EG UK Theory and Practice of Computer Graphics (2012)
Hamish Carr and Silvester Czanner (Editors)

Fast scalable k-NN computation for very large point clouds

S.Spinal and K.Debattista! and K.Bugeja1 and A.Chalmers'

!International Digital Lab, University of Warwick

Abstract

The process of reconstructing virtual representations of large real-world sites is traditionally carried out through
the use of laser scanning technology. Recent advances in these technologies led to improvements in precision and
accuracy and higher sampling rates. State of the art laser scanners are capable of acquiring around a million
points per second, generating enormous point cloud data sets. These data sets are usually cleaned through the
application of numerous post-processing algorithms, like normal determination, clustering and noise removal. A
common factor in these algorithms is the recurring need for the computation of point neighborhoods, usually by
applying algorithms to compute the k-nearest neighbours of each point. The majority of these algorithms work
under the assumption that the data sets operated on can fit in main memory, while others take into account the size
of the data sets and are thus designed to keep data on disk. We present a hybrid approach which exploits the spatial
locality of point clusters in the point cloud and loads them in system memory on demand by taking advantage of
paged virtual memory in modern operating systems. In this way, we maximize processor utilization while keeping
1/0 overheads to a minimum. We evaluate our approach on point cloud sizes ranging from 50K to 333M points on
machines with 1GB, 2GB, 4GB and 8GB of system memory.

Categories and Subject Descriptors (according to ACM CCS): 1.3.6 [Computer Graphics]: Methodology and

Techniques—Graphics data structures and data types

1. Introduction

The acquisition of 3D point clouds of objects and environ-
ments has become common place in fields like robotics and
cultural heritage. The raw data resulting from the acquisition
process usually needs to be processed in order for impor-
tant topological information to be extracted. For instance,
in the case of robot navigation, this processing might be
required in order to determine the location of a particular
object in the environment and guide the robot around it. In
some cases, the size of the data set acquired is so large that
it does not fit in main memory. This is particularly true of
outdoor cultural heritage sites (e.g [Rutl0]) acquired using
professional grade 3D scanners capable of generating highly
accurate data at sampling rates of close to a million points
per second [EBN11].

Post processing operations, like normal determination,
clusters and noise removal, all require the computation of
the k-nearest neighbours (k-NN) for each point in the point
cloud. When the size of the point cloud is very large, a con-
siderable amount of time is spent searching for the k-NN of
each point. Moreover, many of these post-processing opera-

(© The Eurographics Association 2012.

DOI: 10.2312/LocalChapterEvents/ TPCG/TPCG12/085-092

tions (e.g. noise removal) are usually applied on the same
data set more than once using different input parameters.
This is especially true in the case of clustering or labelling al-
gorithms where input parameters may produce widely vary-
ing results. Even if these operations are usually carried out
offline, execution time is still an important factor to take
in consideration. Optimal performance results are achieved
when k-NN computation is carried out in-core, i.e. when
both points and acceleration structure are stored in main
memory. On the other hand out-of-core techniques take into
account the size of the points but are much slower due to
overheads related to disk 1/O. In this paper, we present a
novel external memory algorithm using a hybrid of spatial
subdivision techniques for out-of-core fast k-nearest neigh-
bour searches on point cloud data.

2. Related Work

The development of algorithms for the efficient determina-
tion of the k-nearest neighbours of points in a point cloud has
been an active area of research for many years (e.g. [Cla83],
[Vai89], [SSV07]). In most cases memory-based space sub-
division data structures are used to help quickly determine

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY
diglib.eg.org

www.eg.org

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/LocalChapterEvents/TPCG/TPCG12/085-092

86 S. Spina & K. Debattista & K. Bugeja & A. Chalmers / Fast Scalable k-NN

neighbouring points. One such accelleration structure is the
k-d tree [FBF77] which is used in many prominent libraries
[e.g. IMLO9], [RC11]] to provide a spatial subvision over the
input point cloud. Search algorithms, mostly based on either
depth-first search (DFS) or best-first search (BFS) are then
used to efficiently compute neighbours. These search algo-
rithms can either compute the exact nearest neighbours or
else the approximate nearest neighbours (ANN). In the case
of ANN, an error threshold € is used to speed up the com-
putation of neighbours at the expense of correctness. Sig-
nificant speedup can be achieved when the data set consists
of higher dimensional data points [AMN™*94]. In the case of
3D scanned point cloud data, the difference in preformance
between ANN and k-NN is minimal. In our approach both
approximate and exact nearest neighbours can be computed.
In the results presented here only the exact k-NN are com-
puted.

An important consideration which is addressed by
Sankaranarayanan et al. [SSVO07], is the size of these point
clouds. As size increases, search algorithms based on in-core
data structures, such as k-d trees [FBF77], are limited by the
amount of memory present in the computer on which they
are deployed. Sankaranarayanan et al. [SSVO07], describes
an all nearest neighbour algorithm for applications involv-
ing large point clouds. Their algorithm makes use of disk-
based out-of-core data structures and is thus not limited by
the amount of system memory available. They first deter-
mine localities, for blocks of points, which are then used to
decrease the range of candidate neighbour points to search.
Even though their algorithm is desgined to work with multi-
dimensional data sets, evaluation is carried out only on 3D
point clouds and report significant improvements over pre-
vious methods with respect to the time it takes to compute
k-NN. For example, when using a data set of 50 million
points, 7999 neighbourhood/s are computed on a machine
with 1GB of system memory. In our case we adopt a hy-
brid approach which takes advantage of all system memory
available but never exceeding it. On a 1GB machine with
similar specifications, our approach achieves approximately
100,000 neighbourhoods/s using a data set of 166 million
points.

3. Preliminaries

In order to design a fast k-NN computation procedure, we
take advantage of two important concepts, namely, spatial
subdivision and memory mapped files. The first is used to
reduce the time complexity of the nearest neighbour algo-
rithm, whilst the second is used to maximise the use of avail-
able memory.

3.1. Spatial Subdivision

Regular grids subdivide 3-space into regions of equal vol-
ume where each region can be uniquely addressed by an

index (i, j, k). If the regions operated on are known, one
doesn’t need to be concerned with the whole grid, but can
concentrate instead on the said regions. The straightforward
subdivision afforded by regular grids allows us to maximize
memory utilization by loading in core only the affected re-
gions. The point clouds we use are not uniformly distributed
in 3-space and partitioning these data sets into regular grids
yields a large number of empty regions. Thus, we imple-
ment the regular grid as a sparse map and keep track only of
the regions which contain interesting information. The time
complexity for lookup and insertion of a region, or cell, is in
both cases O(log n), since the sparse grid is implemented
using red-black trees [Bay72]. A lookup for the nearest-
neighbour of a point within a region runs in linear time; we
thus use k-d trees to store points within a cell, reducing the
lookup complexity to logarithmic time in the number of ele-
ments [FBF77].

3.2. Memory Mapped Files

Virtual memory [Den70] is a memory management tech-
nique which allows the execution of processes not entirely
held in memory by separating the user view of memory from
the actual physical memory and provides a mapping function
from one to the other. Implementations for virtual memory
require hardware support, typically provided by a memory
management unit built into the CPU. Paged virtual mem-
ory is an implementation of a virtual memory system which
divides the logical address space into equal sized memory
blocks called pages, permitting the use of memory mapped
files (MMF), wherein a file can be manipulated as part of
the process address space. This is accomplished by mapping
disk blocks to pages in memory using the virtual memory
system. Access to memory mapped files uses a demand pag-
ing scheme, whereby a block is loaded in memory only if
it is needed. The first time a block is accessed, a page fault
is generated, and the respective block brought to memory.
Subsequent accesses to the specific block occur as memory
reads or writes, avoiding the overhead of read and write sys-
tem calls. Moreover, files which do not fit in memory can
still be manipulated with relative ease, as the paged virtual
memory system, swaps blocks in and out as required.

4. Concurrent k-NN searches using MMF

Our work addresses the problem of efficiently searching for
the k-NN of all points in a point cloud P, when the size of
P does not fit entirely in main memory. In order to decrease
the memory requirements of the process computing k-NN,
we store all point information on disk and iteratively load
only those regions in the file which are required in the k-NN
computation for a subset of points in P. Points are loaded
in memory through the use of MMFs. In general, we would
like to exploit all memory available on a machine to achieve
the best possible performance, however in order to mitigate

(© The Eurographics Association 2012.

S. Spina & K. Debattista & K. Bugeja & A. Chalmers / Fast Scalable k-NN 87

I/0 problems which could result from having a process us-
ing all system memory, we use a heuristic M to indicate an
approximate upperbound on the number of points which can
simultaneously be present in system main memory. Decreas-
ing the value of M will decrease the memory footprint of the
entire process. Whenever we want to use all system mem-
ory available, M is set to a value larger than the number of
points in P. In order to speed up the time it takes to compute
k-NN for each point, all processing elements (PE) available
on multi-core computers are utilised.

Algorithm 1 describes the high level structure of our ap-
proach. The process starts by first creating and populating a
uniform sparse grid G with a count representing the num-
ber of points in P which fall within each axis aligned cell
in G. This is done by iterating once over all the points in P.
Using this information, separate files are created each stor-
ing a cell ordered subset of points. Once these clusters of
points (stored on disk) are created, they are iteratively loaded
in main memory and k-NN is performed for points in these
clusters.

Algorithm 1 High-level description of k-NN computation

Procedure Search for k-NN of all points p; € P.
Input Point-cloud P, M, k.
Load Create sparse grid G storing counts for each cell.
Sort Partition P. Persist to disk ordered clusters OC;,.
for each cluster OC; do
Memory map points cluster OC; to main memory
for each non-ghost grid cell Cy present in OC; do
Create local kd-tree
for each point p; in C; do
Compute k-NN
Perform operation on p; using neighbours
end for
end for
end for

The following sections describe in more detail the stages
load, sort and compute. The first stage reads a point cloud
binary file and determines spatial locality for all points. This
information is then used to sort and divide in clusters of
points, depending on M, the inputl point cloud P. This spa-
tially sorted point cloud is then used in the third stage to
search for the k-nearest neighbours of each point.

4.1. Loading

The input to this stage are point clouds stored using the Point
Cloud Library (PCL) [RC11] binary format, with each point
represented as a triple (X,Y and Z coordinates) of type float.
Since one of our objectives is to decrease the memory foot-
print of the application used to process a point cloud, when-
ever the number of points in the cloud is larger than the value
of M, which is specified in number of points, a point cloud
iterator is used which does not load the entire point cloud

(© The Eurographics Association 2012.

in memory. Instead, M points are loaded iteratively from file
using MMFs. Since not all points are loaded in memory at
any one point in time, each point-cloud is represented as a
collection of segments. The maximum size (in number of
points) of a segment is M. The index of each point is thus
representing using a local offset within the segment and its
global index (within the whole point cloud P) is computed
from the segment number and local offset. Figure 1 shows
the straightforward abstraction adopted.

Figure 1: Input point cloud is loaded in segments.

The point cloud iterator GetNext() first checks whether
the next point to be returned is in the current segment, i.e.
whether it’s currently addressable in memory. If this is the
case then values associated with the next point are returned,
otherwise, if the end of segment is reached, the mapped re-
gion of the MMF is first deallocated then memory-mapped
with the next segment. When the last point in the last seg-
ment is reached, GetNext() returns false, indicating that all
points have been read.

A uniform sparse grid is used to store the number of points
contained within each axis-aligned cell in the sparse grid G.
This information is used to persist the point cloud to disk or-
dered by cell index. For each point a key is computed which
indicates the cell into which the point should be placed. The
key is composed of three values representing cell indices
along the X, Y and Z directions. The number of cells along
each direction is computed from a user-defined value which
specifies the size of each cell. Since points are fitted in a uni-
form grid, all cells have the same size. As we shall outline
later on, this is an important consideration when searching
for k-NN concurrently, and also to quickly determine if the
correct k-neighbours have been chosen. In the experiments
carried out, this value was set to 0.2 for all point clouds. The
maximum number of cells in the sparse grid depends on the
bounding volume of the input point cloud. For example if the
bounding volume is (1,2,3) then the sparse grid would have a
maximum of 5 cells along the X direction, 10 cells along the
Y direction and 15 along the Z direction. Given that we use
a sparse grid, only those cells where points are spatially lo-
cated are created and stored in system main memory. In the
largest point cloud (333M) used to evaluate our approach,
the number of cells in the grid is of 97,253.

88 S. Spina & K. Debattista & K. Bugeja & A. Chalmers / Fast Scalable k-NN

4.2. Sorting

The output from the previous stage is a sparse grid G holding
a count of the number of points contained within each cell.
Given this information, together with a value for the approx-
imate number of points in memory M and a specific ordering
over grid cells, an optimal set partition of points in P is de-
termined. This set partition groups together clusters of cells,
over which k-NN can be computed in-core while adhering
as closely as possible to the value of M. The cell ordering
employed in our implementation follows in ascending order
the X, Y then Z axis as illustrated in figure 2.

Figure 2: Sparse grid decomposition and cell ordering

This ordering implies that the bounding volume of the en-
tire point cloud can be seen as being composed of a num-
ber of slices along the x-axis (X-slices), where each slice
would consist of a number of cells varying along the Y and
Z axes. Hence, one valid set partition of P would consisit of
cells grouped by X-slice. However, since points are usually
not distributed uniformly across the bounding volume of the
point cloud, there will be X-slices with many more points
than others. Thus, the partitioning process groups together as
many X-slices as possible. M is used to determine the size of
these clusters of X-slices, with each cluster having approxi-
mately M points. For example, if the axis-aligned bounding
volume of the point cloud is divided into twelve X-slices, a
possible set partition OC could consist of the four clusters
{{1,2,3,g},{g.4.2}.{g.5,6,2},{2,7,8.9,10,11,12} }. The parti-
tioning process guarantees that the number of points present
per cluster over which k-NN can be computed is approxi-

mately equal to M. In this case the number of points in the
4th X-slice (alone in the second cluster) is higher than the
number of points in the rest of the slices. Hence, it is loaded
in main memory on its own. An important aspect that needs
to be taken into account when constructing this set parti-
tion, is the inclusion of ghost cells/points (represeted using
the letter g in the example) within each cluster, i.e. those
points for which we do not compute k-NN (within this clus-
ter) but which may actually be one of the k-nearest neigh-
bours for some of the points in the cluster. Figure 3 shows
the ghost cells and respective ghost points for point p; lo-
cated in the central cell of the 3x3 grid. In the case of a 3D
sparse grid, for every cell there can be a maximum of 26
ghost cells. In our implementation, for each cluster OC;, the
last X-slice from OC;_| and the first X-slice from OCj,| are
added. Clearly, for OCy only the first X-slice from OCj is
added, whereas for the last cluster OC, only the last X-slice
from OC,_; is added. These additional cells representing
the boundary points of the cluster are required to compute
k-NN correctly. Since clusters are created over X-slices, the
value of M must be reasonably chosen, i.e. it should not be
very small. In the results section, the effect of changing this
parameter is evaluated with respect to memory usage and
performance.

Figure 3: Ghost cells and points

The output from this stage is a file for each cluster of
X-slices. Each file stores points following the cell order-
ing described in figure 2. Point ordering within the cell
is not important. Taking the example above, this stage
would produce four files storing the points from clusters
{1,2,3,4},{3,4,5},{4,5,6,7},{6,7,8,9,10,11,12} respectively.
In the next stage these files will be efficiently loaded in mem-
ory using MMFs.

Algorithm 2 describes the procedure used to sort the input

(© The Eurographics Association 2012.

S. Spina & K. Debattista & K. Bugeja & A. Chalmers / Fast Scalable k-NN 89

Algorithm 2 Sorting

Algorithm 3 Compute k-NN

Procedure Sort points in P and persist to files
Input P, G with counts for each cell, Clusters OC.
for each cluster OC; do
Create MMF to store points in OC;
Update G with file position offsets of cells in OC;
Chtyrq) = nUmber of points in OC;
cntyrigen = 0
for each point p; € P do
if p; falls within this cluster then
Retrieve cell Cy where p; is located
Write p; to file at position offset indicated at Cy
Chbyritten = Cbyrisrent1
Increment offset at Cy,
end if
if cntyyristen == Chit1orq) then
Flush MMF of OC;.
Continue.
end if
end for
end for

point cloud P. For each cluster of X-slices in OC, a file is cre-
ated. In order to write points at the correct offsets in each file,
the information within each cell in G is augmented with file
position offsets indicating at which location of the current
file the next point contained in that cell should be written.
Sorting is currently not very efficient since for each file writ-
ten, the function GetNext() has to iterate over all points in
G. When the size of P is very large (e.g. 333 million points
on a 1GB machine) this actually becomes a bottleneck and
ends up taking as much time as computing k-NN.

4.3. Concurrent search for k-NN

When computing the k-NN for a given point, our approach
ensures that the correct k-nearest neighbours are actually re-
turned. In general, given the two sets of points Pg and Py,
with P, C P,, we need to ensure that the set P contains the
k-nearest neighbours of all points in P,. As opposed to the
work of [SSVO07], i.e. pre-compute the set Py before search-
ing for the k-NN of points in P,, we verify that this is the
case for each point in P, once the k-NN are determined.
Since each point is located in an axis-aligned cell, the short-
est distance d between the position of the point and any one
of the boundary planes of the cell can be determined very
efficiently. Figure 3 describes how this is done in 2D. After
determining k-NN, we check whether the distance between
the k" nei ghbour and the current point is smaller than d. If it
is then the currently chosen neighbours are correct and can
be returned otherwise the point is flagged for re-computation
of k-NN taking in consideration a larger set of adjacent ghost
cells. Algorithm 3 describes in detail how the search for k-
NN works.

(© The Eurographics Association 2012.

Procedure Compute k-NN for all points p; € P
Input G, Cluster Set OC.
for each cluster OC; do
Memory map file with points in OC;
Update file position offsets of cells in OC;
Generate array CellArr storing keys of cells in OC;
cellCount = size(CellArr) - no. of ghost cells in OC;
crtCellldx = index of first non ghost cell
while crtCellldx < cellCount do
Atomically assign to PE crtCellldx
PE generates kd-tree on points in CellArr e ycelifax
for each point p; in CellArreceiiray do
Search for k-NN of p;
d = shortest dist(p j,CellAr7c,icelirdx planes)
if dist(pj, NNy) > d then
Add p; to k-NN recomputation list RL
end if
end for
while sizeof(RL) > 0 do
Update kd-tree with points from adjacent cells
Compute k-NN for p;
d +=extent of CellArr . iceirrix
if dist(pj, NNi) < d then
Remove from recomputation list RL
end if
end while
Delete kd-tree
Atomically increment crtCellldx
end while
end for

Each processing element (PE) in the system atomically
retreives the next available cell in the currently active OC
cluster and computes k-NN searches over all points in the
cell. k-NN searches are carried out by creating a temporary
k-d tree over points in the currently active grid cell. When
all searches are done, the k-d tree is deleted from memory.
Temporary k-d trees are created and deleted for all cells in
G.

5. Results

We evaluate our approach on a number of point clouds rang-
ing in size from 53K to 333M points. All experiments are
carried out on an Intel Core2Quad machine running Win-
dows7 and SATA2 hard disks. In order to evaluate perfor-
mance against different memory configurations, the same
machine is installed with 1GB, 2GB, 4GB and 8GB of sys-
tem RAM. Experiments are conducted in order to evaluate
the scalability of our approach as the size of the point cloud
is increased across these different memory configurations. In
addition to an implementation of the concurrent grid based
multi k-d tree (GridXKd) approach described above, two

90 S. Spina & K. Debattista & K. Bugeja & A. Chalmers / Fast Scalable k-NN

further implementations are evaluated for comparison. The
first implementation takes the traditional in-core approach
where a k-d tree is constructed over all points in the data
set. We shall be refering to this implementation as in-core k-
d tree (/ICKd). This implementation should provide the best
possible performance whenever enough memory is available
to hold the k-d tree. The PCL library [RC11] is used for
this implementation which also uses memory mapped binary
files to store points. The second implementation works ex-
actly like GridXKd, but does not use memory-mapped files
and instead loads all points in the sparse grid data struc-
ture (rather than just the number of points) before start-
ing to compute k-NN. We shall be referring to this imple-
mentation as the in-core concurrent grid based multi-kdtree
(ICGridXKd). In all cases the FLANN library [ML09] is
used to implement kd-tree based kNN searches. The error-
bound parameter € is set in all implementations to zero.
Moreover in all implementations all four processing ele-
ments available on the computer used are utilised to con-
currently compute k-NN.

Table 1 lists the point clouds used in the experiments. In
all cases (except for Mnajdra and Songo) the data has been
generated from polygonal models. In the case of SongoX2,
SongoX4 and SongoX8, the original point cloud was up-
sampled using a standard up-sampling algorithm in order to
increase the number of points. Figure 4 illustrates three of
the point clouds used.

Model Name | Size(M) | Cell count in Grid
obelisk 0.053 1097
mnajdra 0.579 6087
conference 2.3 6338
sibenik 6 201,756
songo 41 95,999
songoX2 83 96,940
songoX4 166 96,853
songoX§ 333 97,253

Table 1: Point clouds, corresponding number of points and
number of cells created during loading phase in sparse grid

5.1. Execution Time

We first compare execution time for all three implementa-
tions on a machine installed with 8GB of system memory.
This is done in order to first establish the best possible results
for the three implementations. In the case of the GridXKd,
parameter M is set to a value greater than the number of
points in the cloud in order to maximise the use of system
memory. GridX Kd is later evaluated with different values of
M in order to establish how this constraint effects execution
time. Table 2 shows the time it takes for each implementation
to calculate k-NN with k set to 16 for the different models.

Note that the readings for GridX Kd, also include the time

(a) Mnajdra 579K points

(b) Conference 2.3M points

(c) Sibenik 6M points

Figure 4: Views of three point-clouds used in the results

taken to populate the sparse grid G and persist to file (or files
depending on the number of clusters created at the sorting
phase) a sorted version of the original point cloud. As the
size of the point cloud increases so does the time taken to
sort it. This is evident when working with the largest points
clouds. As was to be expected /CKd performs better in those
cases were the accelleration structure can easily fit in main
memory. However, as the size of the input data set increases,
the performance of our approach (GridXKd) is better than
that of ICKD and ICGridKd. Due to the in-core nature of
both ICKD and ICGridKd, both are not able to process the
333 million point data set songoXS8. In the case of GridXKd
the execution time is linearly proportional to the size of the

(© The Eurographics Association 2012.

S. Spina & K. Debattista & K. Bugeja & A. Chalmers / Fast Scalable k-NN 91

Model Name | ICKd | ICGridXKd | GridXKd
obelisk 0.127 0.193 0.241
mnajdra 1.164 2.068 1.748
conference 4.864 7.726 5.891
sibenik 12.032 20.039 15911
songo 101 198 167
songoX2 207 420 353
songoX4 916 - 707
songoX$§ - - 1426

Table 2: Execution times using SGB RAM

input. In the case of the point cloud songoX4, our approach
performs better than the in-core ICKd.

We now evaluate the execution times of all three imple-
mentations whilst decreasing the amount of system mem-
ory available. Tables 3, 4 and 5 show execution times for
all data sets with 4GB, 2GB and 1GB system memory in-
stalled. Table 3 shows the results obtained with 4GB system
memory installed. When processing the largest point cloud
(songoX8), in order to limit the amount of memory required
by GridXKd, parameter M is set to 100 million. When M
is not set to a value smaller than the size of the dataset, too
many points would have been present in system memory re-
sulting in our approach not being able to process songoX8.
In order to be able to process this point cloud, we set M to
a value smaller than the number of points in the cloud. With
M set to 100 million points, GridX Kd computes all k-NN
in 1909 seconds. Given the size of the point cloud a consid-
erable amount of time, 358 seconds, is spent on the sorting
phase which partioned the dataset into 5 clusters. Table 6
shows the effect of varying M on both load and sorting times
of our approach. The number of segments created at load
time and the number of clusters created at the sorting stage
are also listed. Once the point cloud is loaded, sorted and
persisted to file/s the time taken to compute k-NN is the same
across all variations of M with 1GB of system memory in-
stalled. These results show that with 1GB of RAM installed,
the best results are obtained when setting M to 20 million
with the sorting stage partitioning the input point cloud into
seven clusters.

Tables 4 and 5 show execution times for all data sets with
2GB and 1GB RAM installed. In all cases GridX Kd is able
to compute all k-NN. When using 1GB, with point clouds
of more than 20 million points, M (values shown in table)
is used to reduce the number of points which are simulta-
neously loaded in memory. In all cases the value is set to 30
million or less. As shown in figure 5, as the number of points
increases, a considerable amount of time is spent sorting the
point cloud. In our current implementation loading and sort-
ing is always performed, however in theory this is not re-
quired. Once a sorted point cloud is persisted to file it can be
reloaded without incurring the cost of re-sorting. Clearly in

(© The Eurographics Association 2012.

this case the sparse grid G would need to be persisted with
the rest of the data and reloaded each time. When process-
ing large data-sets this operation is much less expensive than
sorting.

Model Name | ICKd | ICGridXKd | GridXKd (M)
obelisk 0.109 0.234 0.172
mnajdra 1.469 2.047 1.921
conference 5.046 8.203 6.031
sibenik 13.875 17.726 16.281
songo 114 205 169
songoX2 443 - 356
songoX4 - - 786
songoX8§ - - 1909 (100M)

Table 3: Execution times using 4GB RAM

Model Name | ICKd | ICGridXKd | GridXKd (M)
obelisk 0.156 0.213 0.157
mnajdra 1.547 2.031 1.673
conference 5.219 7.609 5.957
sibenik 14.641 21.953 16.221
songo 238 - 170
songoX2 - - 379
songoX4 - - 1160
songoX8§ - - 1577 (60M)

Table 4: Execution times using 2GB RAM

Model Name | ICKd | ICGridXKd | GridXKd (M)
obelisk 0.147 0.243 0.171
mnajdra 1.648 2.323 1.673
conference 5.132 8.102 6.345
sibenik 17.231 24.252 16.454
songo - - 300 (20M)
songoX2 - - 522 (20M)
songoX4 - - 1541 (30M)
songoX8§ - - 5995 (30M)

Table S: Execution times using IGB RAM

The results of our experiments show that we are able to ef-
ficiently compute k-NN searches on very large point clouds.
In the case of small point clouds, our results are comparable
to the results achieved by an optimal in-core implementa-
tion of k-NN search. This demonstrates the scalable nature
of our approach. For a neighbourhood of size k=16, using
either 8GB, 4GB or 2GB of system memory, we are able to
compute approximately 235,000 neighbouhoods/s on an 83
million point data set.

92 S. Spina & K. Debattista & K. Bugeja & A. Chalmers / Fast Scalable k-NN

M (million) | Segments | Load(s) | Clusters | Sort(s)
10 9 11.39 20 235
20 5 10.86 7 103
40 3 7.297 3 136
60 2 9.336 2 150
85 1 14.156 1 251

Table 6: Varying values of M on the songoX2 data set (with
1GB RAM installed)

(a) Using 4Gb RAM

(b) Using 1Gb RAM

Figure 5: Execution times for load, sort and compute k-NN

6. Conclusion and Future Work

The generation of very large 3D point clouds is becoming in-
creasingly common in many areas. Given this huge amount
of data, fast k-NN computation methods are required to pro-
cess this data efficiently. We have presented a procedure
which efficiently searches for the k-nearest neighbours of
points over very large point clouds. Results have shown that
we can easily scale up from a few thousand points to sev-
eral millions even with limited memory resources. Source
code of all implementations presented in this paper is avail-
able for download from http://pointcloudsemantics.
codeplex.com/

Plans for future development include improvements on
the current implementation of the point cloud sorting phase.
We are also looking into using different sparse grid cell sizes

and analyse the tradeoffs between number of cells in the
sparse grid and the average number of points in each cell.
Another interesting future direction is that of extending the
concept of the error-bound € used for ANN in k-d trees to
include the sparse grid subdivision of space.

Acknowledgements

The point clouds used in this publication originate from a
number of sources. For mnajdra we would like to thank
Heritage Malta, the national agency for museums, conser-
vation practise and cultural heritage in Malta. We also thank
Prof Heinz Ruther, Dr Patrick Marias and Dr Christoph Held
from the Zamani Project for providing us with the songo
point cloud. We thank Greg Ward for the Conference scene
from the Radiance package and Marko Dabrovic for the
Sibenik cathedral model. The conference and sibenik point
clouds were produced from these two models.

References

[AMN*94] ARYA S., MOUNT D. M., NETANYAHU N. S., SIL-
VERMAN R., WU A.: An optimal algorithm for approximate
nearest neighbor searching. In Proceedings of the fifth annual
ACM-SIAM symposium on Discrete algorithms (Philadelphia,
PA, USA, 1994), SODA ’94, Society for Industrial and Applied
Mathematics, pp. 573-582. 2

[Bay72] BAYER R.: Symmetric binary b-trees: Data structure and
maintenance algorithms. Acta Inf. 1 (1972), 290-306. 2

[Cla83] CLARKSON K. L.: Fast algorithms for the all nearest
neighbors problem. In FOCS (1983), pp. 226-232. 1

[Den70] DENNING P. J.: Virtual memory. ACM Computing Sur-
veys 2 (1970), 153-189. 2

[EBN11] ELSEBERG J., BORRMANN D., NUCHTER A.: Effi-
cient processing of large 3d point clouds. In Information, Com-
munication and Automation Technologies (ICAT), 2011 XXIII In-
ternational Symposium on (oct. 2011), pp. 1 7. 1

[FBF77] FRIEDMAN J. H., BENTLEY J. L., FINKEL R. A.: An
algorithm for finding best matches in logarithmic expected time.
ACM Trans. Math. Softw. 3, 3 (Sept. 1977), 209-226. 2

[ML09] MuJA M., LOWE D.: Flann - fast library for approximate
nearest neighbors user manual. Writing (2009). 2, 6

[RC11] Rusu R. B., CousiNs S.: 3D is here: Point Cloud Li-
brary (PCL). In Proceedings of the IEEE International Confer-
ence on Robotics and Automation (ICRA) (Shanghai, China, May
9-132011). 2,3,6

[Rutl0] RUTHER H.: Documenting africa’s cultural heritage. In
In Proceedings of the 11th International Symposium VAST. Vir-
tual Reality, Archaeology and Cultural Heritage (2010).

[SSVO7] SANKARANARAYANAN J., SAMET H., VARSHNEY A.:
A fast all nearest neighbor algorithm for applications involving
large point-clouds. Computers & Graphics 31, 2 (2007), 157—
174. 1,2,5

[Vai89] VAIDYA P.: An o(n log n) algorithm for the all-nearest-
neighbors problem. Discrete & Computational Geometry 4
(1989), 101-115. 10.1007/BF02187718. 1

(© The Eurographics Association 2012.

http://pointcloudsemantics.codeplex.com/
http://pointcloudsemantics.codeplex.com/

