EG UK Theory and Practice of Computer Graphics (2012)
Hamish Carr and Silvester Czanner (Editors)

Hardware Accelerated Medical Data Visualisation on the Web

H. Wei, G.J. Clapworthy, E. Liu, Y. Zhao and N.M.B. McFarlane

Dept. of Computer Science and Technology, University of Bedfordshire, Luton, UK

Abstract

This paper proposes a way to develop high-quality real-time web-based medical 3D data visualisation. Isosurface
extraction is used as an example to discuss how to use programmable Graphics Processing Units (GPUs) and
shaders to improve rendering performance on the web. The method is designed to reduce data transmission.
When data is ready, the performance penalty can be considered negligible. A method to estimate memory usage
to balance client memory limitation and rendering quality is also described. A way of using the frame rate to
measure performance on the web is suggested, which could be used in future web visualisation.

Categories and Subject Descriptors (according to ACM CCS): 1.3.2 [Computer Graphics]: Graphics Systems—

Distributed/network graphics;

1. Introduction

Web applications always have to meet the challenges of
speed of interactive response and computation, and this is
particularly true in medical visualisation. Bandwidth re-
mains a bottle-neck for the processing of large datasets on
the web, and the transfer of data between the client and
server is a major overhead of web applications. The in-
creasing size of medical datasets, often a result of the in-
creased resolution of medical imaging devices, means that
this remains a problem in web-based medical applications.
The need for high-quality fast response and recent develop-
ments in hardware have meant that, in the architecture of
web applications, the roles of client and server have been
subject to recent change.

Isosurface rendering is a good example - using volume
data from a CT or MRI device, the isosurface formed from
points within the data which have the same scalar value (the
isovalue) is extracted. An isovalue represents regions of a
particular tissue type and the volume can be viewed as a se-
ries of extracted isosurfaces, each representing the 3D vol-
ume bounded by a specific isovalue. Marching cubes [LC87]
is probably the most popular isosurfacing algorithm.

During data exploration, each time the user changes the
isovalue, a new isosurface is generated, and this should ap-
pear at interactive rates.

For a web visualisation system, pure client computation

(© The Eurographics Association 2012.

DOI: 10.2312/LocalChapterEvents/ TPCG/TPCG12/069-076

may be limited by hardware capability but a fat client will
spend much time loading the program from the server.

Interactive manipulation and high-quality rendering are
important in the medical area. Our system is designed to take
advantage of a high-end server while achieving fast response
at the client. To achieve this, we reduce transmission dataset
between the client and server and improve the ability of the
web client to process the data.

To reduce data transmission, both client and server are
provided with a rendering module, so there is no need to ex-
change intermediate results between them - only data on the
parameters necessary for the computation are transmitted.
Data processing at the client is used for interactive view-
ing of the data and providing a fast response to the user.
Only when further operations have to be performed on the
surface using algorithms from an extension library (which,
therefore, cannot be performed on the client), do we use the
server for the processing. In such a case, we do need to ex-
change the dataset. This will be explained further in Section
3.

To improve web client performance, we use the graphics
processing unit (GPU); it plays an important role in improv-
ing speed in computation-intensive tasks.

This paper presents a practical approach to the design of a
web system for isosurface extraction and display using two
methods - a hardware acceleration method and an estimated
load based CPU method. Both support interactive visual ex-

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/LocalChapterEvents/TPCG/TPCG12/069-076

70 H. Wei & G.J. Clapworthy & E. Liu & Y. Zhao & N.M.B. McFarlane / Hardware Accelerated Medical Data Visualisation on the Web

ploration. We compare the performance with that of a stand-
alone system and as a client by using the same hardware en-
vironment, algorithm, data and parameters for each. we also
compare our method with webGL for development aspects
and speed.

We summarize our contributions as follows.

e anew way of using GPU on the web that is different from,
and faster than, current techniques based on webGL.

e use of visualisation resources from both client and server
to reduce data transmission.

e estimation of the best Level of Detail for a resource-
limited web client, which balances resolution and mem-
ory.

e use of frame rate as a measure of performance on the web.

The remainder of the paper is organised as follows: Sec-
tion 2 introduces recent related work from 3 aspects of vi-
sualising 3D objects over the web. Section 3 describes our
method of rendering 3D medical data on the web and Section
4 presents the details of our approach using GPUs, illustrated
by an example on isosurfacing. In Section 5 we analyse the
performance of our work and in Section 6, we present future
research directions.

2. Related work

In recent years, advances have been made in representing
3D objects over the web. In medical applications, the user
generally needs to operate on their data interactively in real-
time, as they would on a stand-alone system. We view the
work that has been done previously from three perspectives:
technical, architectures and algorithms.

2.1. Web technical

The Virtual Reality Markup Language (VRML) was a
widely used file format for representing 3D interactive vec-
tor graphics. With the requirements of high image quality
and performance speed, it has now evolved to the more ma-
ture and refined X3D standard. X3D [X3D] is a royalty-
free open standard file format and run-time architecture
to represent, and communicate among, 3D scenes and ob-
jects using XML. In 2003, Parisi [Par03] introduced the
Flux player which implemented the X3D standard, and in
2004, an X3D component supporting programmable shaders
was introduced for use in programmable graphics hardware,
synthesising the X3D appearance model and shader effects
[CGPO04]. This showed that it was possible to achieve ad-
vanced rendering effects in X3D in real time, with interac-
tivity.

The WebGL standard [CSK*11] brings hardware-
accelerated, plugin-free 3D graphics to the web. It is a cross-
platform, royalty-free web standard for a low-level, shader-
based, 3D graphics API based on OpenGL ES 2.0. The dif-
ference from other technologies is that WebGL is an API

not a plug-in, which enables direct access to 3D from the
web page itself.

The Khronos group, which developed WebGL says "De-
velopers familiar with OpenGL ES 2.0 will recognise We-
bGL as a shader-based API, with constructs in JavaScript
that are semantically similar to those of the underlying
the OpenGL ES 2.0 API", [Khr]. Since WebGL offers
multi-browser support (Safari, Chrome, IE, Firefox), the
Khronos group believes that the browser vendors will im-
prove javascript performance sufficiently for a wide range of
applications to use WebGL.

2.2. Architectures

In recent years, 3D Web application architectures have
evolved gradually from a pure and simple web page, to a
plug-in web page to a browser-supported API web page. 3D
rendering has moved from remote (server) to local (client).
One reason for this has been to gain interactive performance,
another is the improvements in hardware to support the tech-
nology. Using a PC with a GPU as client is now viable.

In the early stages, a visualisation system processed the
data, rendering it off screen on the server side, with only
the resulting image being sent to the client. The user bene-
fited from a lightweight client and a powerful server. The
drawbacks were the delay in response from the server and
the inability to manipulate the 2D image produced.

Later, for interactive manipulation, browsers could show
objects in a 3D view with the help of a viml/X3D plug-in, or
other plug-in such as java 3D or java view, which was a great
step forward. Todd and Jain [TJ95] developed web-based in-
teractive 3D visualisation of biomolecular structures. using
programmable shaders supported by X3D to create real-time
results of high visual quality. To use X3D, they converted
molecular structure data from the Chemical Markup Lan-
guage CML to X3D and added pre-defined shaders as nodes
into X3D during the translation.

[CDMGO3], [EGE98] were early efforts in isosurfacing
for volumetric data in a web-based system. The geometry
defined by the iso value was computed on the server then
loaded into a VRML-based browser. The drawback was the
amount of data transmission required. Due to the limited net-
work bandwidth, compressed or decimated data [SZ92] were
often transferred instead of the original results, which could
reduce the resolution of the output, though progressive re-
finement could be used to gradually improve the results dis-
played.

Local computation takes advantage of fast response times,
reduced data transmission and reduced server-side pressure
when client numbers increase. [CSK*11] presents a direct
volume rendering DVR system for the web, which per-
forms much of the rendering on the client machine using
hardware-accelerated volume ray-casting implemented in

(© The Eurographics Association 2012.

H. Wei & G.J. Clapworthy & E. Liu & Y. Zhao & N.M.B. McFarlane / Hardware Accelerated Medical Data Visualisation on the Web 71

webGL. Most of the computation is performed in vertex and
fragment shaders written in GLSL which are run natively
on the GPU hardware. WebGL is a javascript binding of the
OpenGL ES 2.0 API and the performance of javascript inter-
preters was described as "not far from that of natively com-
piled languages". Their algorithm was designed to run en-
tirely on the client and avoid the use of dynamic server con-
tent. However, client computation power is generally lower
than that of the server, and if the whole burden is placed on
the client, the computation may suffer. We describe our web
client performance as close to that of a natively compiled
Stand-alone program(see Section 5).

Disadvantages of webGL-based web visualisation centre
on 3 key points. First, as WebGL is a javascript binding of
the OpenGL ES 2.0 API, part of algorithm was written in
javascript. Although javascript could be run on the server
side, the goal of server-side javascript (SSJS) is to eliminate
the gap between the client and server. However, it is sel-
dom used for intensive computation. If we use it for a multi-
function web application system, we should consider using
another language to develop the server-side algorithm. From
this point of view, the method we have developed is more
suitable for taking advantage of a high-end server. Second,
javascript runs as an interpreted language. Compared with
a compiled language which is converted into machine code
and then ’directly’ executed by the host CPU, interpreting
delivers a much slower speed of program execution on the
host CPU. Finally, debugging code is not convenient, espe-
cially for complex algorithms with a large data set.

2.3. Algorithms

Isosurfacing is in common use for visualising volume data
and there have been many examples of delivering isosur-
faces over the web, often using a multiresolution approach
to reduce the number of primitives transferred. In [KWO03],
isosurfaces were generated on the server side and, to reduce
the number of polygons to be transmitted to the client, a pro-
gressive isosurface algorithm was used in which surface hi-
erarchies were generated from the volume data with a level-
of-detail (LOD) control. The user was able to reconstruct
the surface at a coarse level of resolution and refine it, if re-
quired. In [CCD*99], [KDCS99], a similar approach, devel-
oped independently, used the coarse level as a preview, with
progressive refinement automatically improving the output
whenever the user was not interacting with it.

[EWE99] allowed the user to manually select a region
of interest in which the surface was reconstructed at the
finest level, with the surface outside that region being re-
constructed at increasingly coarser resolutions.

The continuing increase in volumetric dataset size may
prohibit the handling of these models on affordable low-
end single-processor architectures,and surface-based tech-
niques may not be suitable for visualising volumes that con-

(© The Eurographics Association 2012.

tain many isosurfaces that are important to the user, be-
cause extracting all of the interesting surfaces would take
too much storage to be practical [GDL*02]. DVR techniques
[LCDO09], [GS03] are popular as their high performance al-
lows easy switching of isovalues. We created a DVR method
on the web in which the rendering was run directly on the
front end to gain speed.

The challenge for a web system is how to use existing re-
sources to achieve fast response and fast rendering, while at
the same time providing access to suitably rich algorithmic
resources.

3. The proposed software framework

Nowadays, the increasing power of graphic cards allows
fast calculations [KWO03] and, in isosurface rendering, the
user will expect to be able to change the isovalue interac-
tively.Thus, the new isosurface must be generated rapidly at
the client to save transmission time. Web-based techniques
such as asp, php, jsp, run on the server side and use server-
side resources, rather than client resources. A java applet
run locally can use local resources file system, CPU, GPU,
RAM, once it has been verified.

However most graphics algorithms are written in C/C++
or are based on such libraries. The Visualization Toolkit
(VTK) can act as a bridge between graphics algorithms and
web application as it supplies a java wrapper layer so it could
be used via a java applet. VTK also supports shaders written
in both GLSL and CG, so it provides a convenient method
for loading GLSL shaders.

We have designed a multi-function web system for the
interactive visualisation of 3D medical data and have used
isosurfacing to verify the design. Our architecture takes ad-
vantage of both the client and server sides.

In Figure 1, the same rendering module is deployed on
both the client and server and is run in two forms. On the
server side, it is run as a library, while on the client side, it is
run in a java applet as a plug-in embedded in a web page.

The benefit from this approach is that the client has com-
putational ability and thus does not need to ask for results
from the server in every case. VTK provides the main visu-
alisation tool in the rendering module. It supplies not only
a view on the client but also algorithms that can be easily
extended. This gives the client flexibility in data processing,
while the java wrapper acting as an upper layer in this mod-
ule supplies an interface for exchanging parameter data be-
tween the client and server.

On the server side, we deploy the same render module, so
it is easy to recover intermediate results generated through
the client at the server by transferring only the relevant pa-
rameters. The difference between the client and server in
data processing is that the server can integrate other extended

72 H. Wei & G.J. Clapworthy & E. Liu & Y. Zhao & N.M.B. McFarlane / Hardware Accelerated Medical Data Visualisation on the Web

e page

Applet

(Render Module]
L VTK Core WTH Extension Java Wh WJ

eb server

Render Module w
WTH Ex

Qwa‘ﬂ'rapparl " e A ﬂ WkCoreJ

I Extention Library w

| Others...)

[Java Wrapper | MAF Library

Figure 1: System deployment.

libraries based on different techniques to enlarge the algo-
rithms and gain server computation. We provided a Mul-
timod Application Framework (MAF) [VZT*07] platform
as an algorithm library at the server side. MAF is an open
source framework containing several libraries such as VTK
and ITK. The java wrapper layer is its interface with java-
based server applications.

As the render module has a java wrapper layer, it can be
invoked by a java applet at the client or by a servlet (a small
java program that runs within a web server). An applet can
communicate with a servlet and can also visit an element
value on the web page or a javascript method through the
JSObject class. A javascript method can also visit a public
attribute or invoke a public method of an applet. In this way,
communication was constructed between the web client and
the server.

As it is a multi-function system, the data output from one
operation might act as input for the next. Let us again take
isosurfacing as an example. The user extracts several sur-
faces at the client, views them, then selects one of them
on which to perform further operations such as smoothing,
filling holes, deformation, etc. These operations might need
support from MAF at the server side, so the surface geom-
etry is input for these algorithms. To avoid having to trans-
mit it, the geometry is generated on the server side. The pa-
rameter for extracting the surface from the volume data is
a scalar isovalue. The new operation might need other pa-
rameters such as a selection area from the surface which can
be performed by a VTK plane widget. These parameters are
delivered to the server side, using the isovalue to extract the
same surface as the client did and export its geometry as
input for a MAF algorithm. After processing, the data gen-
erated from the MAF algorithm is delivered to the client for
interactive viewing of the result.

Our render module is aimed at rendering data and per-
forming processing related to user interaction. Its algorithms
come from vtk core and from libraries extended from vtk.
The other richer algorithmic resources come from other ex-
tension libraries such as MAF. We could not put such big
libraries on a web client as they would cause delays for their
loading, so complex operation are processed on server. It is
also far easier to extend facilities by integrating additional
libraries at the server side. As the server has the same Ren-

der Module, it does not need to ask for the extracted surface
from the client. By using the same isovalue, the server will
extract the same surface as client did.

The benefit from having the same render module on both
client and server is that it can balance the computational bur-
den and reduce the need for transmission of data. In the ex-
ample above, there is no need to pass the surface data be-
tween the client and server. Also, as the render module uses
the same code at both the client and server it needs to be de-
veloped only once - there is no need to develop them twice
with different languages.

4. Rendering

In isosurface extraction there are two goals. One is to ren-
der it to the screen, which needs a fast algorithm. The other
is to find the geometry of the surface, so that it can be ex-
ported or transmitted for other views or for the server side
to perform further operations. The surface method requires
a preprocessing step before rendering to build the geometric
structure, while DVR can produce good quality with high
speed, with the help of a graphics card.

To achieve the two goals, we performed two different ap-
plications, one on the CPU, the other on the GPU. Although
the GPU provides high computational speed, there may still
be users whose machine is without a suitable GPU. For these
users, the CPU method is more suitable and it has other ad-
vantages — it uses multiresolution LOD rendering, so users
can select coarser levels to review the whole dataset and they
can also export the geometry of the extracted surface for fur-
ther operations.

Our work uses VTK, which divides all the classes and
their wrapper classes into different function libraries and
their wrapper libraries. When we use specific classes, we
load only the corresponding wrapper libraries into the JVM
at runtime. The JVM searches for these libraries in the "java
library path" in local. The wrapper libraries are not inde-
pendent, however; they rely on the corresponding function
libraries when they are executed. To run the code, the neces-
sary function libraries and their wrapper libraries need to be
deployed in the machine on which they execute.

(© The Eurographics Association 2012.

H. Wei & G.J. Clapworthy & E. Liu & Y. Zhao & N.M.B. McFarlane / Hardware Accelerated Medical Data Visualisation on the Web 73

4.1. Using GPU

To take advantage of the advanced features of recent graph-
ics cards, VTK supports the incorporation of programmable
hardware shader technologies. We implemented the method
of Liu et al. [LCDO09] and applied it on the web. All the codes
created are in a pure VTK project. As VTK is a high-level
tool, based on OpenGL, we can still use OpenGL easily in a
VTK project. VTK supplies the user with the mechanics of
loading, compiling, binding, setting variables for a shader,
so the developer can focus on shader development. If an er-
ror arises from a shader, VTK will report the error through
its error macros and default to use the OpenGL pipeline. In
this way, the connection between the web page and the hard-
ware card was built: web page = java applet = VTK
— OpenGL = shader = GPU .

For the GPU algorithm, we use the cell rasterisation
[LCDO9] for "fast, high-quality, GPU-based" isosurface ren-
dering. This method produces smoother images than both
Marching Cubes and the normal raycasting technique by re-
ducing the diamond artefacts. The main idea of the algo-
rithm is to extract and render all the active cells instead of
extracting and rendering all of the marching cube triangles
individually.

This method improves performance in the following
ways. Firstly, it uses the HistoPyramid texture [ZTTS06] to
extract active cells and skip all the inactive cells from the
coarse volume data; this produces considerable savings as
the active cells generally occupy only a small percentage of
the total volume. Secondly, it treats the extracted active cells
as rendering primitives instead of preprocessing the data to
build a accelerating structure for a particular isovalue; this
means that one can easily switch between isovalues. Thirdly,
a CPU sorting algorithm is used to sort the sequence of ex-
tracted cells from a quad-tree order into a view-dependent
order so that the hardware early-z-culling feature can be ap-
plied, which means that the hardware program flow focuses
only on the front-most cells and avoids rendering occluded
cells.

We begin the algorithm from an inherited abstract class,
volume mapper: vtkvolumeMapper, which can be used for
rendering geometry or rendering volumetric data. At the
first stage, the method extracts the active cells from volu-
metric data by comparing the scalar values associated with
the 8 corners of each texel with a specific isovalue to build
a HistoPyramid, retaining the active cells. The isovalue as
threshold is passed to the fragment shader.

One OpenGL program object (which represents a useable
part of the render pipeline) was used to build the base level
of this quad-tree. Another program object was used to gener-
ating the next pyramid level - the GPU repeatedly sums four
adjacent cells, each time halving the resolution until only
one cell remains. Now the HistoPyramid is built, all the ac-
tive cells in a list can be retrieved by traversing the HistoPy-
ramid in quad-tree order. If the isovalue does not change,

(© The Eurographics Association 2012.

there is no need to rebuild the HistoPyramid during interac-
tivity, as the active cells do not change. The second stage is
to render each extracted active cell as a point primitive. The
vertex shader retrieves the object-space position of the cell
and projects it in screen-space. Phong shading is performed
for the fragment shader.

We developed this program in a C++ environment. For
the web program, the libraries and shader files are deployed
on the client machine automatically. The shader source code
must be set in shader objects when the GPU algorithm is
invoked. They are stored in the same folder as the VTK li-
braries.

As client needs a java runtime environment to run a java
applet, it must have a JRE folder in the "java library path".
The JRE is deployed as a plug-in which the user can use
to install it before running the main program in case JRE
was not previously installed. The JRE execute folder is the
folder in which we deploy our libraries and shaders. When it
is executed on the client by an applet, the shader source files
are downloaded and deployed automatically.

4.2. CPU algorithm

Users with a low-end computer as the client will use the CPU
algorithm — we provide adjustable resolution levels to con-
trol the number of primitives used to represent the surface.
VTK has a vtkMachineCube class to generate isosurface out-
put from volume input. However, we did not use this directly,
but instead used a method similar to Marching Cubes. The
extracted triangles are cached for use while the isovalue re-
mains unchanged and an LOD control is provided — using
low resolution improves the speed for large datasets. Further,
a function is supplied for automatically computing the best
LOD for the data.

Since the rendering is performed at the client, some code
is in the form of a java wrapper, and some code is in the form
of dynamic libraries in native code which are written in C++.
Every client has limited random-access memory (RAM), to
avoid a jvm "out of memory" error from java wrapper or
"could not allocate memory" error from the native code. We
supply the best LOD function for user. Although develop-
ers are allowed to specify a larger-than-default maximum
heap size for an applet via the Java_arguments parameter,
we should not allocate too much memory for JVM. The JVM
heap and stack stores all objects and method invocations and
the local variables created by the java codes, however the
native VTK library code uses memory from native mem-
ory. Java runtime is itself a native program that consumes
native memory, which means the client machine’s hardware
and operating system (OS) impose the limitations on native
memory. To avoid these memory errors, we use a mecha-
nism to estimate how much memory the dataset will use at a
specific LOD level. This enable the user to select the high-
est LOD for rendering that will provide a suitable usage of
memory and produce an acceptable frame rate.

74 H. Wei & G.J. Clapworthy & E. Liu & Y. Zhao & N.M.B. McFarlane / Hardware Accelerated Medical Data Visualisation on the Web

The storage of a triangle is easy to compute (three vertices
and normals), and the estimate is based on the assumption
that the more triangles that are used to represent the surface,
the more memory is needed.

The volume data is divided into fixed size (8*8*8) blocks
(see Figure 2); the min and max isovalues for each block
are calculated by looping through all voxels. For a given iso-
value, the number of relevant contour blocks can be calcu-
lated — only these contribute to the final surface. We divide
the LOD into 4 levels (0,1,2,3) in which a cube size could be
(8%,4%,23,1%),a block could contain 1 cube for level 0, 2* for
level 1, 4*for level 2 and 8° for level 3. The estimated num-
ber of triangles for the surface is Num_triangles_per_cube *
Num_cubes_per_block * Num_relevant_blocks. The gradi-
ent of the original data is used for shading the models.

LOD 3

LOD 2

Block / LOD O

Figure 2: Levels of detail.

For an isosurface with a given isovalue and LOD, there
are three cases when estimating the number of triangles. If
it has been computed previously, there is no need to com-
pute it again, as an array stores all of the computed numbers
of triangles for different LODs at a specific isovalue. If, for
this isovalue, we have computed numbers for other LODs,
our estimate is based on the triangle numbers at higher reso-
lutions. As the cube volume is inversely proportional to the
precision (number of triangles), it is easy to compute. If this
is the first calculation after a change of isovalue, we use an
empirical constant value: the number of triangles in every
cube in a block containing the contour is set to 2. If this is
too high, the rendering may be produced at a lower resolu-
tion than optimal; if it is too low, the rendering might take a
long time or be limited by RAM.

Figure 3 shows detail from images at different LODs. The
data used is a 68M heart volume data set - Figure 3 shows
only part of the data. Using the same dataset, the resolu-
tion affects the final rendering quality. The dimension of this
dataset is 512*512*512. Table 1 shows the numbers of tri-
angles for the 4 LODs. From Figure 3 and Table 1, it is clear
that the more triangles that are present, the smoother the sur-
face.

Figure 3: Image close-ups at increasing LOD.

Table 1: Numbers of triangles at different LOD.

Level 0
19,896

Level 1
159,170

Level 2
1,273,363

Level 3
10,186,907

5. Performance Analysis

The results in Figure3 were rendered by web GPU from
a raw dataset with size 68MB. The program run on a PC
with an Nvidia GeForce 8800GTX graphics card, an AMD
3.0GHz processor and 3.25GB RAM.

As the speed of a web program is limited by bandwidth,
we cannot effectively measure the computational speed of a
web program compared to a stand-alone program perform-
ing the same task. However, we measured it when the code is
already downloaded to the client and the data are ready. Now,
its running speed can be compared with the stand-alone pro-
gram. The frame rate will change when the object on the
screen is viewed from a different position or at a different an-
gle. The more pixels on the screen, the more parallel threads
are needed.

Hence, we set the dataset at a fixed angle to the camera
(see top row of Figure 4) and enlarge the rear data boundary
to 18.2cm width and 9.0cm height on the screen. The screen
resolution is 1920*1080 pixels. At a key press, the active
camera is rotated automatically through a full circle, one de-
gree a time, creating 360 renderings. We performed the same
measurements 10 times on both the stand-alone program and
the web program. We also tested the latter on Firefox 8, IE 8
and Chrome 15.0. The results are presented in Table 2.

Table 2: Frame rates on different browsers.

Environment | Stand-alone | Chrome 1IE Firefox
Time(secs) 11.941 12.303 12.324 | 12.646
fps 30.15 29.26 29.21 28.43

Chrome performs best amongst the browsers, with a frame
rate of 29.26 fps. That means there is a 0.001 [(12.303-
11.941)/360] second difference for one rendering between
the best web program and the stand-alone program.

(© The Eurographics Association 2012.

H. Wei & G.J. Clapworthy & E. Liu & Y. Zhao & N.M.B. McFarlane / Hardware Accelerated Medical Data Visualisation on the Web 75

Figure 4: Results from the GPU algorithm.

This is because, with our web client program using VTK
java wrap to drive the VTK core program, the VTK core
program invokes the OpenGL interface to realise the GPU
rendering. But the stand-alone program uses the VTK core
program directly, so there are a little performance loss in the
JNI interface.

Another test on this data to compare the Stand-alone and
web programs is to extract an isosurface 95 times as a group
for different isovalues (see bottom row of Figure 4) - we used
equidistant values in the range [0,65535]. Each time the iso-
value changed, the program had to re-compute the surface.
This was done 10 times. The stand-alone program needed
0.0693 seconds for one isosurface extraction and rendering,
while the web program needed 0.0721 seconds. The differ-
ence between them was 0.00276 seconds.

Figure 5: Multi-layer rendering.

Figure 5 shows bone and skin layers extracted from vol-
ume data using the GPU method. As noted in [LCD09], this
is capable of rendering multiple layers with different isoval-
ues in a single pass. As a result, the rendering of multiple
transparent isosurfaces can be achieved at no extra cost.

(© The Eurographics Association 2012.

6. Future work

The DVR approach of [LCD09] is much more suitable for
processing dynamic volume data and we intend to investi-
gate this in the future.

Our method for estimating memory usage could be ex-
tended to include an estimate of the computational time; both
estimates could then be used to balance better the compute
burden between the client and the server.

The main idea — fast response created by using local re-
source(GPU, RAM) through native code - can be used on
other web systems and other application areas.

References

[CCD*99] CRUDELE M., CLAPWORTHY G. J., DONG F.,
KROKOS M., SALCITO G., VASILONIKOLIDAKIS N.: Access-
ing a WWW reference library of 3D models of pathological or-
gans to support medical education. In Proc Medical Infor-matics
Europe 99 (1999).

[CDMGO03] CLEMATIS A., D D’AGOSTINO, MARCO W. D,
GIANUZZI V.: A web-based isosurface extraction system for het-
erogeneous clients. In Proc. 29th Euromicro Conference (2003),
pp. 148-156.

[CGP04] CARVALHO G., GILL T., PARISI T.. X3D pro-
grammable shaders. In Proc. 9th International Conference on
3D Web Technology (2004), pp. 99-108.

[CSK*11] CONGOTE J., SEGURA A., KABONGO L., MORENO
A., POSADA J., Ruiz O.: Interactive visualization of volumet-
ric data with WebGL in real-time. In Proc 16th International
Conference on 3D Web Technology (2011), pp. 137-146.

[EGE98] ENGEL K., GROSsO R., ERTL T.: Progressive iso-
surfaces on the web, Late Breaking Hot Topics. In IEEE Visu-
alization (1998).

[EWE99] ENGEL K., WESTERMANN R., ERTL T.: Isosurface
extraction techniques for web-based volume visualization. In
Proc. IEEE Visualization ’99 (1999), pp. 139-146.

[GDL*02] GREGORSKI B., DUCHAINEAU M., LINDSTROM P.,
Pascucct V., Joy K.: Interactive view-dependent rendering
of large isosurfaces. In Proc. IEEE Visualization 02 (VIS 02)
(2002), pp. 475-484.

76 H. Wei & G.J. Clapworthy & E. Liu & Y. Zhao & N.M.B. McFarlane / Hardware Accelerated Medical Data Visualisation on the Web

[GS03] GAO J., SHEN H.: Hardware-assisted view-dependent
isosurface extraction using spherical partition. In Proc. Symp.
on Data Visualisation (2003), pp. 267-276.

[KDCS99] KROKOS M., DONG F., CLAPWORTHY G. J., SHI
J. Y.: Towards fast volume visualisation on the WWW. In Proc
Information Visualisation *99 (1999), pp. 286-291.

[Khr] http://http://www.khronos.org/webgl.

[KW03] KRUGER J., WESTERMANN R.: Acceleration tech-
niques for GPU-based volume rendering. In Proc. IEEE Visu-
alization (2003), pp. 287-292.

[LC87] LORENSEN W., CLINE H.: Marching cubes: A high res-
olution 3D surface construction algorithm. Computer Graphics
Forum 21, 4 (1987), 163-169.

[LCD09] Liu B., CLAPWORTHY G. J., DONG F.: Fast isosur-
face rendering on a GPU by cell rasterization. Computer Graph-
ics Forum 28, 8 (2009), 2151-2164.

[Par03] PARISI T.: FLUX: Lightweight web graphics in XML. In
ACM SIGGRAPH 2003 Web Graphics Presentation (2003).

[SZ92] SCHROEDER W. J., ZARGE A.: Decimation of triangle
meshes. Computer Graphics Forum 26, 2 (1992), 65-70.

[TJ95] TobbD T., JAIN E. R.: Web-based volumetric data re-
trieval. In Proc. Ist Symposium on Virtual Reality Modeling Lan-
guage (1995), pp. 7-12.

[VZT*07] VICECONTI M., ZANNONI C., TESTI D., PETRONE
M., PERTICONI S., QUADRANI P., TADDEI F., IMBODEN S.,
CLAPWORTHY G. J.: The Multimod Application Framework: a
rapid application development tool for computer aided medicine.
In Comput. Methods Programs Biomed (2007), vol. 85, pp. 138—
151.

[X3D] X3D specifications. http://www.web3d.org/x3d/
specifications/.
[ZTTS06] ZIEGLER G., TEVS A., THEOBALT C., SEIDEL H.:

On-the-fly point clouds through histogram pyramids. In Proc.
Vision, Modelling and Visualization (2006), pp. 137-144.

(© The Eurographics Association 2012.

http://http://www.khronos.org/webgl
http://www.web3d.org/x3d/specifications/

