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Abstract

Data sets from the real world and most scientific simulations are known to be imperfect, often incorporating un-
certainty information. Exploration and analysis of such variable data can lead to inaccurate or even incorrect
results and inferences. As a powerful tool to communicate the data with users, an effective visualization system
should present and inform users of the uncertainty information existing in the data. While some research has been
conducted on visualizing uncertainty in spatio-temporal data and univariate data, little work has been reported on
multivariate data. In addition, there are two main disadvantages in the existing uncertainty visualization methods
for volumetric data. First, they rely heavily on the human perceptual system to recognize the uncertainty infor-
mation, lacking the capability to depict them quantitatively. Second, they often present large amounts of diverse
information in a single display, which may result in visual clutter and occlusion. In this paper, we present our
hybrid framework that combines both information visualization techniques and scientific visualization techniques
together to allow users to interactively specify features of interest, quantitatively explore and analyze the multi-
variate volumetric data and their uncertainties as well as localize features in the 3D object space. In comparison
with those existing methods, we argue that our method not only allows users to quantitatively visualize the uncer-
tainties within multivariate volumetric data, but also yields a clearer data presentation and facilitates a greater
level of visual data analysis. We demonstrate the effectiveness of our framework by reporting a case study from
the OpenGGCM (Open Geospace General Circulation Model) simulation in space science application domain.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Picture/Image

Generation—Display algorithms

1. Introduction

Data sets from the real world and even most scientific simu-
lations often incorporate uncertainty information. For exam-
ple, uncertainty can be found in Computational Fluid Dy-
namics (CFD) data sets, bioinformatics data sets, environ-
mental science or geo-spatial data sets, intelligence and mil-
itary data sets, commerce databases, etc [DKLPO02]. These
uncertainties may refer to various quantities associated with
data including error, accuracy, variability, noise, or com-
pleteness of the data [DAN12]. They often arise throughout
the scientific process due to a variety of factors i.e., prob-
lems in data acquisition and process, approximation of data
interpolation and sampling, variability of instrument’s mea-
surement and calculation.
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Visualization is a powerful tool to convey data to users
and assists them in understanding the phenomenon behind
the data. Since uncertainties often exist in data and may sig-
nificantly affect the validity of decisions made by users, it
is very important for visualization researchers to carry out
research on graphical representations of the uncertainty in-
formation. In this paper, we focus our research on the scalar
uncertainty since it is easier to manage and has a large range
of application domains.

1.1. Motivation

According to literature review, existing 1D and 2D un-
certainty visualization methods [CRO0] [GRO4] [LVO02]
[HenO3] cannot be applied directly to visualize the uncer-
tainty in volumetric scalar fields. Also existing volumetric
methods have two main drawbacks. First, they rely heav-
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ily on the human perceptual system to recognize the uncer-
tainty information and thus may lead to different interpreta-
tion from person to person. They lack the ability to depict
the uncertainty quantitatively. Second, they tend to present
diverse information including both data attributes and un-
certainties in a single display. Such methods may be good
when there is a small amount of information. As the amount
of information increases, such methods can cause the clas-
sic visualization problems i.e., clutter and occlusion. There-
fore we argue that it is a better choice to present the data at-
tributes and uncertainties in a framework consisting of mul-
tiple linked views for a clearer data presentation. In addi-
tion, such a choice may also benefit a greater level of visual
data analysis. We can effectively separate the data’s feature
space from its object space, without representations conflict-
ing with each other. Furthermore, we can combine more in-
teraction techniques together to form a more powerful visu-
alization system.

While most of the work in uncertainty visualization re-
search area has been primarily focused on spatio-temporal
or univariate data, little research has been reported on vi-
sualizing the uncertainty in multivariate data [XHWRO06]
[HYXI1].

Therefore in this work we explore a hybrid framework
that combines both information visualization techniques and
scientific visualization techniques to analyze and visualize
multivariate volumetric scalar data and their uncertainties.
We refer the uncertainty to scalar error in this paper.

1.2. Controbutions

The main contributions of this paper are:

— Designed a hybrid framework that allows users to visu-
ally explore and analyze the multivariate volumetric data and
their errors.

— Developed a new uncertainty visualization method that al-
lows users to select a subset of the numerical domain in 2D
plane and then quantitatively visualize the subset’s data at-
tributes, errors as well as their relationship using the depth
information collected from ray casting.

—Introduced a new case study where the framework has been
applied.

The structure of this paper is as follows. Section 2 presents
the work that are related to our research in the area of uncer-
tainty visualization. Section 3.1 gives the two reasons about
why we utilize MR(Multi-Resolution) modeling. Section 3.2
presents two concrete MR modeling methods to model the
appropriate error information for our research. Section 3.3
introduces the model to quantify the error produced from
these two methods. In Section 4, we give a great detail of
the framework’s work flow and its every component. In Sec-
tion 5, we present a case study from the space science appli-
cation domain and report the corresponding results to show
our framework’s effectiveness. Finally in Section 6 we draw

our conclusions and propose future work expected to be con-
ducted.

2. Background and Related Work

Some of earliest research in uncertainty visualization started
in the Geographic Information System (GIS) community
[Mac92] [WF93]. That work is mainly about represent-
ing the error in terrain models. Later on some researchers
from computer graphics or scientific visualization commu-
nity started to pay attention to this research area, and their
work mainly involves visualizing the uncertainty in 3D sur-
face [LSPW96] [ATP96].

Uncertainty visualization started to gain momentum when
its significance was pointed out by several leading re-
searchers [JS03] [Joh04] [Che05] [IMT*06] [LKO7]. Ac-
cording to recent literature [XHWRO06] [HYX11] [Pot11],
it is now an active research area in the visualization com-
munity. A number of researches have explored the visual-
ization of uncertainty for volumetric scalar data [DKLP02]
[RLBSO03] [LLPYO07] [FBO9]. These proposed techniques
involve from inline DVR, post-processing to hybrid render-
ing and animation, and they are considered to be effective
and straighforward. However, there are two main disadvan-
tages of these techniques. First, they rely on human percep-
tual system to distinguish and recognize different scales of
uncertainty information and thus may lead to different inter-
pretation from person to person. Second, most of the work
tends to present both data attributes and uncertainties in a
single display, which may result in visual clutter and occlu-
sion, especially when the amount and diversity of informa-
tion increases.

In recent publications, Potter et al. have presented
Ensemble-Vis, a framework consisting of a collection of
overview and statistical displays linked through a high
level of interactivity, to allow scientists to gain key sci-
entific insight into the distribution of simulation results as
well as their uncertainty [PWB™*09]. Sanyal et al. also pro-
posed a framework called Noodles, which consists of co-
ordinated views of ribbon, glyph-based uncertainty visu-
alization, spaghetti plots, iso-pressure colormaps and data
transect plots to visualize the uncertainty in ensemble data
[SZD*10]. In contrast to uncertainty visualization methods
that present a diverse collection of information in a single
display, they argued that their framework which combines
multiple linked views techniques can yield a clearer pre-
sentation of the data. Although both techniques mentioned
above have indicated that developing the effective frame-
work for uncertainty visualization can be a very promising
way, they are only specialized for 2D or 2.5D data.

While most research in uncertainty visualization has been
focused on spatio-temporal data and univariate data, little
work has been reported on multivariate data. In the informa-
tion visualization area, Xie et al. described two approaches
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to the problem of visually exploring multivariate data with
variable quality [XHWRO06]. He et al. presented approaches
to improve the existing visualizations of parallel coordi-
nates and star glyph and then applied them to visualize mul-
tivariate uncertainty [HYX11]. Although both approaches
are useful to visualize the uncertainty for multivariate non-
spatial-based data, they are not directly applicable for multi-
variate spatial-based data.

3. Error Information Modeling and Quatification
3.1. Reasons to utilize MR modeling

There are many ways to model the uncertainty incorporated
within the volumetric scalar data, depending on the specific
application domains explored. Here we will not give a com-
prehensive review of these modeling approaches since they
are beyond the scope of this paper. Instead, we will detail the
reasons why we use the MR modeling methods.

3.1.1. Provide simple yet effective error generation
approach for generalized uncertainty
visualization research

The first reason that we use MR modeling methods is be-
cause while relatively simple, they enable us to generate the
error data that has the same characteristics as those generated
from complex scientific simulations i.e., in [DKLP02]. Here
when we say the same characteristics, we do not mean that
the MR modeling and the complex scientific simulations can
generate the same error results. Instead, we mean that both
methods are able to model one or multiple scalar error values
that are associated to every grid point of the volumetric data.
As a result, the developed uncertainty visualization methods
tested by the error data generated from the MR modeling can
also be applied to other application domains. MR modeling
provides a simple yet effective way for generalized uncer-
tainty visualization research for volumetric scalar data.

3.1.2. Generate the data for data integrity research

The second reason that we use MR modeling is because we
want to develop new uncertainty visualization methods to
address data integrity issue that is caused by the MR model-
ing technique itself.

While loss of certain trivial information may not affect
correct decision making, loss of significant information will
greatly affect the validity of decisions. Therefore we need a
useful tool to assist users to evaluate the integrity of data.
We address this problem by using MR technique to model
the errors and then exploring new uncertainty visualization
methods to depict them.

3.2. MR modeling

MR modeling is a useful technique to reduce the data size
and generate coarse resolution approximations of original
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data. Two specific examples of such a technique have been
used in our work and they are Haar wavelet transformation
and decimation, respectively. We applied 3D version of these
two approaches on volumetric scalar data to create its MR
hierarchy with different resolution levels. We then used the
method as described in Section 3.3 to quantify the intro-
duced errors in the coarse resolution approximations.

3.3. Error quantification model

Given a MR data hierarchy for each attribute of the data, the
next step prior to uncertainty visualization is to quantify the
local error information between original data and each of its
successive low resolution approximations in the hierarchy.
We use the Standard Deviation Model (SDM) to measure
the local error information, as illustrated in formula (1):

e= /MK =T+ (2= V)24 (V=T (D)

Where e represents the local error value that corresponds
to every grid point of lower resolution approximations of the
original data. It is calculated based on data attributes from
the original data and the corresponding data attribute from
its selected lower resolution approximation; » is the quanti-
fied expression of local measurement. It refers to the number
of original data’s grid points which are utilized to generate
the only one grid point of its lower resolution approxima-
tion. Vi, V,, ---, Vj, represent the n attribute values that are
associated to the n grid points in the original data; V repre-
sents the avarage attribute value that is calculated from Vi,
Vs, - -+, Vi and is associated to the only one grid point in the
lower resolution approximation of the original data.

We perform the local error measurement repeatedly on the
entire volumetric data for each attribute and record the error
value at every gird point in the lower resolution data. Con-
sequently we acquire the multivatiate volumetric data with
multiple uncertainties associated to them. At this point we
can explore the hybrid uncertainty visualization framework.

4. The Hybrid Framework to Analyze and Visualize
Multivariate Volumetric Data and Their Errors

In this section, we introduce the framework according
to its three main functionalities, as shown in Fig-
ure 2 (all the figures of this paper can be found at
http://csveg.blogspot.ie/2012/07/analyzing-and-visualizing-
multivariate.html). We firstly give an overview of the
three functionalities and then describe each functionality’s
components in a separate subsection in more details. In our
framework, multiple linked views are used to share camera
information, selection and content when appropriate. While
each individual view presents the data in either object space
or feature space, highlighting certain aspects of the data
behavior and providing a clear presentation for the data
analysis, combining these views together into a unified
framework provides a more powerful method. It brings in
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opportunities to get more insights from complex data and
is possible to perform a larger scale of data analysis based
on more forms of interactions. As a result, our framework
provides an effective platform to visualize the errors in
multivariate volumetric data.

4.1. Framework overview

Based on the important experience obtained from collabo-
rating with the industrial partners [DMGPO5], our frame-
work typically incorporates three main functionalities. The
first functionality is indicated by the content inside the red
dotted lines as drawn in Figure 2. It allows users to select
a Region of Interest (ROI) of a numerical domain from any
one object space view and then inspect its corresponding sta-
tistical information as well as its multivariate attributes and
errors’ relationship in the consequent feature space views.
The second functionality of this framework is indicated by
the content inside the yellow dotted lines as drawn in Figure
2. It allows users to investigate the characteristics and distri-
bution of multivariate attribute data and their errors by spec-
ifying a feature in one feature object view and concurrently
analyzing other data characteristics or distribution in other
feature space views. The third functionality of this frame-
work, known as feature localization, is indicated by the con-
tent inside the blue dotted lines as shown in Figure 2. It al-
lows users to look for in the 3D object space where certainty
interested features appear. Based on the three functionalities
mentioned here, users now are able to interactively explore
and analyze the multivariate volumetric data and their errors.

4.2. Functionality 1
4.2.1. DVR views of multivariate volumetric data

This type of views is designed to present both the internal
and external structures of the multivariate volumetric data
through DVR so that users are able to inspect the data within
the 3D environment. Specifically in our research, we take ad-
vantage of the volume ray casting-based algorithm to render
the data. Due to the complexity incorporated within multi-
variate volumetric data, presenting them together in a single
display may lead to various problems i.e., clutter, occlusion.
In order to effectively assign a dedicated object space for ev-
ery attribute and allow users to inspect it more clearly, we
render every attribute of the multivariate data in an individ-
ual view. In addition, we enable users to perform a 2D ROI
selection on any one of these views. Once a ROl is specified
in one view, all of the rest views will be updated automati-
cally, marking out the same ROI in the 3D domain. Conse-
quently it is possible for users to focus their interest only on
the specified ROI across all views and distinguish the differ-
ent characteristics among different data attributes within the
ROLI.

4.2.2. DVR views of error data

This type of views has the same functionalities as the one
describe in Section 4.2.1, apart from that it is used to ren-
der multivariate volumetric data’s error information. We also
render the error information in regards to every data attribute
in an individual view and enable users to perform the 2D ROI
specification on any one of them. Moreover, we put every er-
ror view side by side to its corresponding data attribute view
so that users are able to make a visual comparison between
them. It provides an effective mechanism to guide users to
identify their ROL

4.2.3. Histograms of attribute data

We use histograms (shown in Figure 4(a3)) to visually and
quantitatively represent the statistical information of the
multivariate data that is specified within a ROI by users in
the 3D object space. For every attribute data, there is only
one histogram in regards to it. The horizontal axis of the
histogram represents the attribute variations, while its verti-
cal axis represents the number of sampling points (obtained
from volume ray casting-based rendering) that fall into a par-
ticular interval.

4.2.4. Histograms of error data

Similar to Section 4.2.3, we use histograms to visually and
quantitatively represent the statistical information for error
data. However, instead of utilizing the horizontal axis to rep-
resent attribute variations, we use it to represent the error
variations. We utilize the vertical axis to represent the num-
ber of sampling points of error information.

4.2.5. Parallel coordinates

In the information visualization community, parallel coor-
dinates is a common and useful tool. It is always utilized to
explore the multivariate data as well as their relationship. We
also include a parallel coordinates view into our framework.
We arrange the parallel coordinates in such a way that every
error data is next to and on top of its associated attribute data.
This is considered to be convenient and efficient for users to
compare them in pairs. Based on the clear information dis-
played by the parallel coordinates, users can now study the
relationship between multivariate attributes and their errors.

4.2.6. Linking between views by ROI selection using
depth information

While each of the above mentioned components has cer-
tainty specific functionality, linking them together make up
a more useful system that allow users to perform quantita-
tive exploration and analysis tasks based on their ROI. A
typical work flow of functionality 1 is explained as follows.
Users start their tasks by inspecting the feature of multivari-
ate volumetric data and their errors in the DVR views (here
designing effective transfer functions for these views is nec-
essary in order to guide users to recognize their interest).
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They can specify their ROI by dragging a rectangle on any
one of these views though a mouse interaction. Once a ROI
is selected, four things happen. First, the rest of the views
that have not been used for the ROI selection are updated,
focusing on the same ROI with a green rectangle indicated.
Second, a group of histograms are displayed and each one
corresponds to an attribute, describing the attribute’s statis-
tical information within the specified ROI. Third, another
group of histograms are displayed and each one corresponds
to an attribute’s error information, summarizing its statisti-
cal information within the ROI. Last, a parallel coordinates
is plotted and it is used to reveal the relationship between
the multivariate data and their associated errors within the
ROI. One important thing that need to be highlighted here
is that the data we utilized to plot the histograms and paral-
lel coordinates actually include the depth information of the
volumetric data, collected from the ray casting process. They
are not simply the information obtained from the surface of
the volumetric data. We provide a mechanism to allow users
to plot the ROI in 2D plane but extract its corresponding
3D information (2D + depth). Consequently we provide an
effective mechanism for quantitative visualization of multi-
variate attribute data and their errors.

4.3. Functionality 2

4.3.1. Interactive scatter plots for data feature
specification

Scatter plot is a useful visualization tool to quantitatively de-
pict values of two variables for a given data set in the Carte-
sian Coordinates. It is used throughout the statistical analy-
sis. In our research, we construct a scatter plot by plotting
an attribute data against its associated error data. Arranging
it in such a way has two benefits. First, we effectively as-
sign a separate feature object for every pair of attribute data
and its associated error data to facilitate users’ observation.
Second, we allow users to specify a feature through mouse
interaction on it.

‘We can consider scatter plots as condition filters on which
users can perform various operations to formulate their com-
plex selection. In Section 4.3.1.1 and 4.3.1.2 we introduce
two operations, named AND and OR, respectively.

4.3.1.1. AND operation AND is one of the most basic
logic operations in computer programming and digital cir-
cuit. It is very useful to judge whether all expressions meet
conditions simultaneously. In [Gas04], Gasser borrowed the
AND idea from the logic operation and take advantage of
it to implement the complex selection for his visualization
tool. In this research we also incorporate it into our frame-
work for two reasons. First, we want to study that if certainty
features of a given multivariate data are met simultaneously,
what will the other features look like? Second, we want to
know that where the shared feature (based on a previous se-
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lection step) appear in the 3D object space? We use Figure
1(a) to illustrate the concept of AND operation.

4.3.1.2. OR operation Similar to the AND operation, we
use Figure 1(b) to illustrate the concept of OR operation. The
reason to incorporate it into our framework is because we
want to know that if certainty features of a given multivariate
data are selected, where all these features appear in the 3D
object space?

4.3.2. Linking between scatter plots

In contrast to the OR operation under which every scatter
plot is used to simply display the data information and spec-
ify a feature, the AND operation has an extra functionality:
users are allowed to specify a feature of the multivariate data
on any one of these scatter plots and concurrently analyz-
ing the other features of the multivariate data in the other
scatter plots. This functionality is achieved by the follow-
ing steps. First, users specify a feature on one scatter plot
by dragging a rectangle using their mouse. Second, based on
users’ specification, we search the entire data to find out the
grid points where the feature matches user’s specification.
Third, we display the other features that reside on those grid
points in the other scatter plots (each feature corresponds
to one scatter plot). At this point users are able to analyze
the other features of the data based on their previous feature
specification. Fourth, users can repeat the above mentioned
three steps in order on the other scatter plots which have not
been used for the feature specification. As a result we pro-
vide users with an effective guidance mechanism to refine
the ROL.

4.4. Functionality 3
4.4.1. Feature localization view

Our feature localization view is used to display the final po-
sitions of features that have been specified by users in the
previous steps, as described in Section 4.3. It is where the
3D object is rendered by the volume ray casting-based al-
gorithm. Dependent on this view users can clearly observe
where their interested features are located.

4.4.2. Linking between scatter plots and feature
localization view

The linking between the scatter plots and the feature local-
ization view is achieved by the feature specification done in
the feature spaces. And a synchronize effect between every
scatter plot and the feature localization view is achieved by
the mouse interaction so that users can know which scatter
plot/feature corresponds to the current image shown in the
feature localization view. In addition, for the AND operation
mentioned in Section 4.3.1.1, we also apply the same color
on both scatter plot and the feature localization view to indi-
cate the synchronization.



66 J. Ma et al. / Analyzing and Visualizing Multivariate Volumetric Scalar Data and Their Uncertainties

5. Case Study

A case study is described here to show the effectiveness of
our framework.

5.1. Data set from OpenGGCM simulation

The data set we used for our research comes from the
OpenGGCM simulation performed at Space Science Re-
search Center in the University of New Hampshire. It is used
to study the phenomenon of solar wind and its interaction
with the earth’s magnetosphere [ADO]. The data is three di-
mensional plus time, and is sampled on a stretched Cartesian
grid [Rae95]. Many attributes are available from the output
of the simulation, including pressure, density, resistivity, bull
plasma velocity and magnetic field. Since in this paper we
focus our research on multivariate volumetric scalar data,
we only select three scalar attributes (density, pressure and
resistivity) from the entire attribute space to use. Every file
size of the three scalar attributes (sampled at time step 900
seconds) is 1.05GB and each format is 32-bit floating point
values with little endian.

5.2. Objectives

An initial framework prototype has been implemented us-
ing C++ language with two graphical packages: GLUT and
OpenGL. We use the prototype to show the effectiveness of
our hybrid framework. Due to the restriction of maximum
paper length, here we only present some typical questions
that may be asked by users:

1. If the MR data’s certain features have been specified in
certain feature spaces, what the other features will look
like in the rest of feature spaces?

2. Where will the shared feature appear in the object space
after we have specified certain features in the feature
spaces?

3. For the same positions (in the object space) between two
different low resolution approximations, what quantita-
tive conclusions can we get?

4. For the different positions (in the object space) of the
same low resolution approximation, what quantitative
conclusion can we get?

5.3. Experimental results and discussion

Since the main purpose of our experiments is to demonstrate
the effectiveness of our framework prototype, rather than
how to handling large-scale data, we reduce the size of the
three attributes’s original data (each one with dimensions of
1024 x 512 x 512) twice with the MR techniques and utilize
them as the initial data (each one with dimensions of 256 x
128 x128) in order to obtain a quicker test results. Figure 3(a)
illustrates these initial data, with each picture corresponding
to an attribute. For the sake of clarity, in the rest of this sec-
tion we only use the haar wavlet transformation as a specific

example to describe our experiments. However, the decima-
tion method can be equally applied as well.

We apply two successive 3D haar wavelet transformation
on the initial data of every attribute to obtain its MR hier-
archy with 3 different resolutions, as shown in Figure 3(a),
(b) and (c). Figure 3(b) illustrates the data after one pass of
haar wavelet transformation and its dimensions are 128 x 64
x 64. In contrast to Figure 3(a), it is clear from Figure 3(b)
that some data information has been lost i.e., at the bottom of
the volumetric data some density attribute information and
pressure attribute information are missing. But the overall
impression of the renderings is fine. Figure 3(c) illustrates
the data after two passes of haar wavelet transformation and
its dimensions are 64 x 32 x 32. Compared to Figure 3(a),
it is clear that the data in Figure 3(c) has lost a substantial
of information i.e., the internal structures for both density
attribute and pressure attribute have gone. Besides, the pic-
tures in Figure 3(c) tend to be more blocky and blurring,
compared to Figure 3(b). It indicates that the resolution of
the data is coarser than the one in Figure 3(b).

Figure 5 shows the result corresponding to our objec-
tives 1.. The data we used here is after two passes of haar
wavelet transformation and its dimensions are 64 x 32 x 32.
The original features for density and its errors, pressure and
its errors as well as resistivity and its errors are illustrated
in Figure 5(al), (a2) and (a3). Figure 5(b1), (b2) and (b3)
present their features after we have specified a ROI in the
density scatter plot. From Figure 5(b1) we can see clearly
that the ROI meets the following two conditions: 0 < density
< 9.9 and 0 < Dens. Error < 24.0. All values that fall into
this range are highlighted in red color. Figure 5(b2) presents
the corresponding feature for pressure attribute and its er-
rors of which relevant density attribute and errors (shared the
same grid points with them) have met the ROI conditions. In
contrast to Figure 5(a2), it is clear that the dots in Figure
5(b2) have been reduced dramatically. It indicates that there
are many grid points where the density and its errors do not
meet the ROI conditions. Figure 5(b3) illustrates the corre-
sponding feature for resistivity attribute and its error infor-
mation of which relevant density attribute and errors meet
the ROI conditions. Compared to the feature in Figure 5(a3),
it is clear that the one in Figure 5(b3) follows a similar pat-
tern. It implies that the resistivity attribute and its errors in-
formation on those grid points where the associated density
and its errors meet the conditions is relatively complete. Fig-
ure 5(cl), (c2) and (c3) presents the corresponding features
(highlight in green color) after we specified another ROI (0
< pressure < 890.0 and 285.25 < Pres. Error < 855.75)
in the pressure scatter plot. It is clear that the dots in Fig-
ure 5(c3) are less than the one in Figure 5(b3). It implies
that there are less grid points where the density and pressure
attributes as well as their errors meet both specified ROIs
conditions.

Figure 6 (corresponds to objectives 2.) illustrates the
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shared feature (meets both ROIs) in the feature localization
view based on our previous feature specifications. It is clear
from this figure that where these shared feature appears in
the 3D space.

Figure 7(a) and (b) illustrate the results in regards to our
objectives 3.. They are two successive low resolution ap-
proximations after one pass (128 x 64 x 64) and two passes
(64 x 32 x 32) haar wavelet transformation from the initial
data. We specify an identical ROI for both cases in order to
compare the same subset of the numerical domain. Its start-
ing coordinates on the 2D screen is (115, 79). And its width
and height is 3 x 3 pixels. Although the same, the position
of the ROI shown in Figure 7(b) looks differently from the
one shown in Figure 7(a). This is due to the effect of haar
wavelet transformation. For keeping the paper concise while
proving the quantitative exploration and analysis character-
istics of our framework, here we only discuss the density
attribute and its errors from both cases. We believe users can
draw their own conclusions for the rest of the attribute/errors
based on this framework prototype.

By observing and comparing the four histograms that are
related to the density attribute and its errors from Figure 7(a)
and (b), we can get the following information: (1) after one
more haar wavelet transformation from the data shown in
Figure 7(a), it is clear from Figure 7(b) that the distribution
range of the density attribute is reduced by 1.65, while the
distribution range of its errors is increased from 16.0 to 56.0;
(2)although in both figures the most density sampling points
fall into the same interval: [6.6, 8.25], the number of them
are different. The number from Figure 7(a) is 821.0, while
the number from Figure 7(b) is 446.0; (3) in both figures,
the most error sampling points also fall into the same inter-
val: [0.0, 4.0]. The number shown in Figure 7(a) is 994.0,
while the number shown in Figure 7(b) is 419.0; (4) the least
density sampling points fall into different intervals in Fig-
ure 7(a) and (b). While the least density sampling points fall
into interval [11.55, 13.2] in Figure 7(a), it falls into inter-
val [24.75, 26.4] in Figure 7(b); (5) the least error sampling
points fall into different intervals in both figures. In Figure
7(a) the interval is [12.0, 16.0]. In Figure 7(b) the intervals
are [12.0, 16.0], [16.0, 20.0], [40.0, 44.0] and [48.0, 52.0],
respectively; (6) other intervals vs. the number of sampling
information are also easy to obtain from the histograms. In
term of the relationship between the density and its errors,
from the parallel coordinates in Figure 7(a) we can see that
while the distribution range of density is broad from [6.6,
26.4) (consistent with the histograms), most errors are kept
in the low values (less than 16.0). However, with on more
haar wavetlet transformation, we can see clearly from the
parallel coordinates in Figure 7(b) that higher error values
increase.

Figure 8 illustrates the results in regards to our objec-
tives 4.. The dimensions of data we used here for the test
are 128 x 64 x 64 (after one pass of haar wavelet transforma-

(© The Eurographics Association 2012.

tion). The ROIs we selected for both figures have the same
dimensions, with 2 pixels width and one pixel height. For
keeping the paper short while proving the quantitative capa-
bility of our framework, we take the pressure attribute within
the two ROIs as an example to analyze their difference. By
observing and comparing the four histograms in Figure 8(a)
and (b), we can obtain the following information: (1) in con-
trast to the pressure histogram shown in Figure 8(a), the one
shown in Figure 8(b) has a wider range, which is from [0.0,
1223.75]; (2) the distribution range of pressure errors shown
in Figure 8(b) (from 0.0 to 855.75) is slightly wider than
the one shown in Figure 8(a) (from 0.0 to 285.25); (3) in
both figures, the most pressure sampling points fall into the
same interval: [0.0, 111.25]. While the number in Figure
8(a) is 345.0, the number in Figure 8(b) is 260.0; (4) the
most pressure error sampling points in both figures fall into
the same interval: [0.0, 285.25]. While the number in Figure
8(a) is 351.0, the number in Figure 8(b) is 383.0; (5) the least
pressure sampling points in Figure 8(a) fall into the interval
[111.25, 222.5], with a number that is less than 17.25; the
least pressure sampling points in Figure 8(b) fall into the in-
tervals [222.5, 333.75], [333.75, 445.0], [445.0, 556.25] and
[667.5, 778.75], with a number less than 13.00; (6) there is
only one number of pressure error sampling points in Figure
8(a), falling into the interval [0.0, 285.25]; the least pres-
sure error sampling points in Figure 8(b) fall into the inter-
val [570.5, 855.75], with a number less than 10.15. In terms
of the relationship between the pressure attribute and its as-
sociated errors, it is clear from the parallel coordinates in
Figure 8(a) that there is a strong relationship between the
low-value range of the pressure attribute and the low-value
range of its errors. Compared to it, it is clear from the paral-
lel coordinates in Figure 8(b) that the values of the pressure
errors have been slightly increased, and the values of pres-
sure itself have been greatly increased. In addition, we can
notice there is a cluster which follows a strong relationship
between the middle-value range of the pressure attribute and
the low-value range of its errors.

6. Conclusion and Future Work

In this article we have presented a framework to multivariate
volumetric data and their uncertainties visualization using a
federation of both information visualization and scientific vi-
sualization representations that, when used in combination,
provide a powerful tool for interactive feature specification
and quantitative exploration and analysis. We detailed every
component of this framework and introduced the MR mod-
eling approaches utilized to generate the error information.
Compared to the traditional uncertainty visualization meth-
ods that heavily reply on the human perceptual system and
often present diverse information into a single display, our
framework is capable to quantitatively depict the complex
uncertainty information while keeping a clearer data presen-
tation. We also developed a framework prototype and ap-
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plied it to the OpenGGCM simulation from the space sci-
ence application domain to show its effectiveness.

We see three principle directions for our future research.
First, the relationship displayed by the parallel coordinates
component tend to be difficult to recognize when we selected
a wider range of ROI with more sampling data. An improved
version of the parallel coordinates with a good clustering
method is required in order to display a clearer relationship.
Second, a comprehensive user study is expected to perform
in order to reveal the advantages and disadvantages of our
framework. Third, we will explore more uncertainty visual-
ization methods to visualize the uncertainty in multivariate
volumetric data.
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