to retain only the object
portion, the resulting images would have a very low reso-
lution. Therefore we introduced an additional phase to the
pipeline, in which the cropped images are upsampled.

Our implementation makes use of JavaCV, a Java inter-
face to OpenCV, and attempts to upsample the images to a
resolution of 640x480 by using bilinear interpolation. We
believe that this phase will probably not be needed when the
new Kinect sensor will be released, as the resolution will be
high enough to give satisfactory results even after cropping.

3.2.5. PTM Generation

Finally, a PTM for each viewpoint is generated, using the
method described in [MGW01]. Our system uses the LRGB
PTM format, which stores 6 coefficients for every pixel.
These coefficients determine the pixel’s luminosity for a par-
ticular light direction. First, for N +1 images, and light di-
rection given by luk, lvk for the kth image, we build matrix
M, as follows:

M =



l2
u0 l2

v0 lu0lv0 lu0 lv0 1

l2
u1 l2

v1 lu1lv1 lu1 lv1 1

... ... ... ... ... ...

l2
uN l2

vN luNlvN luN lvN 1


Matrix M is then factorised using SVD, into U, S and V.

(U,S,V ) = SV D(M). (15)

The light pseudo inverse matrix P is created as follows:

P =V S′UT . (16)

where matrix S′ is equal to S, except for the principal di-
agonal, which is defined as follows:

S′(x,x) =
1

S(x,x)
where S(x,x)! = 0. (17)

Since the LRGB format is used, the luminance and chro-
maticity components need to be separate for each pixel. The
original PTM paper [MGW01] does not indicate how this
is to be done. We follow work by Ranade et al. [RSK08]
in implementing a method in which the luminance is sim-
ply the average of the RGB components, and the chromatic-
ity is a weighted average, where a higher weight is given to
pixels with moderate intensity, and lower weight is given to
bright/dark pixels.

Multiplying matrix P by matrix L, an (N+1 by 1) matrix
containing the luminance values, for each pixel, yields a ma-
trix, C, containing the 6 coefficients for that pixel:

C = PL. (18)

In order to efficiently store the coefficients as 1 byte, each
coefficient is scaled and biased. 6 float scale values (λ) and
6 integer bias values (ω) are calculated, one for each coeffi-
cient, as follows:

ω =−(255∗min)/(max−min)

λ = (max−min)/255
(19)

where min and max are the minimum and maximum value
of the coefficients.

Each coefficient is then scaled and biased:

C′i =
Ci

λ
+ω. (20)

c© The Eurographics Association 2013.

81



E. Vassallo, S. Spina & K. Debattista / Representation of Real-World Models using PTMs in 3D

The LRGB PTM is then created in line with the file format
specification [MG01].

4. Rendering

The Rendering stage involves mapping the 3D geometry in-
formation and the PTMs, and rendering the result in a viewer
which would allow the user to move the camera, rotate the
object as well as change light direction. Our work includes
vertex and fragment shaders such that the processing is done
almost entirely on the GPU.

4.1. Determining Light Direction

The user of our system is provided with a light panel to allow
movement of light direction. The bounding area of the light
panel represents the visible range of the object from the cur-
rent camera viewpoint. Thus when the user moves the light
position in the light panel, our system calculates the position
of the closest corresponding vertex (v1) in the object.

The system then calculates the light direction that the
PTMs needs to be lit from. If vertex v1 is within an over-
lapping region, the process needs to be repeated for each of
the two contributing PTMs. The algorithm implemented to
determine the light direction is the same algorithm used for
HRTI (section 3.2.2).

4.2. Vertex Shader

For each vertex, the vertex shader requires the following in-
puts:

• minx0,miny0, ...,minxN ,minyN , the point where each over-
lapping region starts (uniform)

• maxx0,maxy0, ...,maxxN ,maxyN , the point where each
overlapping region ends (uniform)

• tu0, tv0, tu1, tv1, the texture coordinate for the PTM, or at
most 2 texture coordinates in cases where the vertex lies
in an overlapping region (attributes)

If the vertex lies in an overlapping region, there are two
PTMs which yield information about it. The vertex shader
calculates the weighted contribution of the leftmost PTM
(rle f t ), which depends on the position of the vertex in the
overlapping region.

δ = maxxi −minxi

γ = tu0 −minxi

rle f t =
γ

δ

(21)

where i is the number of the overlapping region.

Figure 6: The inputs of the vertex shader. Since v1 and v2
are vertices in the non-overlapping region, they will only
have a single texture coordinate. v3 on the other hand, is
found in the overlapping region, therefore the contribution
of each PTM is calculated

The outputs of the vertex shader are:

• tu0, tv0, tu1, tv1, the texture coordinate for the PTM, or at
most 2 texture coordinates in cases where the vertex lies
in an overlapping region (varying)

• rle f t , the contribution of the leftmost PTM, if vertex lies
in overlapping region (varying)

4.3. Fragment Shader

Apart from the outputs of the vertex shader, the fragment
shader requires the following inputs:

• L0...LN , the light direction with which to render each of
N +1 PTMs (uniform)

• S0,0 − S0,5, ...,SN,0 − SN,5, the 6 scale values for each of
N +1 PTMs (uniform)

• B0,0 −B0,5, ...,BN,0 −BN,5, the 6 bias values for each of
N +1 PTMs (uniform)

• a0,0 − a0,5, ...,aN,0 − aN,5, the 6 coefficients for every
pixel for each of N +1 PTMs (uniform)

• R0,G0,B0, ...,RN ,GN ,BN , the RGB chromaticity values
for every pixel for each of N +1 PTMs (uniform)

In the fragment shader, for each involved PTM, the re-
quired coefficients are restored to their original value (since
they have been scaled and biased for compression):

Ci = λ(C′i −ω). (22)

Then, depending on the light direction, and the coeffi-
cients, the luminosity Lum for each pixel is calculated as
follows:

Lum =C0L2
u +C1L2

v +C2LuLv +C3Lu +C4Lv +C5. (23)

If the fragment lies in an overlapping region, the luminos-
ity is taken to be:

Lum = (rle f tLum0)+(1− rle f t)Lum1. (24)

c© The Eurographics Association 2013.

82



E. Vassallo, S. Spina & K. Debattista / Representation of Real-World Models using PTMs in 3D

where Lum0 and Lum1 are the luminosity values of the two
PTMs in the overlapping region. This blending method was
proposed as a way to blend medical light microscopy im-
ages [RLE∗05].

Finally, we calculate the fragment’s RGB colour:

R f inal = R∗Lum

G f inal = G∗Lum

B f inal = B∗Lum.

(25)

5. Results

We captured data of prehistoric artifacts at the National Mu-
seum of Archaeology, Malta. Figure 7 shows the setup used
to capture a stone of an approximate width of 1.2m. Such an
artifact would be difficult to translocate, therefore having a
method that allows on-site capturing was important.

Figure 7: The setup used for capturing

As the three reflective spheres, we used ordinary billiard
balls. We made sure that all three spheres were clearly visi-
ble from every viewpoint. Since the artifact was located right
in front of a wall, it was only possible to capture data from
two viewpoints. The 3D geometry was then processed using
our method.

Figure 8: Point Clouds before (left) and after (right) regis-
tration

The images with different light directions were processed
to create the PTMs. Figure 10 shows our PTMs in the c-h-i
viewer, viewed as 2D light-adjustable image files [Cul10].

Figure 11 shows some screenshots of our viewer, render-
ing the PTMs mapped onto the processed geometry. The
user is able to move the camera, rotate the object, as well
as change the light direction from the light panel.

Figure 9: The simplified point cloud is converted into a sur-
face

Figure 10: PTM captured from right side of object (top) and
PTM captured from left side of object (bottom)

The whole process of capturing and processing the prehis-
toric stone took around 2 hours. Considering the facts that
the stone could not be moved and the museum’s ambient
light could not be switched off, as well as the relatively low
resolution that Kinect’s camera provides, the results are quite
satisfying.

We also captured a Bronze Age artifact the width of which
is around 0.25m. One of the resultant PTMs is shown in Fig-
ure 12. This time results were less satisfactory, the reason
being the quality of the PTMs. Since the Kinect sensor is
only capable of providing depth data for objects which are
at least 80cm away from it, the object is occupying only a
small portion of the 640 by 480 image.

6. Conclusions and Future Work

In this work we have proposed a method with which the ge-
ometry, texture, and reflectance behaviour of a real-world
object can be captured. Our method requires only a Kinect
Sensor, 3 reflective spheres, and a light source, and can be
used on-site. Our work also extends the use of Polynomial
Texture Maps to three dimensions. By capturing overlapping
geometry data and PTMs from different viewpoints, the ge-

c© The Eurographics Association 2013.

83



E. Vassallo, S. Spina & K. Debattista / Representation of Real-World Models using PTMs in 3D

Figure 11: Object being viewed from different viewpoints
and with different light directions

Figure 12: PTM showing an artifact from Bronze Age

ometry and PTMs can be mapped to enable realistic and in-
teractive examination of the object. Acquiring data of a real-
world object and processing it only takes around 2 hours,
and does not require any special skills to be carried out.

While our proposed pipeline supports 360◦ coverage of
real-world objects, our current implementation only supports
processing and rendering of data captured from two view-
points. We hope that in the future the implementation will
be extended as we believe it would demonstrate our method
better. Although the current Kinect technology has certain
limitations which have affected our results, future improve-
ments in this technology will render our work even more
useful and much better results will be evident. Also, more
work can be done on the representation of the geometry and
especially PTM files. Using our current method the geom-
etry data file would be about 150Kb and each PTM would
take up around 2.5Mb of space. Although this looks reason-
able, if Kinect technology is improved and offers a higher
resolution, PTM compression methods will be useful such
that the available resolution is utilised in full and yet file
sizes are kept to a minimum.

7. Acknowledgements

We would like to thank the staff of Heritage Malta and the
National Museum of Archaeology for their support. Assist-
ing us in acquiring data of prehistoric artifacts made possible
evaluation of our work.

References
[BM05] BEN-MOSCHE B.: Delaunay triangulation. http:
//www.cs.bgu.ac.il/~benmoshe/DT/, Last Accessed:
11/07/2013, 2005. 4

[Cul10] CULTURAL HERITAGE IMAGING: Reflectance transfor-
mation imaging, 2010. 2, 7

[DCCS06] DELLEPIANE M., CORSINI M., CALLIERI M.,
SCOPIGNO R.: High quality ptm acquisition: Reflection trans-
formation imaging for large objects. In The 7th International
Symposium on VAST (2006), Eurographics Association. 2

[Gar09] GARCIA J. C.: Rti-based techniques and tools for digital
surrogates, 2009. 4

[HOMG03] HEL-OR Y., MALZBENDER T., GELB D.: Synthesis
and rendering of 3d textures. In Proceedings of Texture 2003 -
3rd International Workshop on Texture Analysis and Synthesis,
Nice, France (2003). 2

[IKH∗11] IZADI S., KIM D., HILLIGES O., MOLYNEAUX D.,
NEWCOMBE R., KOHLI P., SHOTTON J., HODGES S., FREE-
MAN D., DAVISON A., FITZGIBBON A.: Kinectfusion: real-time
3d reconstruction and interaction using a moving depth camera.
In Proceedings of the 24th annual ACM symposium on User in-
terface software and technology (2011), pp. 559–568. 2

[Int90] INTERNATIONAL TELECOMMUNICATION UNION: Itu-r
recommendation bt.709, 1990. 4

[MG01] MALZBENDER T., GELB D.: Polynomial texture map
(.ptm) file format, 2001. 6

[MG02] MALZBENDER T., GELB D.: Imaging fossils using re-
flectance transformation and interactive manipulation of virtual
light sources. In Palaeontologia Electronica (2002). 2

[MGW01] MALZBENDER T., GELB D., WOLTERS H.: Polyno-
mial texture maps. In Proceedings of the 28th annual conference
on Computer graphics and interactive techniques (2001), SIG-
GRAPH ’01. 2, 4, 5

[MMK03] MESETH J., MÜLLER G., KLEIN R.: Preserving re-
alism in real-time rendering of bidirectional texture functions.
In OpenSG Symposium 2003 (2003), Eurographics Association,
Switzerland, pp. 89–96. 2

[MMSL06] MUDGE M., MALZBENDER T., SCHROER C., LUM
M.: New reflection transformation imaging methods for rock art
and multiple-viewpoint display. In VAST’06 (2006), pp. 195–
202. 2, 5

[MVSL05] MUDGE M., VOUTAZ J.-P., SCHROER C., LUM M.:
Reflection transformation imaging and virtual representations of
coins from the hospice of the grand st. bernard. Eurographics
Association. 2

[RLE∗05] RANKOV V., LOCKE R. J., EDENS R. J., BARBER
P. R., VOJNOVIC B.: An algorithm for image stitching and
blending. In Proceedings of SPIE (2005), pp. 190–199. 7

[RN10] RAJIV P., NAMBOODIRI A. M.: Image based ptm syn-
thesis for realistic rendering of low resolution 3d models. In Pro-
ceedings of the Seventh Indian Conference on Computer Vision,
Graphics and Image Processing (2010), ICVGIP ’10, pp. 345–
352. 2

[RSK08] RANADE A., SHANKAR S., KASHYAP S.: Image Re-
lighting using Polynomial Texture Maps, 2008. 5

[TFS∗12] TENEDORIO D., FECHO M., SCHWARTZHAUPT J.,
PARDRIDGE R., LUE J., SCHULZE J. P.: Capturing geometry
in real-time using a tracked microsoft kinect, 2012. 2

c© The Eurographics Association 2013.

84

http://www.cs.bgu.ac.il/~benmoshe/DT/
http://www.cs.bgu.ac.il/~benmoshe/DT/

