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Accurate and marker-less head tracking using depth sensors
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Figure 1: Examples of accurately tracked head poses (green wireframe) in the presence of speech (1), large head rotation (2),
facial expressions (3), illumination changes (4,5), large eye rotation (6).

Abstract
Parameterized, high-fidelity 3D surface models can not only be used for rendering animations in the context
of Computer Graphics (CG), but have become increasingly popular for analyzing data, and thus making these
accessible to CG systems in an Analysis-by-Synthesis loop. In this paper, we utilize this concept for accurate head
tracking by fitting a statistical 3D model to marker-less face data acquired with a low-cost depth sensor, and
demonstrate its robustness in a challenging car driving scenario. We compute 3D head position and orientation
with a mesh-based 3D shape matching algorithm that is independent of person identity and sensor type, and at the
same time robust to facial expressions, speech, partial occlusion and illumination changes. Different strategies for
obtaining the 3D face model are evaluated, trading off computational complexity and accuracy. Ground truth data
for head pose are obtained from simultaneous marker-based tracking. Average tracking errors are below 6mm for
head position and below 2.5◦ for head orientation, demonstrating the system’s potential to be used as part of a
non-intrusive head tracking system for use in Augmented Reality or driver assistance systems.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques I.4.8 [Image Processing and Computer Vision]: Scene Analysis—Surface
Fitting

1. Introduction

Estimating accurate 3D head pose is important in many
human-computer interfaces, in particular in the context of
Augmented Reality (AR) systems. The recent introduction
of head-up displays in the automotive industry has added
to the general interest in AR technology. The desire for
markerless and uncalibrated operation required in this indus-
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try, combined with its high quality standards, presents a par-
ticular challenge to the application of AR to the car driving
context. While conventional AR systems try to recover 3D
position and orientation information (pose) of imaging de-
vices (e.g. head-mounted cameras, or cameras embedded in
mobile devices), an AR system used in a car requires esti-
mating the head pose of the driver.

Besides the typical AR use case of perspectively correct
projection of 3D content into the visual field of the user,
accurate head pose information has additional benefits in a
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car driving scenario, e.g. for assessing user attention direc-
tion and, thus, overall situational awareness. In particular,
advanced driver assistance systems (ADAS) have to cope
with the problem of false or exaggerated responses after de-
tecting potential emergency situations, which could result
in reduced customer acceptance. Therefore, one of the most
prominent application areas discussed in the automotive in-
dustry is judging the driver state and intention while maneu-
vering a car [TT11], for which the driver’s head is a signifi-
cant source of information.

Production-line sensors embedded in cars place high de-
mands in terms of robustness and accuracy on the data ana-
lysis: changing environment information can influence sen-
sor behavior; driver head pose undergoes subtle as well as
large changes; user identities vary widely across an entire car
fleet. In addition, the driver experience should be affected as
little as possible, disqualifying marker-based approaches or
those that require explicit user calibration. With the advent
of low-cost 3D sensors, such as Microsoft Kinect, some of
the shortcomings of purely video-based approaches can be
bypassed with little additional cost.

In this work we present a head tracking system based
on data acquired with a Primesense depth sensor, to which
we fit and track a 3D face model. The data was recorded
in real-world car driving situations, including strong illumi-
nation changes caused by entering and exiting tunnels. We
evaluate our person-independent head tracking approach by
comparing it to ground truth data acquired with a commer-
cial, marker-based head tracking system synchronized to the
depth data. In addition to the car driver scenario, we also
show the system’s applicability to challenging data of par-
tially occluded faces due to extensive facial hair.

Our paper is structured as follows: In Section 2 we briefly
review related work. Our recording setup and data acquisi-
tion is described in Section 3. Part of the processing pipeline
outlined in Section 3.2 is our pose estimation algorithm de-
scribed in Section 3.3. Section 4 evaluates our proposed sys-
tem against ground truth. The discussion in Section 5 con-
cludes this paper.

2. Related work

Whereas recent progress has been made towards pose es-
timation from 3D depth data [FDG∗12], most work either
used high quality sensor data only [WBB∗09], or sacri-
ficed accuracy for real-time performance [FWGVG11]. Our
proposed system achieves accurate head tracking purely
on low quality depth data. For a recent survey on head
pose estimation see [MCT09]. Recent approaches for head
pose estimation have started to exploit depth sensor cues
in particular to efficiently estimate yaw, pitch, roll, and 3D
position with regression trees on a frame-by-frame basis
[FWGVG11, FDG∗12]. That work demonstrates the poten-
tial to infer head pose from inaccurate depth data. Dantone

et al. [DGFVG12] reported promising results based on simi-
lar algorithms for texture based landmark detection, yet their
efficacy and robustness for 3D head pose estimation un-
der car driving conditions needs to be shown. Breidt et al.
[BBC11] demonstrate robustness in the analysis of 3D fa-
cial expression data from noisy Time-of-Flight sensor data.
Weise et al. [WBLP11] computed 3D head pose as part of
their real-time character animation based on Kinect depth
data. So far, no work on 3D reconstruction of head pose has
been reported for out-of-laboratory applications. In this pa-
per we investigate in particular the potential of a 3D model-
based approach to track faces in depth data with a generative
face model under various driving situations.

3. Data acquisition

Our aim was to evaluate the precision and reliability of our
head tracking system under real-world conditions, i.e. a car
driving scenario in normal traffic conditions.

3.1. Recording setup

In order to properly record 3D data in a car we integrated two
recording modalities in one setup. Figure 2 shows the major
components. With this setup, our automatic head pose esti-
mation from 3D depth data can be evaluated against marker-
based head tracking data.

3.1.1. Depth sensor

As depth sensor, we used a Primesense Carmine 1.09, based
on the same technology as Microsoft Kinect but with the ad-
vantage of being USB-powered and of smaller size. In addi-
tion, it is optimized for short range sensing, with a specified
depth range of 0.35m – 1.4m and a vendor-specified field of
view of 57.5◦ × 45◦ (H × V). Data was recorded with 30
frames/s at a resolution of 320 × 240 pixels for depth and
color. The sensor was mounted in front of the driver on top
of the dashboard (bottom left in Figure 2), at a distance of ap-
proximately 75cm to the driver, resulting in the driver’s face
covering approximately 50 × 70 pixels (see Figure 3). Our
algorithm is largely independent of the actual sensor charac-
teristics, as long as the depth data is suitable for triangula-
tion.

3.1.2. Head tracking ground truth

For ground truth head pose data, we chose a marker-based
NaturalPoint TrackIR 5 system, consisting of an infrared
monocular camera running at 120 frames/s at a resolution
of 640 × 480 pixels and a rigid retro-reflective tracking tar-
get of known geometry. It has a specified horizontal Field
of View of 51.7◦ and produces a full 6-DOF head pose.
To improve the marker detection, a custom tracking target
was built with identical dimensions as the original but with
larger, spherical markers, rigidly attached to a baseball cap.
The driver wore the cap sideways to optimize the orientation
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Figure 2: Recording setup: Depth data of the driver’s face was recorded with a Primesense sensor on the dashboard. For
ground truth data, the driver was wearing a marker-based target, which was tracked by a TrackIR 5 camera mounted to the
side window. In addition, a reference video was also recorded from behind using a GoPro HD Hero2 camera (top right).

range in which the tracking was stable. The TrackIR cam-
era was mounted to the front-seat passenger window (right
in Figure 2) at a distance of approximately 70 centimeters to
the tracking target.

3.1.3. Data recording

For our experiment, we recorded the depth and color stream
of the 3D sensor along with the 6-DOF head tracking data.
All data was time-stamped and logged directly onto a laptop
for subsequent analysis. Time synchronization was achieved
using an LED trigger device visible to all sensors. Care was
taken not to move the cap during the entire course of the
recording. After the driving sessions, a 3D scan of the entire
head including the cap was taken, in order to measure the
spatial relationship between cap, tracking target and face.
In addition to the car driving scenario, we also collected data
in an office environment from a heavily bearded participant.
With this dataset, we investigated the robustness of our sys-
tem with respect to occlusions due to facial hair.
It should be pointed out that the color video stream is not
mandatory for successful estimation of the head pose as long
as a reasonable initialization can be found for the model fit-
ting procedure described in Section 3.3.

3.2. Processing pipeline

All datasets were subjected to the same processing pipeline
described in the following section.

3.2.1. Data corpus

For the driver scenario we collected a total of 5837 frames,
which include merging into traffic, turning, lane changes,

crossroad maneuvers, and a tunnel passage. 1140 additional
frames were collected in the office environment while the
bearded participant performed large head rotations. Depth
data was triangulated using the regular pixel grid of the depth
sensor, discarding measurements at a distance larger than 90
cm and triangles with an area larger than 30mm2.

3.2.2. Merging modalities

First, the relative orientation of the tracking target to the face
was determined by aligning the geometry of the tracking
markers found in the 3D scan of the head to the 3D marker
positions computed by the tracking system. Next, both the
3D scan and the tracking data were transformed such that
the 3D scan optimally fitted into the first frame of the tri-
angulated depth data, which provided the global coordinate
system for all subsequent analysis.
The higher temporal resolution of the tracking system was
resampled to match the frame rate of the depth sensor, with
occasional linear interpolation of missing data, caused by
short occlusion of the tracking target, using data from neigh-
boring frames. The first frame of the color stream of the sen-
sor was subjected to a face detector [KBFS05]. The resulting
bounding box (see Figure 3) was used to initialize the sub-
sequent model fitting analysis described in Section 3.3. This
is the only use of the color stream in the entire analysis and
could be easily replaced by other initialization schemes, e.g.
by finding the tip of the nose [BJH∗09]. For the comparison
of different approaches for defining a face model (Section
3.3.1), the face detection window was also used to extract
geometry from the first frame of the triangulated depth data
(see Figure 3 top left). This rectangular shape snapshot was
then later registered to the rest of the sequence.
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Figure 3: Driver face detected in the color stream (con-
verted to gray). Corresponding 3D data shown top left.

3.3. Head tracking using depth data

For estimation of the head pose from recorded depth data,
we apply a variant of the model-based fitting described in
[BBC11] which builds upon a robust version of the well
known Iterative Closest Point (ICP) algorithm [BM92]. We
rigidly align a triangulated head model to the measured
depth data, using a BFGS quasi-Newton solver for optimiz-
ing rotation and position (defining head pose), represented as
matrix R formed from Euler angles, and translation vector t.
Our model uses a linear 3D face model that is obtained by
applying PCA to 200 3D scans of neutral faces which were
put into dense correspondence [BV99]. We retained 95% of
the data variance using m = 43 principal components d j as
basis shapes, with n denoting the average head identity of
the corpus. Before applying PCA, the original mesh (75k
vertices) was reduced to an optimized mesh of 3980 vertices
(Fig. 4). For head pose estimation, we minimized the follow-
ing energy term

E(w,R, t) = 1
k

k

∑
i=1

min
x∈D
||R(n(i)+

m

∑
j=1

w jd j(i)))+ t−x||2,

(1)
representing the mean distance error between k = 700 evenly
sampled vertices on the model surface and their respective
closest points x on the data surface D (triangulated depth
data from the sensor, also see inset in Figure 3). Further,
w denotes the identity model weights corresponding to the
loadings of the m model components, and index (i) the
evenly subsampled 3D vertex vector. The j’th shape vec-
tor of the PCA model is defined by d j complementing the
average head n of the shape model. During optimization for
identity, we enforce an L2-norm on the PCA weights w as
regularization. For temporal pose tracking, we keep w fixed
and optimize for parameters R and t only.

Robust alignment To improve robustness against the sig-
nificant noise and other errors present in the low-cost depth
sensor data, only 50% of the closest point pairs with the

Figure 4: Identity-averaged face n with optimized topology.

smallest residuals were used in computing the fitting error
of Equation 1 at each iteration step, thus ignoring the 50%
farthest matches, similar to Fractional ICP [PLT07]. This
proved to be very effective in cases where the face was ro-
tated sideways, displayed facial expression or speech, pres-
ence of additional objects in the depth data, or partial oc-
clusion of the face by significant amounts of facial hair (see
Section 4.2).

3.3.1. Model types

To investigate the contribution of the actual type of face
model for tracking, we compared the performance of

• the Average Face n of the full statistical shape model
(Eq. 1 with w j = 0),

• a full Identity Model fit, matched to the neutral face of the
participant once by estimating w in Eq. 1, and

• a 3D Snapshot, directly extracted from the first frame of
the unmodified depth data (see Figure 3).

Our process for head tracking is twofold: For the first two
approaches listed above, an initial head pose is estimated by
aligning an identity-averaged 3D face model to the depth
data. The 3D Snapshot only requires a face detection step to
extract a surface mesh. The models were then further aligned
to the sensor data, i.e. tracked for the rest of the sequence by
estimating R and t in Eq. 1. For temporal tracking, a lin-
ear prediction of the head pose parameters from the current
rate of change (i.e. velocity) proved sufficient to cope with
large motion. The fitted shape model and the 3D snapshot
geometrically match the participant’s facial anatomy closely,
whereas the identity-averaged face exhibits some major dif-
ferences. Conversely, no additional preprocessing is required
for the averaged face.

4. Evaluation

To evaluate the accuracy of our head tracking system, we
compared it to the ground truth head pose data obtained from
the tracking system described in Section 3.1.2.
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(a) Position data: Ground truth vs. pose estimation
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(b) Orientation data: Ground truth vs. pose estimation

Figure 5: Head pose estimation data of sequence Drive A for the different model types. Green dashed lines mark the tunnel
passage. Note that the different vertical axes use different scale values.
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4.1. Driving scenario

Figure 5 shows ground truth data for sequence Drive A in
comparison with pose estimations produced by the three dif-
ferent model types described in Section 3.3.1. As the 3D
Snapshot model does not provide an absolute head pose, but
only the pose relative to the initial snapshot, we initialized
the snapshot pose with that of the Identity Model Fit for eas-
ier comparison. Average Face and Identity Model Fit, on the
other hand, provide an implicit, absolute head pose. Analo-
gous we initialized the ground truth coordinate system to the
one provided by the Identity Model Fit.

Estimation Error Figure 6 plots the absolute error for the
three head tracking types with respect to the marker-based
ground truth. Positional error is calculated as Euclidean dis-
tance between the estimated head origin and the one pro-
vided by the head tracking system; orientation error is cal-
culated as the minimum angle needed to rotate the estimated
coordinate systems into the ground truth. For this, Euler ro-
tation angles for the two orientations to be compared were
converted into quaternion representations q1,q2; the quater-
nion distance qd = q−1

1 q2 was then converted back into an-
gle α = 2arccos(qd).

Accuracy In order to compare our results with related work,
we have calculated overall accuracy for position and orien-
tation for all three model types. Figure 7 plots obtained ac-
curacy over accuracy threshold.

The Identity Model Fit show 95% accuracy at an error
threshold of 4.13◦ for orientation and 8.21mm respectively
for position. For the 3D Snapshot model, 95% accuracy is
achieved at an error threshold of 3.88◦ and 8.22mm. Finally,
the Average Face model reaches 95% accuracy at an error
threshold of 6.10◦ and 11.39mm.
In comparison to Fanelli et al. [FDG∗12], our head pose es-
timation exhibits accuracies of 99.80% for orientation and
97.69% for position when applying 10◦ and 10mm thresh-
olds, in comparison to their reports of 94.7% and 73.0% ac-
curacy for orientation and position. Figure 1 shows the accu-
rate alignment of the Identity Model Fit to triangulated depth
data for different head poses and facial expressions in se-
quence Drive A. Picture 4 and 5 from the left show the ro-
bustness of the system with respect to illumination changes
caused by a tunnel passage (indicated by the green vertical
dashed lines in Figure 5 and Figure 6) which introduced ma-
jor illumination changes into the data but did not affect the
estimation quality.

4.2. Office scenario: Hairy tracking

We were also interested in testing our tracking approach on
partially occluded faces. For this, we recorded data of a par-
ticipant wearing a beard that covers large portions of the face
(Fig. 8). Remarkably, the Identity Model still fits accurately

Figure 8: Identity Model successfully tracked to the noisy
sensor data despite occlusion due to facial hair.

to the face underneath the beard, which can be largely at-
tributed to the robust distance measure employed during op-
timization. In particular, for 10◦ and 10mm accuracy thresh-
olds, tracking still achieves 100.0% and 89.7% accuracies
for head orientation and translation. Similar values are ob-
tained for the 3D Snapshot and the Average Face model,
with the latter degrading earlier for lower accuracy thresh-
olds (see Fig. 7(d)–7(f)).

4.3. Evaluation summary

Table 1 compares median position and orientation errors for
all sequences and model types. As expected, the 3D Snap-
shot model produces the smallest errors, but requires a cor-
rect face detection step and cannot provide absolute head
pose information. On the other end, the Average Face model
has the highest median errors but does not require additional
preprocessing such as face detection or identity model fit-
ting. The Identity Model Fit provides high accuracy and ab-
solute head pose information, even for challenging data.

5. Discussion

In this paper we have reported results for 3D head track-
ing from depth sensor data using an adaptive 3D face model
in a car driver context. Tracking accuracy of head pose ex-
ceeds that reported in previous work on independent head
pose detection. Our generative model makes no assumption
on the sensor or the driver, is robust to noise and illumina-
tion changes, and provides accurate reconstruction results
even for challenging data acquired outside the laboratory.
Robust identity fitting demonstrates the ability to deal with
faces that cannot be entirely captured by our statistical head
model, e.g. due to extensive facial hair. As compared to a
pure mesh-based approach (3D Snapshot) without face do-
main knowledge, we have shown that the model-based track-
ing approach provides the coordinate system required in or-
der to accurately estimate gaze. The pure snapshot-based ap-
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(b) Orientation error

Figure 6: Head pose estimation errors for sequence Drive A. Green dashed lines mark the tunnel passage. For better readability,
errors were filtered with a moving-window box filter of 0.5 seconds width.
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(a) Average Face model
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(b) Identity Model Fit
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(c) 3D Snapshot
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(d) Average Face model
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(e) Identity Model Fit
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(f) 3D Snapshot

Figure 7: Accuracy of the head pose estimation for position and orientation. Graphs (a)–(c) show data for the Drive A sequence,
(d)–(f) data for the Office sequence.
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Average Face error Identity Model Fit error 3D Snapshot error
Sequence Duration Yaw Range Pitch Range Position Orientation Position Orientation Position Orientation

Drive A 2940 frames [−41◦,50◦] [−13◦,11◦] 7.16mm 4.04◦ 4.38mm 1.80◦ 3.60mm 1.49◦

Drive B 2563 frames [−62◦,61◦] [−9◦,15◦] 7.46mm 4.35◦ 7.58mm 2.43◦ 7.62mm 1.93◦

Office 1140 frames [−46◦,45◦] [−19◦,24◦] 5.28mm 2.26◦ 5.21mm 1.83◦ 5.07mm 2.17◦

Mean 6643 (total) [−50◦,52◦] [−13.7◦,16.7◦] 6.63mm 3.55◦ 5.72mm 2.02◦ 5.43mm 1.86◦

Table 1: Median error between head pose estimation using different model types, and ground truth.

proach is of similar performance but lacks the absolute pose
information.

Outlook Overall, we presented an Analysis-by-Synthesis
technique to determine accurate 3D head pose, using a
parametrized 3D face model, similar to those used in CG
animation and rendering. The parameters of this generative
model are optimized to explain the observed sensor data.
In contrast, efficient but less accurate discriminative mod-
els have been previously suggested by means of regression
forests [FDG∗12]. Only few approaches have attempted to
combine both, discriminative and generative, methods, e.g.
for human pose tracking [CG05]. Developing the fusion of
such approaches is expected to be a fruitful research direc-
tion. A real-time implementation could open a new window
to applications that require high accuracy and reliability;
in automotive mass markets, passenger safety applications
such as adaptive airbag control, gaze direction for attentive
state monitoring, or perspective correction for head-up dis-
plays in an Augmented Reality system could benefit from
this work. In addition, the Identity Model Fit approach could
also be used biometrically to determine facial identity of the
driver, similar to [BV03]. The addition of facial deforma-
tion information to the shape model [BBC11] would allow
to estimate facial expression parameters for a more detailed
driver state analysis.
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