
EG UK Theory and Practice of Computer Graphics (2013)
Silvester Czanner and Wen Tang (Editors)

Geometry-based Algorithm for Detection of Asymmetric
Tunnels in Protein Molecules

Jan Byška†, Adam Jurčík‡, Jiří Sochor

Faculty of Informatics, Masaryk University, Brno, The Czech Republic

Abstract

We present a novel geometry-based method for computing asymmetric tunnels and voids in proteins, approximating
their real shape with selected precision. Our method combines ideas from Voronoi and grid based approaches for
protein analysis. We represent tunnels in protein using voxel data grid which allows us to store their shape more
accurately. Our algorithm employs a tunnel skeleton computed using Voronoi diagram. The skeleton allows us
to perform grid computation in a bounded space, with lower time and memory demands, and easily identify and
measure individual tunnels.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geome-
try and Object Modeling—Boundary representations; I.3.8 [Computer Graphics]: Applications—Geometry-based
Analysis of Proteins

1. Introduction

Proteins play an essential role in many biological pro-
cesses. These macromolecules are large biological struc-
tures consisting of one or more chains of amino acids. Pro-
tein chains are folded forming highly complex structures
of atoms and empty space. Along with many unimportant
tiny hollows proteins contain voids that may form cavi-
ties of specific functions, tunnels connecting these cavi-
ties with a molecule’s surface, or channels and pores pen-
etrating throughout the whole molecule. Tunnels, channels
or pores play an essential role in the functioning of large
number of proteins since they represent potential transport
pathways for small molecules, ions and water molecules.
These small molecules can than participate on biochemi-
cal reactions within the protein. [ZM10] [ABN95] [GM05]
[GDC07].

Advanced in-silico analysis and visualization of proteins
is a necessity due to their complex structure, behaviour
and high costs of laboratory experiments. Recently, many
geometric-based tools for rapid analysis of protein tunnels,
channels and voids were presented. They can be classified

† xbyska@fi.muni.cz
‡ xjurc@fi.muni.cz

according to the method they compute and represent interior
space of a protein molecule.

The first category of the tools is represented by HOL-
LOW 1.2 [BF08] and 3V 1.0 [VG10]. Both HOLLOW and
3V can sufficiently describe a geometry of nearly any type
of void using a grid-based approach. However, they provide
only limited information on tunnels and channels charac-
teristics. Another disadvantage of these tools is their large
demands on time and memory for detailed visualization
[BCG∗13].

The drawbacks of the first group have been partially
overcome by the second category of algorithms including
MOLE 1.2 [PKKO07], MolAxis 1.4 [YFW∗08] and CAVER
3.0 [CPB∗12]. These tools employ Voronoi diagram to com-
pute tunnels (in case of MolAxis tunnels and channels)
within the protein structure. The MOLE algorithm con-
structs the Voronoi diagram without considering variability
in radii of individual protein atoms. MolAxis and CAVER
lower the computation error by approximating each atom in
the protein by a set of smaller spheres with the same ra-
dius. Nevertheless, the main shortcoming of these tools is
that none of them is able to capture and describe asymmet-
ric tunnels. They can only detect tunnels with circular cross-
sections. However, in reality these tunnels have usually more
complex cross-sections of an arbitrary shape.

c© The Eurographics Association 2013.

DOI: 10.2312/LocalChapterEvents.TPCG.TPCG13.017-024

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/LocalChapterEvents.TPCG.TPCG13.017-024

J. Byška & A. Jurčík & J. Sochor / Geometry-based Algorithm for Detection of Asymmetric Tunnels in Protein Molecules

The third category of algorithms is designed
mainly for the channel and pore analysis. It includes
HOLE 2.2 [SNW∗96], CHUNNEL 1.0 [CS09] and PORE-
WALKER 1.0 [PCMT09]. These tools employ different
algorithms and use different assumptions and starting
condition for computation. Only the HOLE tool is able
to handle asymmetry in channel dimensions. It represents
the resultant channel as a set of maximal capsules while
the other tools in this category use only spherical probes.
However, the HOLE algorithm can produce a discontinuous
pathway deviating from the ideal channel axis [BCG∗13].

In this paper we present a novel method for computing
the protein tunnels that preserves their real shape as much as
possible. Our method combines ideas from the first two men-
tioned groups of tools. We represent a tunnel in protein using
voxel data grid which allows us to store its shape in a simple
and enumerable form. Our algorithm employs a tunnel skele-
ton computed using Voronoi diagram. The tunnel skeleton
allows us to reduce the computation only to a limited area
near the tunnel, with lower time and memory demands, and
easily identify and measure volumes of individual tunnels.

2. Asymmetric tunnels

2.1. Problem definition

Current tools for protein analysis such as CAVER, MOLE
and MolAxis, utilize Voronoi diagram to compute all possi-
ble pathways connecting a given inner cavity with the pro-
tein surface. Dijkstra´s algorithm together with a specific
cost function for Voronoi edges is used afterwards to find
a set of optimal pathways.

Let us suppose that we have computed an appropriate
Voronoi diagram tessellation of the protein molecule. The
adequate space subdivision can be computed either as a
weighted Voronoi diagram for atoms with different radii, or
as a normal Voronoi diagram by approximating each atom
in the analysed protein by a set of smaller spheres with the
same radius. The pathway describing tunnel is then actually
a list of Voronoi edges equidistant to three nearest atoms.
An empty space inside the protein molecule therefore can
be described by spheres placed on these Voronoi edges. The
radius of each sphere is given by the distance between the
point on a Voronoi edge and the neighbouring atoms. Sum-
ming up, a computed tunnel is a void defined by its skeleton
– list of annotated Voronoi edges, and is often visualized as
a set of spheres. The 2D simplified sketch of this method is
depicted in Figure 1.

The representation of voids by a set of spheres has both
advantages and disadvantages. The advantage is that the
smallest sphere of a tunnel can be considered a bottleneck
with diameter d, where some ligand smaller then d can pass
through it, for details see [MBS07]. However, it is clear that
when describing a void in a molecule by a simple set of

Figure 1: Simplified 2D representation of a computed tunnel.
The tunnel is visualised as a set of empty spheres (white)
touching the atoms (grey).

spheres placed on Voronoi edges, some information is miss-
ing. The cross-section of a tunnel does not have to be cir-
cular, and Voronoi based approach may detect two spherical
tunnels instead of one asymmetric tunnel (see Figure 2). In
the worst case, a part of the void surrounding the tunnel may
remain undetected [BCG∗13].

Figure 2: Two tunnels (red and green) computed by CAVER.
It can be observed that these tunnels do not cover the entire
void.

The need of more accurate representation of molecular
voids was first addressed by tools such as HOLLOW or 3V.
These tools employ a grid-based approach with a rolling
probe method. Two or more probe spheres with different
radii are placed on each grid point and checked whether they
do not intersect with any protein atom. This way, it is pos-
sible to find empty volumes that can be combined together
to define external and internal empty space (see Figure 3).
The resultant voids are, however, computed over the whole
protein and it is hard to automatically identify individual tun-
nels [BCG∗13].

c© The Eurographics Association 2013.

18

J. Byška & A. Jurčík & J. Sochor / Geometry-based Algorithm for Detection of Asymmetric Tunnels in Protein Molecules

Figure 3: Example of void computation used by HOLLOW
or 3V tools. The outer surface of the protein is defined by a
probe with greater radius, a smaller probe is used to detect
voids.

2.2. Proposed solution

We propose an algorithm which combines both Voronoi di-
agram and grid-based method. Our algorithm exploits infor-
mation acquired from tunnels computed by the CAVER al-
gorithm, however, in general it is possible to use any Voronoi
diagram based tool and its output. The information about
tunnel skeleton is used to define a region of interest (ROI)
where the asymmetric tunnel is supposed to pass trough. In-
side this area the modified rolling probe method is used to
determine all voids (see Figure 4). Afterwards, all isolated
cavities that do not belong to the main tunnel body, are re-
moved. The resultant shape of the tunnel is stored using a
voxel grid.

Figure 4: 2D representation of our approach. The ROI is de-
termined as an extension of the pre-computed tunnel (dashed
line).

This way, we are able to compute a more realistic shape of
the tunnel. Moreover, since we can easily determine which
voxel interior belongs to which tunnel, we can easily mea-
sure volume-related properties of asymmetric tunnels or
merge different overlapping tunnels.

3. Algorithm

In this section, we introduce our algorithm in general and
we describe selected parts in more detail. The pseudocode
in Algorithm 1 gives an overview of the entire algorithm.

Algorithm 1 Algorithm for voids detection

Input: A – atoms, T – tunnel, ε – extension, d – grid density,
r – probe radius

Output: g – grid with voids
1: procedure DETECTVOIDS(A,T,ε,d,r)
2: b← BOUDINGBOX(T,ε, r) . b is AABB
3: Ain = {a ∈ A|INTERSECTS(a,b)}
4:
5: g← MACROGRID(b) . g has size b
6: REGIONOFINTEREST(g,T,ε)
7: PLACEATOMS(g,Ain,r)
8:
9: Psur f ← FINDSURFACEPOINTS(g)

10: PLACEPROBES(g,Psur f ,r)
11: return g . g contains voids
12: end procedure

The algorithm requires the set of protein atoms A, the tun-
nel T computed by Voronoi based tool – represented as a
set of spheres, ε influencing the region where the algorithm
will look for a solution, density d of the resultant grid and
a probe radius r. The result of our algorithm is the uniform
grid g of voxels of size d. The resultant data are actually
stored in vertices of the grid.

The algorithm exploits the information obtained from a
tunnel computed by CAVER method. The sphere represen-
tation of the tunnel together with an extension parameter ε

is used to determine the ROI. The ROI will bound the area
where the algorithm will look for the extended shape of the
tunnel. The radius of each sphere s ∈ T is enlarged by ε re-
sulting in a new sphere s′. The union of all spheres s′ defines
the ROI (see Figure 4).

As a first step, an axis-aligned bounded box (AABB) b
is computed, containing all spheres from the T whose radii
were enlarged with the value ε+ r. Then, all spheres (atoms)
from A are checked whether they intersect with bounding
box b. The intersecting spheres are included into the set Ain,
hence the set A contains only spheres occupying a space in
ROI.

On line 5, a uniform grid g with resolution d is created,
so that it spans bounding box b. Lines 6 and 7 are key to the

c© The Eurographics Association 2013.

19

J. Byška & A. Jurčík & J. Sochor / Geometry-based Algorithm for Detection of Asymmetric Tunnels in Protein Molecules

speed of our algorithm. Instead of fitting a probe with radius
r, i.e. checking collision with spheres in Ain, we inverse the
process. We label the ROI in grid g (line 6) by storing ones
in vertices of voxels inside ROI. Now, the void in g can be
thought as there were no spheres in Ain. To take into account
the spheres in Ain, we enlarge their radii by r and store zeros
to all vertices in g that are covered by these enlarged spheres
(line 7). The labeled grid g now describes interior of voids in
the ROI. Each vertex in g with value "1" represents a centre
of a void with probe’s shape and size. To obtain the actual
void, we take the probe, place its centre to a labeled void
vertex and set all vertices contained in the probe also to one.
In fact, this step can be reduced to placing probes only at
vertices that have some non-void vertex (labeled with zero)
in their neighbourhood. Therefore, we firstly find all relevant
vertices – denoted as Psur f and then place probes only at
them (see lines 8 and 9).

The algorithm in its basic form, outlined in this section,
would quickly exceed memory or would take too long in
processing. For instance, storing grid data directly as a bit
array or placing a probe (in step 9) into each void vertex
would noticeably limit algorithm’s performance. In the fol-
lowing parts, we describe important concepts that our algo-
rithm employs.

3.1. Multi-level grid data structure

As described above, our algorithm utilizes a uniform grid
to store information about the real shape of an enlarged
tunnel. There are several ways to store a set of voxel data
(e.g. [LK11], [HKK07]). We decided to use a three dimen-
sional bit array. In order to lower the memory requirements,
we have implemented it as a multi-level grid.

The multi-level grid is actually a simple tree-like data
structure similar to octree – it decomposes a space by recur-
sive subdivision into a given number of rectangular blocks.
Each block stores information whether the corresponding
area is empty (i.e. a void), fully or partially occupied by
atoms. In the last case, the block either stores a 3D array of
children descriptors or it is a leaf block. Every leaf block
contains a 3D bit array which fully covers its space and
stores the actual voxel data (see Figure 5).

This arrangement is much more memory efficient com-
pared to uniform tree structure, since each voxel in the leaf
block can be expressed by a single bit, however, the empty
or fully occupied blocks can be indicated by an information
stored in their parent blocks.

The resolution of the multi-level grid is adjustable on each
level and depends on specific requirements. In fact, there are
two properties that influence the size of a data structure in
memory. First, the parameter d (see Section 3) defines the
initial resolution of a regular grid and hence directly deter-
mines the amount of memory taken by the data structure.

Figure 5: Multi-level grid with segmentation 4x4 on leaf
level and 2x2 on parent level with full (F), empty (E) and
partially occupied nodes.

Second, the memory demands are also affected by the sub-
division settings. Every level of the grid structure can define
a different grouping of siblings to allow the data structure to
be more flexible. For example, a parent node in octree groups
always 8 children (2x2x2 boxes). On the contrary, the multi-
level grid data structure defines the grouping for leaf nodes
which sets dimensions of the bit array and another group-
ing that defines dimensions of children descriptor arrays in
nodes.

The multi-level grid is build in the bottom-up manner.
First the size of the low level grid is determined. The com-
puted number of voxels together with the user defined sub-
division settings gives the maximum depth of the multi-level
grid. On each level the group of voxels or children blocks is
clustered to create a parent node. Note that if all the clustered
voxels or children blocks are of the same value, the parent
block stores only this value. In some cases it is not neces-
sary (or it might even be inconvenient) to create all possible
levels since the top level would be too coarse. For instance,
for the tests described in the section 5 we used only two-level
grid.

There is no explicit rule on how to set the multi-level
grid so that it would use memory efficiently. The data struc-
ture efficiency depends on a specific application, therefore
it may require to do some tuning on target data. For exam-
ple, among researched groups of proteins, some may have
thousands, and others hundreds of thousands of atoms. The
different groups will probably contain tunnels of different di-
mensions and required grid settings will differ significantly.

c© The Eurographics Association 2013.

20

J. Byška & A. Jurčík & J. Sochor / Geometry-based Algorithm for Detection of Asymmetric Tunnels in Protein Molecules

3.2. Enhancing region of interest

In the algorithm overview, we have sketched how we select
ROI. We make use of spheres provided with the tunnel skele-
ton from the CAVER algorithm, but using only that infor-
mation could produce unwanted results. The set of spheres
can contain one or more spheres lying outside the protein
molecule. Even when the computed set itself is correct, users
could set the value of the extension ε big enough such that
the ROI would exceed the molecule and hence the algorithm
would look for the extended shape of a tunnel outside the
protein. To avoid this, we compute the protein surface us-
ing LSMS algorithm [TCIYF06] and then simply cut of the
redundant parts of the ROI lying outside the molecule. The
difference is depicted in Figure 6.

Figure 6: The tunnel computed without (left) and with (right)
surface constraints defined by LSMS algorithm.

3.3. Molecular surfaces

Now, we show that both partial and final results of our algo-
rithm actually represent concepts widely used in biochem-
istry. In different stages, our algorithm produces a grid of
voxels representing two types of molecular surfaces.

At first, solvent accessible surface (SAS) of the tunnel is
found. The SAS is defined by centre of a probe of given ra-
dius rolling along the atoms (see Figure 7). In our algorithm,
this occurs after the ROI is marked and all enlarged atom
spheres that influence voids in the ROI, are placed. Usually,
the SAS is found by trying to fit a probe to all vertices of a
regular grid. In our algorithm, we have inverted the process.
The inversion is correct with respect to the SAS definition.
From Figure 7, it is obvious that the SAS can actually be de-
fined as a surface of voxelized void complementary to atoms
enlarged by the probe radius.

Note, that every atom which can influence the SAS has to
satisfy the condition that the distance of its surface from the
ROI is smaller then the radius of the probe. Since the ROI is
defined as a set of spheres, the collision test falls back to a
trivial test of distance between two points. Moreover, we can

Figure 7: The difference between SAS and SES. SAS is de-
fined by the centre of a rolled probe while SES is defined
by points on probe’s surface that are closest to molecule’s
atoms (when rolled).

store all atoms in some efficient data structure (e.g. in kd-tree
or octree) to speed up the selection of the nearest atoms.

Finally, the SAS obtained in early discussed steps of the
algorithm, is a reduction of the real void. Basically, this
means that the acquired tunnel is smaller than it actually is.
Therefore, the steps that find boundary vertices Psur f of SAS
and place probes to every vertex v ∈ Psur f , adjust the com-
puted voxel body to create solvent excluded surface (SES).
The SES is defined by points on probe’s surface that are the
nearest to atoms when the probe is rolled (see Figure 7).

To obtain the SES, the algorithm has to find vertices from
Psur f , i.e. vertices defining the SAS in the computed grid. All
void vertices in the grid are evaluated using 6-adjacency – if
a void vertex has at least one of its six neighbours marked as
non-void it is noted as a surface vertex. Details on correct-
ness of using 6-adjacency are presented in the next subsec-
tion.

3.4. Accelerating probe placement

The algorithm computes resultant voids by placing probes
in surface vertices. It is in fact the dilatation of the SAS as
defined in mathematical morphology using probe as a struc-
turing element. For vertex evaluation, we use 6-adjacency
because using 18-adjacency or even 26-adjacency would not
change the result of the algorithm. If we have a void ver-
tex that is not a surface vertex in 6-adjacency but would be
in 18- or 26-adjacency, then it has to have six neighbouring
vertices set as void. These neighbouring vertices together in-
fluence all the vertices that would be influenced by the non-
surface vertex too. Then, it is correct to place probes only
at 6-adjacent surface vertices which lowers the placed probe
count.

Using 6-adjacency we obviously lower the computation
time of the algorithm. To accelerate the probe rendering step
even more we prepare the shape of probe transferred to a

c© The Eurographics Association 2013.

21

J. Byška & A. Jurčík & J. Sochor / Geometry-based Algorithm for Detection of Asymmetric Tunnels in Protein Molecules

uniform low-level voxel grid in advance. We also utilize the
properties of the multi-level grid structure and do not place
probes in nodes that are already completely empty. This way,
we obtain a voxel body whose surface represents a SES of
the tunnel. The process of generating resultant surface from
the computed voxel data is described in section 4.

3.5. Special cases: Two or more voids

In order to complete the description of our algorithm, we
also mention its special cases. By definition, the algorithm
detects any void greater then probe with radius r which is
located within the ROI specified by tunnel’s sphere repre-
sentation and parameter ε. Therefore, it is possible that we
detect two or more spatially disconnected voids. Often, this
happens when a large ε, or a probe greater than the original
probe used to detect the tunnel in Voronoi diagram, are ap-
plied. In our algorithm, we suppose the analysed tunnel to
be the largest void found. We label all the voids found, as
components w.r.t. 6-adjacency and take the one with great-
est volume (approximated by void vertex count). Finally, the
event of detecting two ore more voids is reported to let the
user decide on result’s relevancy.

4. Visualization

The tunnel volume is visualized to provide user with clearly
understandable information of its real shape. To create a
surface mesh of the tunnel volume, we chose Marching
Cubes [LC87] algorithm. Subsequently, the resulting mesh
is smoothed by the Loop subdivision [Loo87]. The creation
of the surface takes only seconds (see section 5.2), the pa-
rameters of the computation can be tweaked based on im-
mediate results. Our algorithm was integrated into CAVER
Viewer [Cav12], a GUI for molecular analysis by CAVER
algorithm, where it can be easily controlled to satisfy vari-
ous user needs.

4.1. Visualization of cross-sections

Often, it is useful to visualize a cross-section of a tunnel at
some user specified spot. For example, biochemists want to
know whether the narrowest region in a tunnel (represented
by bottleneck value) has circular or rather elliptical shape.
Visualizing the shape of a tunnel’s cross-section together
with its volume enriches the information given about the
tunnel. We propose two methods for tunnel’s cross-section
visualization. Either a direct visualization in a molecule or
an isolated plot visualization.

The direct visualization method (see Figure 8b) uses a clip
plane to clip the mesh representation of a tunnel. The clip
plane can be set perpendicularly to the skeleton of a tunnel
or freely defined by user. Although the mesh representation
is only an approximation, clipping gives users interactive in-
formation about tunnel’s cross-sections. On the other hand,

the plot method computes the area and other properties of
a cross-section based on an intersection of a plane with tun-
nel’s volume data. Here, the plane is always chosen such that
it is perpendicular to the skeleton of the tunnel.

(a) (b)

Figure 8: (a) Asymmetric tunnel visualized without a clip
plane; (b) visualization using interactively positioned clip
plane.

The plot visualization algorithm uses voxel representation
of a tunnel as was presented in section 3.1. Recall, that the
data are stored in voxel vertices which means that the algo-
rithm only has the information about probes with radius r
that fitted (or did not) into some void in the molecule. Such
a representation would only allow to compute intersection of
vertices with the chosen plane.

When the condition expressed by equation 1 is satisfied,
probes of radius r placed in vertexes of a three dimensional
grid of density d will cover the space continuously. In such
case, a representation of space using voxel vertices can be
viewed as a valid cell representation with a smaller probe
radius r′. Cells are cubes similar to voxels, with edges of
length d for which it is trivial to compute intersections with
a given arbitrarily oriented plane.

r ≥
√

3d
2

(1)

The resulting area of the cross-section is obtained by com-
puting union of all intersected cells. Equation 2 expresses
error E (in Å) that the plot visualization algorithm produces.

E = r− r′,r′ =

√
r2− d2

2
(2)

The error is easy to deal with. The equation 2 can be used
to calculate the needed probe radius r from the effective ra-
dius r′. Figure 9 shows example of a cross-section plot visu-
alization.

5. Analysis & Results

Figure 10a shows the example of two tunnels in a pro-
tein computed by CAVER algorithm. Figure 10b shows

c© The Eurographics Association 2013.

22

J. Byška & A. Jurčík & J. Sochor / Geometry-based Algorithm for Detection of Asymmetric Tunnels in Protein Molecules

Figure 9: Plot visualization of cross-section of an asymmet-
ric tunnel, calculated in the position of tunnel’s bottleneck.
Dots represent points where cell edges intersect with a plane
perpendicular to original tunnel’s skeleton.

the asymmetric tunnel computed by our algorithm using
CAVER results as an input.

(a) (b)

Figure 10: (a) Two overlapping tunnels computed by
CAVER; (b) asymmetric tunnel computed by our algorithm
using precomputed tunnel as an input (red).

In the rest of the section we present results that demon-
strate the performance and stability of the proposed algo-
rithm. The algorithm was implemented in the Java program-
ming language as a part of CAVER Viewer application. We
performed series of tests on proteins contained in the on-line
Protein Data Bank (PDB) chemical database [RCS03] – we
use the PDB IDs from the database instead of long molecular
names.

5.1. Stability tests

Since the algorithm is using multi-level grid which is axis
aligned and discrete, the resultant shape of the tunnel de-
pends on the grid orientation relatively to the protein posi-

tion in the space. We have performed several tests to exper-
imentally determine the stability of the algorithm with re-
spect to protein rotation. In each test we have successively
rotated the tested molecule by ten degrees around one of the
axes: (1,0,0),(0,1,0),(0,0,1),(1,1,1). Thus we have cre-
ated 144 different space orientations for each tested protein.
As an example, the results of three different tests on 1BRT
molecule are shown in Figure 11.

Figure 11: The test showing the stability of the algorithm
during rotation of the protein molecule 1BRT

The tests were performed with settings: ε = 2.0 Å,
d = 0.2 Å and r = 0.9 Å. The measurements provided the
standard deviations in computed voxels 167.181, 194.381
and 267.868 which gives 0.20%, 0.22% and 0.29% devia-
tions from the average number of computed voxels. All other
tests we performed, provide similar results.

5.2. Average running time

We have also tested the average running time related to the
volume of the computed tunnel. As the input for testing, sev-
eral protein molecules, each with multiple precomputed tun-
nels, were used. We have run the algorithm with different
settings.

The average time of ten computations with eight differ-
ent tunnels in 1BRT molecule (related to the total volume of
the multi-level grid and hence to the size of the tunnel) are
depicted in Table 1. The test was performed on Intel Core2
Quad Q9550/2.83 GHz, 4GB RAM, Windows 7 Pro. The al-
gorithm was run with the settings: ε = 2.0 Å, d = 0.2 Å and
r = 0.9 Å.

6. Conclusion and Future work

In this paper, we have described the algorithm for rapid and
more accurate protein tunnels computation. The proposed al-
gorithm is successfully combining two different approaches

c© The Eurographics Association 2013.

23

J. Byška & A. Jurčík & J. Sochor / Geometry-based Algorithm for Detection of Asymmetric Tunnels in Protein Molecules

Volume of grid (Å3) Average running time (s)
1 1806.336 0.521
2 2654.208 0.656
3 4505.600 1.068
4 5947.392 1.299
5 7614.464 1.868
6 9371.648 1.861
7 10383.360 2.747
8 14536.704 2.886

Table 1: Average running time of the algorithm

from current tools focused on protein analysis. In the last
section, we have briefly discussed the reasonable stability of
the algorithm with respect to the protein rotation. We have
also shown that it is possible to compute a more realistic
shape of the tunnel in the order of seconds for medium-sized
proteins, on common desktop equipment.

For future research, many issues remain as challenges for
geometry-based analysis and for interactive visualization of
proteins. Here we mention only few topics. First, the multi-
level grid data structure described in section 3.1 was de-
signed to lower the memory demands of the algorithm. We
suppose that it will be also possible to use its properties to
run the algorithm in parallel on GPU. Second, we plan to de-
velop an intuitive method for voxel body segmentation. The
segmentation method would allow us to reason about impor-
tance of tunnel’s parts instead of using ad-hoc parameter ε to
define important parts to be included in the ROI. Finally, we
hope that it will be possible to use the proposed algorithm to
improve current tools for protein tunnel analysis. This topic,
however, requires a focused biochemical research and eval-
uation of biochemical relevance, at first. The combination of
computational geometry, visualization and in-silico inspec-
tion of proteins and ribosomes opens new fields of research.

References
[ABN95] AGRE P., BROWN D., NIELSEN S.: Aquaporin water

channels: unanswered questions and unresolved controversies.
Current Opinion in Cell Biology 7, 4 (Aug 1995), 472–483. 1

[BCG∗13] BREZOVSKY J., CHOVANCOVA E., GORA A.,
PAVELKA A., BIEDERMANNOVA L., DAMBORSKY J.: Software
tools for identification, visualization and analysis of protein tun-
nels and channels. Biotechnology Advances 31, 1 (2013), 38–49.
1, 2

[BF08] BOSCO H., FRANZ G.: Hollow: Generating accurate rep-
resentations of channel and interior surfaces in molecular struc-
tures. BMC Structural Biology 8, 1 (2008), 49. 1

[Cav12] CAVERSOFT: Caver - software tool for protein analysis
and visualisation, 2012. http://www.caver.cz [accessed 21-
May-2013]. 6

[CPB∗12] CHOVANCOVÁ E., PAVELKA A., BENEŠ P., STRNAD
O., BREZOVSKÝ J., KOZLÍKOVÁ B., GORA A., ŠUSTR V.,
KLVAŇA M., MEDEK P., BIEDERMANNOVÁ L., SOCHOR J.,
DAMBORSKÝ J.: Caver 3.0: A tool for the analysis of transport

pathways in dynamic protein structures. PLoS Computational
Biology 8, 10 (2012), e1002708. 1

[CS09] COLEMAN R. G., SHARP K. A.: Finding and character-
izing tunnels in macromolecules with application to ion channels
and pores. Biophysical Journal 96, 2 (Jan 2009), 632–645. 2

[GDC07] GOLD V. A., DUONG F., COLLINSON I.: Structure and
function of the bacterial sec translocon. Molecular Membrane
Biology 24, 5-6 (2007), 387–394. 1

[GM05] GOUAUX E., MACKINNON R.: Principles of selective
ion transport in channels and pumps. Science 310, 5753 (Dec
2005), 1461–1465. 1

[HKK07] HARADA T., KOSHIZUKA S., KAWAGUCHI Y.: Sliced
data structure for particle-based simulations on gpus. In Proceed-
ings of the 5th international conference on Computer graphics
and interactive techniques in Australia and Southeast Asia (New
York, NY, USA, 2007), GRAPHITE ’07, ACM, pp. 55–62. 4

[LC87] LORENSEN W. E., CLINE H. E.: Marching cubes: A high
resolution 3d surface construction algorithm. In ACM Siggraph
Computer Graphics (1987), vol. 21, ACM, pp. 163–169. 6

[LK11] LAINE S., KARRAS T.: Efficient sparse voxel octrees.
Visualization and Computer Graphics, IEEE Transactions on 17,
8 (2011), 1048–1059. 4

[Loo87] LOOP C.: Smooth Subdivision Surfaces Based on Tri-
angles. Department of mathematics, University of Utah, Utah,
USA, Aug. 1987. 6

[MBS07] MEDEK P., BENEŠ P., SOCHOR J.: Computation of
tunnels in protein molecules using delaunay triangulation. Jour-
nal of WSCG (2007). 2

[PCMT09] PELLEGRINI-CALACE M., MAIWALD T., THORN-
TON J. M.: Porewalker: a novel tool for the identification
and characterization of channels in transmembrane proteins from
their three-dimensional structure. PLoS Computational Biology
5, 7 (Jul 2009), e1000440. 2

[PKKO07] PETŘEK M., KOŠINOVÁ P., KOČA J., OTYEPKA M.:
Mole: A voronoi diagram-based explorer of molecular channels,
pores, and tunnels. Structure 15, 11 (2007), 1357–1363. 1

[RCS03] RCSB: Rcsb protein data bank - rcsb pdb,
2003. http://www.rcsb.org/pdb/home/home.do [accessed
05-February-2013]. 7

[SNW∗96] SMART O. S., NEDUVELIL J. G., WANG X., WAL-
LACE B., SANSOM M. S.: Hole: a program for the analysis of
the pore dimensions of ion channel structural models. Journal of
Molecular Graphics 14, 6 (1996), 354–360. 2

[TCIYF06] TOLGA C., CHAO-I C., YUAN-FANG W.: Efficient
molecular surface generation using level-set methods. Journal of
Molecular Graphics and Modelling 25, 4 (2006), 442–454. 5

[VG10] VOSS N. R., GERSTEIN M.: 3v: cavity, channel and cleft
volume calculator and extractor. Nucleic Acids Research 38, Web
Server issue (Jul 2010), W555–562. 1

[YFW∗08] YAFFE E., FISHELOVITCH D., WOLFSON H.,
HALPERIN D., NUSSINOV R.: Molaxis: efficient and accurate
identification of channels in macromolecules. Proteins 73, 1
(2008), 72–86. 1

[ZM10] ZHOU H. X., MCCAMMON J. A.: The gates of ion chan-
nels and enzymes. Trends in Biochemical Sciences 35, 3 (Mar
2010), 179–185. 1

c© The Eurographics Association 2013.

24

http://www.caver.cz
http://www.rcsb.org/pdb/home/home.do

