
EG UK Theory and Practice of Computer Graphics (2011)
Hamish Carr, Ian Grimstead (Editors)

A Desktop Multi-Touch Interface for Posing Characters

Ian Stephenson†

National Centre for Computer Animation
Bournemouth University

Abstract
Multi-touch, direct manipulation interfaces have become common in mobile media applications, but their use
on the desktop is limited. In this paper we propose that multi touch direct manipulation is well suited to the
posing of animated characters using inverse kinematics, and demonstrate how it can be implemented in a desktop
application, by the addition of commodity mobile touch devices. We also describe how the multi-touch display
software developed for this system can be integrated into a number of other applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Hardware Architecture—
Input Devices. I.3.6 [Computer Graphics]: Methodologies and Techniques—Interaction Techniques. I.3.7 [Com-
puter Graphics]: Three-Dimensional Graphics and Realism—Animation.

1. Introduction

The posing of human and other characters is one of the
most challenging tasks in computer animation, and is gen-
erally tackled using a combination of forward kinematics
(FK: where joint rotations are set) and inverse kinematics
(IK: where the position of key bones is specified, and the
rotations of the joints is automatically calculated to realise
this) [Wel89]. While IK is conceptually simpler for the end
user, it can be difficult to control and the results can be un-
predictable — when a hand is moved the elbow may move
to an undesirable position. As a result users can find IK frus-
trating and it is usually necessary to use a combination of IK
and FK to obtain the desired results [Kar02].

We planned to incorporate the posing of human characters
into a much larger design application for users who were not
trained as animators, and as such existing IK, FK and hybrid
approaches were considered inappropriate. Posing charac-
ters is only a small part of the users’ goals. and as such the
interfaces of existing tools such as Poser which is dedicated
to the posing of characters, presented a level of confusion
and scope for error that was unsuitable for our target users.
While the precision required by film animators was not a re-
quirement of our system, it needed to be intuitive and robust.

Observing drama and dance teachers as they correct the

† e-mail:ian@dctsystems.co.uk

pose of students we note that they are essentially forced to
use an IK approach — they move a part of the student’s body
to the desired position. Despite this they are able to pose their
“characters” quickly and reliably without FK. In part this is
due to the students cooperation (the student effectively act-
ing as an IK solver with embedded domain knowledge) and
that they are working directly in the 3D environment rather
than on screen. However an important advantage they have
over computer animators is that they can manipulate two
parts of the students body at once — for example consider
a ballet teacher adjusting the position of a students foot but
holding her knee to prevent it moving. This avoids exactly
the kind of undesirable results which typically arise during
IK manipulation.

Based on this observation we propose the use of a multi-
touch direct manipulation interface for posing of characters
using IK. However while suitable multi-touch hardware is
common in mobile media applications it is rare to find such
hardware on the desktop where it could be integrated into
an animation tool or pipeline. We therefore also propose the
use of a commodity media device as a peripheral to a stan-
dard computer system, acting as both an auxiliary display
and touch input device. We will first describe the implemen-
tation of the multi-touch input device, and demonstrate its
use on a number of projects, then consider its application to
the problem of posing characters.

c© The Eurographics Association 2011.

DOI: 10.2312/LocalChapterEvents/TPCG/TPCG11/089-095

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/LocalChapterEvents/TPCG/TPCG11/089-095


I Stephenson / A Desktop Multi-Touch Interface for Posing Characters

2. Multi-Touch Desktop I/O

2.1. Existing Technology

Touch screen displays which resemble the standard display
on desktop computer systems are common in point of sale
applications, and other systems where an untrained user is
interacting with a device to perform a specific task of short
duration. While experiences with such devices make touch
interaction appear an attractive addition to regular computer
displays, experiments quickly show that such screens are im-
practical for precision work over extended periods of time,
due to their physical dimensions and orientation [ALM92].
Users become fatigued by reaching out to the vertical screen,
and the large movements required to interact with objects
over the area of typical computer screens.

The most common form of touch input is found on lap-
top computers takes the form of a trackpad. While ergonom-
ically viable, trackpads lack the visual feedback required
for true direct manipulation. Some trackpads support multi-
touch input, but without the ability to relate a specific touch-
pad location directly to a unique point on screen, they are
only suitable for gesture input [HSH∗05]. A number of
graphics tablets are available which combine pen input with
a display, but these are expensive, and do not support multi-
touch.

In contrast handheld media devices such as mobile phones
and mp3 players have successfully incorporated multi-touch
screens due to their small size. This enables the user to
position them comfortably, interact directly over the whole
screen area with only small movements, and allows them to
be produced at low cost. However the limited screen size,
and processing power of such devices make them an un-
suitable platform for 3D animation packages. Even if such
software could be developed within the constraints of a mo-
bile device, it would be difficult to integrate within a produc-
tion pipeline. Developing and distributing software for mo-
bile devices can be subject to licensing restrictions [App11],
making it difficult to create and maintain software in the
style necessary for animation production.

2.2. ScreenPad

By utilising a multi-touch media device (specifically an iPod
Touch, iPad or iPhone) as a peripheral to a standard desktop
computer it is possible to combine the strengths of each. The
main application is hosted on a computer with a standard on-
screen UI, but the iOS device provides a secondary screen,
which presents a multi-touch interface focused on a specific
part of the task. The host application can make use of the
full resources of the desktop machine, including traditional
I/O methods, but draw upon the mobile devices multi-touch
screen as required.

Mobile applications currently exist which allow an iOS
device to act as a remote control for specific pieces of soft-
ware (most notably Apple has developed apps to control

iTunes and Keynote), but these act in place of traditional
hardware remote controls. They make limited use of the
touch devices capabilities, and are tied to controlling only
one application, such that even minor updates to the desktop
software require the remote to updated. Such paired appli-
cations are difficult to develop and maintain, as experience
of two development environments is required, and the two
applications must be developed in parallel.

A second set of mobile applications attempt a more
generic interface to the desktop system, providing a remote
desktop facility (through VNC, or Windows Remote Desk-
top Services) which mirrors the desktop machine’s screen on
the mobile device, and uses touch input to control the mouse
pointer. While potentially useful when access to the host ma-
chine is otherwise unavailable, the small screen size makes
these of limited practical use. Additionally the desktop soft-
ware has no knowledge of the touch devices existence so is
unable to make use of its additional features over a regular
pointing device. Applications such as "Mobile Mouse" use
the mobile device for a remote for the OS itself, allowing
the desktop to be controlled from a device in a convenient
fashion, but do not essentially extend the desktop paradigm.

Between the extremes of a custom remote control, and a
virtual desktop, we propose a generic solution akin to a thin
client, which allows a desktop application to draw freely on
the remote screen, and receive touches from it, essentially
extending the desktop application onto the touch screen. As
the desktop application is customised to support the remote
input it can make full use of the multi-touch facilities, but
without the need for the developer to write code to run on
the mobile device.

As only a single generic application need be installed on
the touch device for any number of desktop applications, the
developer of the host application does not need to be famil-
iar with iOS, or the associated issues of licensing and dis-
tribution. All the application specific code is contained on
the host, so there is no need to upgrade the mobile devices
software as the host application is developed.

The system provides an interface from the host to the re-
sources of the mobile device, and as such imposes no UI
constraints. However the interfaces so far developed have
been of the form of a standard desktop application, with one
window displayed on the touch device to receive touch input.
This window may or may not be visible on the main desktop.
In some respects this is similar to the mechanism on Sega
Dreamcast games console [HO99] where each controller
incorporated a small display, allowing a game to present
unique private information to each player. While recognised
as having great potential the system was discontinued be-
fore this could be realised. This concept has been revived in
the recently announced Nintendo Wii U [Nin11], though this
system is not yet commercially available.

c© The Eurographics Association 2011.

90



I Stephenson / A Desktop Multi-Touch Interface for Posing Characters

@interface ScreenPadClient : NSObject {...}
-(ScreenPadClient *)initWithDelegate:(id<ScreenPadClientDelegate>)target;
-(void) sendImage:(NSImage *)image;
-(NSArray *)currentTouches;
-(NSSize)viewSize;
-(float)viewScale;
-(int)viewOrientation;
@end

@protocol ScreenPadClientDelegate
-(void)screenPad:(ScreenPadClient *)sp didConnectToService:(NSNetService *)service;
-(void)screenPadDidDisconnect:(ScreenPadClient *)sp;
-(void)screenPad:(ScreenPadClient *)sp didReceiveTouches:(NSArray *)touches;
-(void)screenPadDidReceiveInfo:(ScreenPadClient *)sp;
@end

Figure 1: The ScreenPad API

2.3. API

Support for the ScreenPad interface can be added to a desk-
top application using the API shown in figure 1. This is im-
plemented using the MacOS Objective C development envi-
ronment, but source code is provided and could be ported to
other platforms.

The desktop application (which is technically a client
of the ScreenPad service), creates an instance of the
ScreenPadClient object, using the initWithDel-
egate: method. This uses mDNS zeroconf discovery
[SC05] to establish a connection to a touch screen,
and reports a successful connection via the screen-
Pad:didConnectToService: delegate method. There
is no authentication built into this level of connection, so it
is essentially insecure, but additional security could be built
into a higher layer, essentially requiring the touch device
user to verify that they are also the desktop user. More easily,
a private ad-hoc wifi network can be created by the desktop
machine, to which only the trusted device has access. This
has the additional benefit of ensuring good wifi performance
between the two machines.

Once a connection has been established the desktop ap-
plication can update the touchpad screen by simply sending
images to it using the sendImage: method. Though po-
tentially inefficient (the whole screen image must be sent
for each update), this creates the most simple, but flexi-
ble drawing process as the image can be imported from a
file, drawn using standard MacOS drawing functions, or re-
trieved from the OpenGL frame buffer. Additional methods
are available which allow control of the format and com-
pression used when an image is transmitted. Images are au-
tomatically buffered, and frames dropped to ensure that good
performance is achieved on mobile devices with a range of
network and cpu performance.

The host application can obtain information about the
touch device using the viewSize, viewOrientation
and viewScale methods, though these are not required as

Figure 2: StageBuilder displayed on an an iPod Touch.

the image is automatically scaled to fit the display. Should
the orientation of the device change the delegate’s screen-
PadDidReceiveInfo: method is called allowing it to
react to the change.

Information on user touches is provided through the
screenPad:didReceiveTouches: method which
provides an array of the currently active touches whenever
the touch state changes.

2.4. Applications

The ScreenPad client API has been used in a number of ap-
plications, of varying complexity. As a result of this it has
developed into a robust, and flexible tool, which is simple
enough to be integrated into existing applications quickly,
while powerful enough to allow developers to build the in-
terface they require.

The simplest form of application using ScreenPad is one
which simply pushes images to the remote display. An ex-
ample of this would be an application allows an iOS device
to display the view from a desktop machines webcam. The

c© The Eurographics Association 2011.

91



I Stephenson / A Desktop Multi-Touch Interface for Posing Characters

desktop machine creates a client object, and once connected
it grabs an image from the webcam, rotates it to the cor-
rect orientation and pushes it to the touch device. When the
image has been successfully received by the touchscreen, it
sends an acknowledgement, which triggers the sending of
the next image. Multiple clients can be connected simulta-
neously.

StageBuilder [SP10] is a large application previously de-
veloped for the modelling of theatrical stage sets. It supports
multiple types of window, each of which provides a differ-
ent method of viewing the scene. A new type of window
was created which draws an OpenGL preview of the set, and
mirrors it on both the desktop display and touch screen. An
example of the touch screen display is shown in figure 2.
Touch input can manipulate the viewpoint — single touch
drags rotate the viewing angle, while double touches walk
the user through the screen. Triple taps reset the viewport.

The target user base is technically naive and as such great
effort has been taken to ensure the system is as accessible as
possible. Touch is a form of input which users adapt to nat-
urally without training, and users were able to navigate the
3D visualisation of the set efficiently after only a few sec-
onds of familiarisation. By contrast basic mouse interaction
skills took far longer to acquire.

By placing the main application on the desktop and sup-
porting multiple ScreenPad clients, an interesting multi-user
configuration is created without the complexity of a con-
ventional distributed system. The desktop user retains con-
trol, but other users can interact with the program semi-
independantly. In the case of StageBuilder, it allowed oth-
ers working on the show to examine the scenographers work
during collaborative review meetings, without needing to
learn the main program or crowd round a single screen.
Copyright, security and confidentiality issues are also min-
imised, as the scene file is never transferred to the mobile
device (though they can “photograph” the set using their de-
vices standard screen capture facility). There are no version-
ing issues, as the scene is always held centrally, and there is
no danger of the reviewers modifying the set.

Another application currently being examined is integrat-
ing a similar review feature into motion capture software, so
directors and actors can see the captured data without hav-
ing to interact with the capture software directly (and with-
out having to leave the MoCap performance area). Key to
these kinds of applications is that beyond the initial install
of ScreenPad, the user simply turns on their device and is
automatically connected to the running application. No fur-
ther downloads, installs or updates are required, leaving the
desktop application in full control.

3. Multi-Touch Inverse Kinematics

While the StageBuilder and Webcam applications were en-
hanced by the inclusion of the ScreenPad framework, the

multi-touch IK application was designed to exploit it fully,
and could not exist as a standard desktop, or mobile applica-
tion.

Multi-Touch control of an animated character is consid-
ered in [KN10], but their approach is very different. Their
interest in puppetry leads then to eschew direct manipula-
tion in favour of a two handed control system. While this
approach works well for their application, it is unsuitable
for ours as it requires user investment in both hardware and
training.

3.1. Cyclic Coordinate Decent

A standard approach to implementing IK is through a cyclic
coordinate decent (CCD) solver [Wel89]. Figure 3 shows a
simple IK problem, which can be solved using this approach:
The two bones AB and BC are controlled by two rotational
joints with the angles θa and θb respectively. The end point
C must be moved to the target T . While analytical solutions
may be possible in simple cases, an iterative approach will
rapidly converge on a solution if there is one available. Start-
ing with end bone, θb is adjusted, rotating C to C′ and min-
imising the distance between C′ and T . The result is that BC′

has the same orientation as BT . However the problem can-
not be solved by simply rotating BC, and an error remains.
We therefore progress up the chain of bones, and adjust θa
to minimise the distance between C′′ and T . Again this is
achieved by making AC′′ have the same orientation as AT .
Each step is guaranteed to move C closer to T , and by apply-
ing this iteratively a solution is usually found quickly.

Because CCD deals with one joint at a time, it can be eas-
ily adapted to incorporate additional constraints such as the
rotational limits of joints. Multiple touches by the user create
additional targets, which are also simply incorporated. For
each target, its effect is propagated once from the touched
bone end, back to the root node. This will move the skeleton
into a position more favourable to that target, but a single de-
cent will rarely reach the target exactly. The system is then
partially solved for the next target. Once all targets have re-
ceived one decent pass, the whole process is repeated until
the system converges on a solution.

In all but the simplest cases IK chains have either multi-
ple solutions or no complete solution. In order to find more
subjectively pleasant solutions, damping is applied to that on
each iteration a joint is only rotated half way to the theoret-
ically correct angle. This has the effect of finding solutions
which move the parent limbs slightly even when a solution
exists which moves only the smaller limbs, resulting in a
more natural motion. This damping also makes the system
more stable. When two targets are in conflict, such that no
solution can satisfy both constraints, damping results in an
appropriate compromise pose being found, without oscilla-
tion.

The system was implemented using ScreenPad, such that

c© The Eurographics Association 2011.

92



I Stephenson / A Desktop Multi-Touch Interface for Posing Characters

θa

A

B

C

θb

T

C'

Figure 3: Cyclic Coordinate Decent.

touches from the user are sent back to the desktop machine,
which binds them to a bone end, and as the touch moves, the
CCD solver attempts to move all selected bone ends to their
respective targets. The number of touches is limited only by
the dexterity of the user. The resultant skeleton is rendered
in OpenGL, and the image sent to back to the touch device.
For the purposes of illustration a simple skinning algorithm
was used to attach a basic model to the skeleton.

3.2. Results

Though the system exhibited quirky behaviour typical of IK
implementations, multi-touch provided a quick and intuitive
interface for controlling this. All users immediately likened
the experience to puppeteering rather than animation, as they
had direct real time control over the character, rather than
controlling it through an abstract interface.

In addition to the benefits of direct single touch manipu-
lation two forms of multi-touch emerged:

• holding an end effector stationary while moving another
joint,

• moving an end effector while holding an intermediate
joint.

The first of these is shown in figure 4. The characters left
hand is held in the air while the right hand and head are

Figure 4: Multi Touch IK Simulating Pinning.

moved. This is equivalent to the technique of pinning, where
an end effector is locked to a stationary point (for example
an door handle the character is touching) while the rest of
the body is positioned. However no special mechanisms are
required to implement this within a multitouch system.

The second multi-touch interaction is effectively a form of
FK, as shown in figure 5. The characters elbow is held sta-
tionary, and the orientation of the forearm can be set explic-
itly be dragging the hand. This mechanism is not as precise
as true FK, as in certain circumstances the hand movement
may propagate through the stationary elbow and affect the
shoulder, but it is totally intuitive, does not require users to
understand the abstract concepts of IK and FK, and avoids
having to switch modaly between the two forms of control.

Despite these advantages, multi-touch IK suffers from a
lack of accuracy. Touch interfaces are intuitive and quick to
use, but fingertips are large and clumsy compared to the ac-
curacy of a traditional pointing device. As such multi-touch
IK proved well suited to the rapid posing of characters by
users who are not traditional animators, but proved limit-
ing compared conventional approaches to character anima-

c© The Eurographics Association 2011.

93



I Stephenson / A Desktop Multi-Touch Interface for Posing Characters

Figure 5: Multi Touch IK Simulating FK.

tion where highly trained users can select from a range of
tools to generate precise results.

3.3. Direct Multi-touch Vs Gesture

Though iPhone and iPod devices are physically capable of
tracking multiple touches and run the ScreenPad software
well for other applications, they have particular limitations
when used for the multitouch IK. While in principle the iPad
is simply a large iPod Touch, its increased screen size creates
a qualitatively different user experience.

The smaller devices perform well for single touch direct
manipulation, and multi-touch indirect input (such as scaling
an image using the pinch gesture), but the screens are simply
too small for the average user to accurately touch and then
drag multiple points on the screen at the same time, without
obscuring the display completely. While still somewhat lim-
ited by visibility and the users physical dexterity, the larger
display of the iPad allowed the user to select multiple limbs
more accurately and position them while still viewing the
screen. These levels of touch interaction are summarised in
figure 6

Single Touch Multi-Touch
Indirect Simple Trackpad MultiTouch Trackpad

iPhone
Direct iPhone iPad

Figure 6: Forms of touch interaction

4. Conclusion

The ScreenPad thin client proved a particularly effective ap-
proach to implementing multi-touch IK. Interacting with a
desktop application though a handheld multi-touch screen
was found to be a powerful and versatile extension to the
standard interface which was immediately attractive to users.
Because ScreenPad is a thin client it can be reused for any
number of projects, without requiring users to install addi-
tional software on their touch device.

Multi-touch IK is an intuitive technique, which can easily
be incorporated into existing animation tools. Only minimal
changes were required to a standard CCD solver to support
multitouch, and the extra control limited the need for addi-
tional features such as pinning or IK/FK switching.

There was a lack of precision, inherent in most touch sys-
tems, which would lead experienced animators to prefer ex-
isting IK/FK methods, but for casual users the multi-touch
interface allows them to quickly pose characters without
having to learn either theoretical concepts, or a complex UI.
As such it meets our requirements, allowing poseable char-
acters to be incorporated into applications where the charac-
ters pose is only a minor part of the users goal.

References

[ALM92] AHLSTRÖM B., LENMAN S., MARMOLIN T.: Over-
coming touchscreen user fatigue by workplace design. In Posters
and short talks of the 1992 SIGCHI conference on Human fac-
tors in computing systems (New York, NY, USA, 1992), CHI ’92,
ACM, pp. 101–102. 2

[App11] APPLE INC: iOS Developer Program License Agree-
ment, 2011. 2

[HO99] HAGIWARA S., OLIVER I.: Sega dreamcast: Creating a
unified entertainment world. IEEE Micro 19 (November 1999),
29–35. 2

[HSH∗05] HOTELLING S., STRCKON J., HUPPI B., CHAUDHRI
I., CHRISTIE G., ORDING B., KERR D. R., IVE J.: Gestures for
touch sensitive input devices. United States Patent Application,
January 2005. 2

[Kar02] KARWAS P.: Lord of the rings: animation that was not
there. In ACM SIGGRAPH 2002 conference abstracts and ap-
plications (New York, NY, USA, 2002), SIGGRAPH ’02, ACM,
pp. 210–210. 1

[KN10] KIPP M., NGUYEN Q.: Multitouch puppetry: Creating
coordinated 3d motion for an articulated arm. In Proceedings of
the ACM International Conference on Interactive Tabletops and
Surfaces (2010), ACM Press. 4

[Nin11] NINTENDO: Nintendo’s Upcoming Wii U

c© The Eurographics Association 2011.

94



I Stephenson / A Desktop Multi-Touch Interface for Posing Characters

Console Features Controller With 6.2inch Screen.
http://press.nintendo.com/articles.jsp?id=29261, 2011. 2

[SC05] STEINBERG D. H., CHESHIRE S.: Zero Configuration
Networking: The Definitive Guide. O’Reilly Media, December
2005. 3

[SP10] STEPHENSON I., PRIDE R.: Computer Modelling of
Theatrical Sets. In Theory and Practise in Computer Graphics
(Sheffield, United Kingdom, 2010), Collomosse J., Grimstead I.,
(Eds.), Eurographics Association, pp. 75–81. 4

[Wel89] WELMAN C.: Inverse Kinematics and Geometric Con-
trains for Articulated Figure Manipulation. Master’s thesis, Si-
mon Fraser University, 1989. 1, 4

c© The Eurographics Association 2011.

95


