EG UK Theory and Practice of Computer Graphics (2011)
Hamish Carr, Ian Grimstead (Editors)

Enabling Visualization of Massive Datasets Through MPP

Database Architecture

A. Al-Naser'! , M. Rasheed!:2 R Brooke?! and D. Irving’“’2

IThe University of Manchester, UK 2Teradata

Abstract

We are developing a novel visualization architecture which is specifically designed to render very large (terabyte
scale) datasets. Our method differs from the classic visualization pipeline of Harber and McNabb. In particular
we eliminate the need to create geometric objects, for example surfaces composed of polygons, as a stage before
rendering. Such objects require specialist HPC servers for their creation and manipulation; our solution eliminates
the need for such servers. We replace the geometric objects by structures stored and tagged in a database next
to the original dataset; we call these Spatially Registered Data Structures (SRDS). Such structures are linked to
a single rendering pipeline through the on-the-fly creation of a Feature Embedded Spatial Volume (FESVo). This
solution exploits recently developed capabilities of in-database Massive Parallel Processing (MPP) and parallel
data streaming, together with the rapidly developing capabilities of GPUs. We describe an early prototype of an
architecture applied to seismic data from the oil and gas industry.

Categories and Subject Descriptors (according to ACM CCS): 1.3.1 [Computer Graphics]: Hardware Architecture—
Parallel processing 1.3.2 [Computer Graphics]: Graphics Systems—Distributed/network graphics 1.3.6 [Computer
Graphics]: Methodology and Techniques—Graphics data structures and data types, Standards 1.3.8 [Computer

Graphics]: Applications—

1. Introduction

In this work we describe a novel method for visualizing spa-
tial features in very large (O(10TB)) datasets. The classical
visualization pipeline described by Haber and McNabb in
1990 [HM90] involves the creation of geometric objects as
an intermediate in the transformation from data to rendered
visual image. We illustrate problems that this causes in the
visualization of very large datasets by considering the case
of isosurfaces, since these are important objects in the vi-
sualization of features in geospatial data. In our study case
of seismic data, isosurfacing is used for visualizing as well
as extracting and picking seismic related surfaces, mainly
horizons and faults [MR04]. The marching cube technique
is commonly used for generating triangle mesh of isosur-
face objects. However, when dealing with a massive vol-

T B-mail: ageel.al-naser @cs.manchester.ac.uk

1 E-mail: masroor.rasheed @postgrad.manchester.ac.uk
8 E-mail: john.brooke @manchester.ac.uk

9 E-mail: duncan.irving @teradata.com

(© The Eurographics Association 2011.

DOI: 10.2312/LocalChapterEvents/ TPCG/TPCG11/109-112

ume, issues with polygonal representation are encountered
[DGYO07]: mainly the generation of a large number of poly-
gons is computationally expensive, often requiring a parallel
computing cluster; this geometric object is then rendered in
the final stage of the pipeline.

The size of the geometric object makes interactive visual-
ization impossible without techniques for reducing the frac-
tion that has to be rendered. Thus complexity reduction tech-
niques are applied. Two essential techniques are visibility
culling and level-of-details (LOD) [DGY07]. LOD reduc-
tion technique provides the least required resolution based
on field of view; e.g. the closer field of view is the higher res-
olution is fetched. Thus a paradox emerges: we create a very
large object which we then have to reduce in order to view it
interactively. In this paper we describe an architecture for vi-
sualization that removes the need for the creation and storage
of such intermediate geometric objects. This also eliminates
the need for the deployment of large parallel servers and en-
ables visual exploration of very large datasets on desktop
resources.

As a use case to illustrate our method we focus on

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY
diglib.eg.org

www.eg.org

mailto:aqeel.al-naser@cs.manchester.ac.uk
mailto:masroor.rasheed@postgrad.manchester.ac.uk
mailto:john.brooke@manchester.ac.uk
mailto:duncan.irving@teradata.com
http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/LocalChapterEvents/TPCG/TPCG11/109-112

110 A. Al-Naser et. al. / Enabling Visualization of Massive Datasets Through MPP Database Architecture

terabyte-scale seismic datasets, serving the the oil and gas
industry. Our approach locates the feature detection algo-
rithms and attribute computations directly on a Massively
Parallel Processing (MPP) database where the data is stored.
The dataset in the database is about 40% more than in its
original format (SEG Y) due to binary-ASCII metadata con-
version. We maintain depth data as binary array. Derived at-
tributes are computed on-the-fly instead of traditional ap-
proaches were they are stored exclusively. Thus, no extra
data storage in the database.

We visualize data using minimal and parallel point-to-
point call queries to retrieve data that is tagged in the
database as belonging to a particular feature . Tagging can
be linked to physically stored data or on-the-fly derived data.
In the case of seismic data, tagging is occurring at an array
level (traces). We describe how the architecture delivers such
features to programmable GPU cards where we utilise direct
volume rendering techniques to display the features. Despite
the focus on a case study of seismic data, our work is generic
for any spatial data type.

2. Seismic Visualization in the Oil and Gas Industry

Exploration for oil and gas starts with analysing and in-
terpreting seismic data. To acquire seismic data, acoustic
waves are artificially generated on the earth’s surface and re-
flects from subsurface geological layers and structures. Due
to the variation of material properties, these waves are re-
flected back to the surface and their (1) amplitudes and (2)
travel time are recorded via receivers [MRO4]. This data is
then processed to generate a 2D or 3D image illustrating
the subsurface layers. A 2D seismic profile consists of mul-
tiple vertical traces. Each trace holds the recorded ampli-
tudes sampled at, typically, every four milliseconds. Seismic
imaging is then interpreted by a geo-scientist to extract ge-
ological features such as horizons and faults. This interpre-
tation potential identifies hydrocarbon traps: oil or gas. Due
to the continuous demand on hydrocarbon resources, geo-
scientists are seeking efficient visualization of large seismic
datasets.

The SEG Y [The] format has been used by the industry to
store seismic data since mid 1970s. Data in a SEG Y file is
stored sequentially and therefore retrieval of seismic data for
a 3D visualization could negatively affect interactivity. For
this reason, seismic visualization and interpretation applica-
tions, such as Petrel [Sch], offer an internal format which
stores seismic data in multi-resolution bricks for fast access.
However, interpreted surfaces such as horizons and faults are
represented, stored and rendered in separate objects; see Fig-
ure 1. These objects are rendered often as polygons which re-
quire displayed points to be kept in memory. Thus handling

Ta feature is a subset of derived attributes or user marked dataset.

Local/Network
= Storage

Original Seismic Surfaces of
Interpreted Features

Triangle
Mesh
Creation

CPU/GPU

Transfer,
Function

Transfer
Function

Visualization Pipeline
Visualization Pipeline

Features

——» Extraction [——

Techniques

User
Interpretation

Client's Screen

Figure 1: An abstract view on the current seismic visualiza-
tion solution. Features are stored and processed independent
from the original volume.

a large volume with several interpreted objects still requires
a high end machine for the end user.

3. Feature Aware Visualization

As described in the Introduction, the classic visualization
pipeline presents the need to create geometric objects which
can be comparable to, or larger than, the size of original
data. Such objects cannot fit in the memory of desktop or
mobile devices. Two popular solutions to this problem are
remote geometry delivering and remote rendering (as de-
scribed by J. Ge [Ge07]). In both solutions resources (vi-
sualization servers) are scaled up in proportion to the size
of a dataset since it is visualized classically. Moreover, re-
mote rendering solutions require a connection of at least
100 Mbpsi [SFNCO09] between client and server in order to
achieve a good frame rate that is higher than 20 fps§. In ad-
dition, because the application is running on the server and
only images are being streamed, a continuous connection is
required all the time as users can perform no action offline.
Solutions to this have been proposed [GMC*02], however
they do not address the problems of tera-sized data.

Our alternative approach replaces geometric objects with
what we call “features”. A feature is a subset of the origi-
nal data, appropriately tagged to indicate that it belongs to
a particular spatial feature. Thus, instead of a surface being
considered as being composed of polygons (geometric ap-
proach) it is now a subset of the data, appropriately tagged.

¥ Mbps = megabit per second
§ fps = frames per second

(© The Eurographics Association 2011.

A. Al-Naser et. al. / Enabling Visualization of Massive Datasets Through MPP Database Architecture 111

Solution Architecture

SRDS

@ Space Timestamp
Source Identifer (FK)
4 Property Identifier (FK)

Feature Embedded
Spatial Volume

Two Way Travel Time

Bc Crossline

Figure 2: An abstract illustration of the proposed solution
architecture. (ETL: Extract, Transform and Load, SRDS:
Spatially Registered Data Structures)

We then associate visualization methods with a feature. This
approach was first described in the context of data from
oceanographic simulations [BMPS07], where novel visual-
ization techniques exploiting the (then) recently available
programmable GPUs.

With the rapid advances in the capabilities of GPUs, di-
rect volume rendering techniques such as 3D texture slic-
ing and GPU-based ray casting have become more efficient
for interactive visualization on a large uniform grid. Recent
advancements of utilising multi-core compute units under
Open Computing Language (OpenCL)ﬂI and direct modifi-
cation of voxel through shading languages such as OpenGL
Shading Language (GLSL)H allow us to render on desk-
top the objects we call Feature Embedded Spatial Volumes
(FESVo). In the next section we describe our proposed vi-
sualization architecture to enable this for a wide range of
applications.

4. Proposed Solution Architecture

In this section we propose a complete architecture from data
representation to the visualization of massive spatial datasets
as illustrated in Figure 2. The architecture is an alternative to
the classic visualization pipeline; it dispenses with the need
to create geometric objects. Instead, we organize and tag the
data in the database to create structures called Spatially Reg-
istered Data Structures (SRDS). This allows the possibility
of creating and editing SRDSs using parallel capabilities on
the database itself. Such parallel capabilities are created to
process very large datasets from the commercial sector (e.g.
CRM data), we utilise this capability to eliminate the need
for a parallel HPC cluster.

9 http://www.khronos.org/opencl/
l http://www.opengl.org/documentation/glsl/

(© The Eurographics Association 2011.

4.1. Data Preparation and Parallelism

We illustrate the first stage of creating an SRDS via our use
case, which involves both seismic (large volume and lower
resolution data) and oil well logs (low volume and higher
resolution) data. All data is converted into a single coor-
dinate system (WGS84) and data quality checks are per-
formed. The data is then broken into the smallest voxel, grid-
ded to appropriate finite resolution and tagged with a spatial
property. The data is distributed on a primary accessor key™*
by using a hashing algorithm. This newly formatted data is
referred to as SRDS which is later utilised for run-time fea-
ture extraction and analysis, and parallel streaming query for
visualization.

SRDS primary storage is derived from a Carte-
sian coordinate system [MS61] and adds dimensions
of time, property, projection and metadata integrator.
SRDS extensions [CHO5] allows for subtype polymorphism
which enables data to be re-constructed. For example,
Value.Horizons () would extracts only those voxels
that comply with static definition of Horizon. An extension
can be designed based on parametrized calls. SRDS allows
data structures to be derived from voxel as extensions. Each
SRDS tuple is a work unit which enables data processing to
be parallel and distributed on massively parallel processing
(MPP) database.

4.2. Feature-Embedded Spatial Volume (FESVo)

Classically, features are stored and rendered independently
from the original seismic data, as illustrated in Figure 1. By
associating feature-aware parallel queries (further explained
in the next subsection) to SRDS, we can create in real-time a
Feature-Embedded Spatial Volume (FES Vo) being ready for
direct volume rendering.

We are currently developing methods to directly render
raw seismic data (seismic amplitude) with its interpreted fea-
tures in a single pipeline. The FESVo comprises a volume
dataset that contains the feature identified by the SRDS and
it is this volume that is visualized. To render the SRDS fea-
ture, we propose to directly modify voxel colour property
using GLSL. The shared spatial location of raw data and its
features would allow us to perform such modification on the
fly. As more data arrives from the SRDS, the FESVo is up-
dated and rendered continuously; the more data arrives the
better quality appears. This is a true streaming visualization
as there is no pre-defined volume size.

4.3. Querying and Feature Awareness

An important gain of our architecture is that we can use
database information extraction queries to assist the user of

** The primary accessor key is composed of X and Y which iden-
tifies a geographical 2D location.

http://www.khronos.org/opencl/
http://www.opengl.org/documentation/glsl/

112 A. Al-Naser et. al. / Enabling Visualization of Massive Datasets Through MPP Database Architecture

Figure 3: A simple example illustrating 35 parallel SOL
point-to-point calls to the RDBMS but only 12 will return
data.

the system to identify features. Querying can be performed
on any of the attributes presented at SRDS. To exploit paral-
lelism as the data flows through the components of the archi-
tecture, querying is performed in structure of general steps.
We illustrate this process by the simple example shown in
Figure 3.

1. Discovery—reads metadata information to obtain infor-
mation of bounding area: The bounding dimensions are
determined from metadata in SRDS. A feature in 2D with
bounding box (1,1) to (5,7) and incremental of 1 in both
directions.

2. Submit a parallel point-to-point call query based on field
of view—This will allow 7*5 = 35 parallel SQL calls
to the RDBMST. In this case, only 12 will return data.
Point-to-point calls are used instead of range elements to
avoid full table scans (look for this feature from the entire
datasets) and creation of index to improve performance.
Hashing algorithm on primary accessor keys provides in-
formation of the exact location of the data element. Hence
without index creation, high through-put for streaming is
achievable in theory.

3. Apply data processing before returning data to
Visualization—Virtual Processing elements (provid-
ing the extension for SRDS) are attached to each data
piece or a collection of tuples with or without range.

4. Create FESVo on-the-fly and continuously render as data
arrives—FESVo’s field of view dictates what data is re-
quested in parallel while it dynamically renders as infor-
mation is constantly arriving.

5. Current Status and Future Work

We reviewed the evolution of the class visualization pipeline
and state-of-the art rendering techniques and used this as a
basis for a new approach. We highlight the following:

e We conclude that to achieve high performance and ef-
ficient visualization of massive spatial datasets we need
an architecture which starts from the data representation
level.

T RDBMS: relational database management system

e We propose a complete solution architecture of (1) a
Spatially-Registered Data Structure (SRDS) and (2) a
single rendering pipeline relying on creating a Feature-
Embedded Spatial Volume (FESVo) on the fly.

e SRDS is partially deployed. We are currently testing a
geological horizon feature extraction method; more fea-
ture extractions are to be implemented and tested. At the
same time, we have started the implementation of FESVo
concept; it is currently in its early stage. We have tested
querying and rendering seismic slices; further enhance-
ments are to be implemented. Later, we will be working
on querying the features in SRDS along with neighbour-
ing original seismic data to create FESVo on the fly, and
render it in a single pipeline.

e The architecture is to be evaluated in different ways. This
would include: (1) evaluating the interactivity rate which
could be measured by calculating rendered frames per
second and (2) measuring potential of reduction on the
data being transferred over the network to indicate the mo-
bility of the architecture.

References

[BMPS07] BROOKE J. M., MARSH J., PETTIFER S., SASTRY
L. S.: The importance of locality in the visualization of large
datasets. Concurrency and Computation: Practice and Experi-
ence 19, 2 (Feb. 2007), 195-205. 3

[CHO5] CAROMEL D., HENRIO L.: A Theory of Distributed Ob-
Jjects. Spring-Links, 2005. 3

[DGYO07] DIETRICH A., GOBBETTI E., YOON S.-E.: Massive-
Model Rendering Techniques: A Tutorial. [EEE Computer
Graphics and Applications 27, 6 (2007), 20-34. 1

[Ge07] GE J.: A Point-Based Remote Visualization Pipeline for
Large-Scale Virtual Reality. PhD thesis, University of Illinois at
Chicago, 2007. 2

[GMC*02] GLENCROSS M., MARSH J., COOK J., DAUBRENET
S., PETTIFER S., HUBBOLD R.: Distributed interactive virtual
prototyping. In Sketches and Applications Programme (San An-
tonio, Texas, 2002), SIGGRAPH. 2

[HM90] HABER R., MCNABB D.: Visualization Idioms: A Con-
ceptual Model for Scientific Visualization Systems. Visualization
in Scientific Computing (1990), 74-93. 1

[MR0O4] MA C., ROKNE J.: 3D Seismic Volume Visualization,
vol. VI. Springer Netherlands, Norwell, MA, USA, 2004, ch. 13,
pp. 241-262. 1,2

[MS61] MOON P. H., SPENCER D. E.: Field theory handbook
s including coordinate systems, differential equations, and their
solutions. Springer-Verlag, 1961. 3

[Sch] SCHLUMBERGER: Petrel Seismic to Simulation Soft-
ware. http://www.slb.com/services/software/
geo/petrel.aspx. 2

[SENC09] SASTRY L., FOWLER R., NAGELLA S., CHURCHILL
J.: Supporting Distributed Visualization Services for High
Performance Science and Engineering Applications A Service
Provider Perspective. In Proceedings of the 2009 9th IEEE/ACM
International Symposium on Cluster Computing and the Grid
(2009), IEEE Computer Society, pp. 586-590. 2

[The] THE SOCIETY OF EXPLORATION GEOPHYSICISTS:.
http://www.seg.org/. 2

(© The Eurographics Association 2011.

http://www.slb.com/services/software/geo/petrel.aspx
http://www.slb.com/services/software/geo/petrel.aspx
http://www.seg.org/

