
EG UK Theory and Practice of Computer Graphics (2011)
Hamish Carr, Ian Grimstead (Editors)

Pixel-Level Algorithms for Drawing Curves

Y.K. Liu1, P.J. Wang1, D.D. Zhao1, D. Špelič2, D. Mongus2 and B. Žalik2

1College of Computer Science and Engineering, Dalian Nationalities University, Dalian 116600, China
2University of Maribor, Faculty of Electrical Engineering and Computer Science, Smetanova 17, SI-2000 Maribor, Slovenia

Abstract
This paper introduces new pixel level algorithms for parametric curves. The optimal value of the steps is first
derived when rastrerizing parametric curves. A double-step algorithm using only integer arithmetic is presented
to minimize the problem of oversampling. The algorithms for parametric curves have been implemented also
on GPU. Through experiments we confirmed that the performance of this new algorithm is superior to previous
algorithms.

Keywords: computing; curves; pixels; rasterization;
GPU;

1. Introduction

Rasterization of geometric primitives was one of the first
tasks for computer graphicians [Bre65]. Various approaches
are known for rasterizing lines, circles and conics [AP92,
Bre77, FH94, FH93, Mcl92, Pit85, Liu93a, Liu93b]. As they
are placed at the end of the graphic visualization pipeline,
they are frequently implemented in hardware by graphic
output devices. Recently, research in curve rendering using
graphics hardware has become attractive [LB05, RdMF08].
In this way, extreme speed is achieved and it seems it is
purposeless thinking about improvements of the fundamen-
tal rasterisation algorithms. However, engineers still cope
with the extremely limited environments in embedded sys-
tems. Especially high-end devices like domestic appliances,
hi-fi sound systems, TV sets and cell phones are nowadays
equipped with LCD displays, providing users with many ad-
ditional features. Due the economic reasons, these devices
does not have powerful graphical accelerators of today’s
desktop computers. Instead, LCD controllers provide only
the most fundamental operations as turning the pixels on
and off and refreshing the display. Therefore, the efficient
and simply to implement rasterisation algorithms still plays
important role in such environments.

This paper introduces a new algorithm for rasterizing
curves. In Section 2, related work is presented. Section 3
presents a new algorithm for the rasterization of paramet-
ric curves, for which an optimum value of step-length is de-
rived. The algorithm has been compared with known algo-

rithms and have turned out to be considerably more efficient
whilst the quality of the rasterisation remains the same. The
algorithms for rasterizing the parametric curves have been
implemented on Graphics Processing Unit (GPU), too. Re-
sults are presented in Section 4. Section 5 concludes the pa-
per.

2. Existing pixel-level algorithms for rasterizing
parametric curves

Pixel-level algorithms for drawing parametric curves have
already been proposed [CSR89, Kla91, LSP87]. In the con-
tinuation, we briefly consider them and name them as tradi-
tional algorithms. These algorithms work in two steps:

• The length of the algorithm’s step is determined during
initialization. The algorithm generates n+1 points on the
curve, therefore this step is calculated as 1/n.

• During each iteration of the algorithm, an increment of co-
ordinates on curve C(t) is calculated and the current point
is drawn. A difference method is used for the calculation.
Assume that the kth difference at the ith point on the curve
is expressed as ∆kC(i), then from the difference formula

∆k+1C(i) = ∆kC(i+1)−∆kC(i) (1)

we obtain

∆kC(i+1) = ∆kC(i)+∆k+1C(i);k = 0, · · · ,m. (2)

c⃝ The Eurographics Association 2011.

DOI: 10.2312/LocalChapterEvents/TPCG/TPCG11/033-040

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/LocalChapterEvents/TPCG/TPCG11/033-040

Y.K. Liu & P.J. Wang & D.D. Zhao & D. Špelič & D. Mongus & B. Žalik / Pixel-Level Algorithms for Drawing Curves

From the difference properties, we know that a polyno-
mial of mth order becomes constant after m difference oper-
ations. If all order differences at the ith point are known, the
(i+1)th point can be obtained by m additions. Therefore, by
adding the first order difference at the ith point to the func-
tion value at point C(i), we can get the value of the function
at the next point C(i+1). The main loop of the algorithm is,
therefore, as follows:

BEGIN
FOR i = 1 TO n+1 DO
BEGIN

Ci+1 =Ci +di;
Setpixel();
d1 = d1 +d2;
d2 =d2 +d3;

:
dm−1 = dm−1 +dm;

END;
END.

where the variables can be declared as integers and, thus,
only integer computations are needed.

Determining the magnitude of the algorithm step 1/n’s is
very important. The standard procedure for its determina-
tion is as follows: on the premise that if the magnitude of the
curve’s advance is less than the size of a pixel, the length of
the step is selected to be as long as possible (i.e. the value of
n is as small as possible), in order to speed up the algorithm.
The so-called over-sampling problem occurs if the selected
length of the step is too short. In this case, too many pixels
have been drawn, the computation is lavish, and the raster-
ization time has slowed down. In traditional algorithms the
value of n is estimated according to the curve’s length:

n = max(nx,ny). (3)

nx and ny are determined as

nx =
√

2 m max
0≤i≤m−1

|Xi+1 −Xi|,

(4)

ny =
√

2 m max
0≤i≤m−1

|Yi+1 −Yi|,

where m is the order of the curve and (Xi,Yi) are the coor-
dinates of the curve’s ith control vertex. In the above for-
mula, the multiplier

√
2 denotes the distance between two

diagonally-adjacent pixels on the curve.

Huang and Zhu improved the above algorithm in two as-
pects [HZ00]: firstly, a more efficient integer method is pro-
posed and, secondly, a better value for n is determined. This
method is briefly summarised in the continuation. Suppose,
the parametric curve equation is

x = f (t), y = g(t), 0 ≤ t ≤ 1. (5)

Let us consider x = f (t). The curve is divided into n seg-
ments (parameter t takes the values i/n, where 0 ≤ i ≤ n).
With the Intermediate Value Theorem, when n satisfies n ≥
max0≤i≤1 | f ′(t)| we have

∣∣∣∣ f (
i+1

n
)− f (

i
n
)

∣∣∣∣= f ′(θ)
n

≤ 1. (6)

It ensures that each step is less than a pixel and in this way
guarantees the curve continuity. In order to use only integer
calculations, the equation x = f (t) is multiplied by a positive
integer N, and becomes an integer equation

Nxi = ϕ(i)+ zi. (7)

where ϕ(i) = N f (i
N) and its residue zi(|zi| ≤ N/2) are inte-

gers. The meanings for each variable can be seen in Fig. 1. xi
denotes the pixel’s x coordinate, the nearest to the calculated
value of f (i

n). Residue zi denotes the difference between xi

and f (i
n) (certainly, it has to be multiplied by N to become

an integer). The case shown in Fig. 1a is characterized by the
negative integer value of zi, i.e., the pixel left of the actual
curve is obtained. The opposite case, when zi is a positive
integer, is shown in Fig. 1b.

Figure 1: Relationship between xi and f (i/n).

Huang and Zhu’s algorithm calculates points on the curve,
pixel by pixel. Suppose the x coordinate of the current
pixel on the curve is xi. The x coordinate of the next
pixel xi + 1 should satisfy: Nxi+1 = ϕ(i+ 1)+ zi+1, where
ϕ(i+1) = ϕ(i)+∆ϕ(i) = Nxi − zi +∆ϕ(i). From eq. (7) we
have |∆ϕ(i)| = N| f (i+1

n)− f (i
n)| ≤ N, while |zi| ≤ N

2 , thus
|∆ϕ(i)− zi| ≤ 3

2 N. The possible values for xi+1 are, there-
fore, xi −1, xi or xi +1. Thus the formulae for xi+1 and zi+1
are obtained.

xi+1 =


xi −1 , when ∆ϕ(i)− zi <− 1

2 N,

xi , when − 1
2 N ≤ ∆ϕ(i)− zi <− 1

2 N,

xi +1 , when ∆ϕ(i)− zi ≥ 1
2 N

(8)

c⃝ The Eurographics Association 2011.

34

Y.K. Liu & P.J. Wang & D.D. Zhao & D. Špelič & D. Mongus & B. Žalik / Pixel-Level Algorithms for Drawing Curves

zi+1 =


zi −∆ϕ(i)−N , when xi+1 = xi −1,

zi −∆ϕ(i) , when xi+1 = xi,
zi −∆ϕ(i)+N , when xi+1 = xi +1.

(9)

The formula for y coordinate is obtained similarly. The
value of n obtained by this approach [HZ00] is smaller than
that used by the traditional algorithm. It is still determined
by eq. (3), but eq. (10) is used to determine nx and ny, instead
of eq. (4).

nx = m · max
0≤i≤m−1

|Xi+1 −Xi|,

(10)

ny = m · max
0≤i≤m−1

|Yi+1 −Yi|,

It is proved in [HZ00] that the value for n obtained in this
way meets

n ≥ max
0≤t≤1

| f ′(t)|. (11)

3. The algorithm for rasterizing parametric curves

3.1. The optimum value of n

When analyzing the results of the implemented Huang-Zhu
algorithm, it was noticed that the maximal value of the step’s
length obtained by this algorithm varies within the range
0.6 to 0.8. This is, however, far from the optimum value 1.
Therefore, our aim was to find the minimum value of n sat-
isfying eq. (11), i.e. finding the minimum upper-bound of
| f ′(t)|. From the calculation process for n done in the pre-
vious subsection, and according to [HZ00], it is now known
that m ·max0≤t≤1 |Xi+1 −Xi| is the upper-bound for | f ′(t)|,
but it is not its minimum. In the continuation the minimum
upper-bound is derived as follows.

The minimum upper bound for | f ′(t)| can appear at the
extreme points or at the endpoints of the curve (t = 0 or
t = 1). Therefore, the highest value of | f ′(t)| at one of the
endpoints or extreme points is the minimum upper-bound.
For determining n, we use a cubic Bézier curve as an exam-
ple

f (t) = X0(1− t)3 +3X1t(1− t)2 +3X2t2(1− t)+X3t3. (12)

f ′(t) = 3((X3 −3X2 +3X1 −X0)t
2

+2(X2 −2X1 +X0)t +X1 −X0).
(13)

By derivation, we obtain eq.(13). To get the extreme
points for f ′(t), we set:

6((X3 −3(X2 −X1)−X0)t +X2 −2X1 +X0) = 0. (14)

Suppose that V = X2 −2X1 +X0, W = X3 −3(X2 −X1)−
X0. From the above equation, we know that f ′(t) reaches
the extreme at 3(X1 −X0 −V 2/W) when t = −V/W . It is
obvious that the value for f ′(t) at the ends (t = 0 and t = 1)
are different 3|X1 −X0| and 3|X3 −X2|. So the value of nx is
defined by

nx =


3 maxa , when− V

W ∈ [0,1],
,

3 maxb , when− V
W ̸∈ [0,1],

maxa = max(|X3 −X2|, |X1 −X0 − V 2

W |, |X1 −X0|),

maxb = max(|X3 −X2|, |X1 −X0|).

(15)

Using the same approach, the value of ny is obtained from
ny ≥ max0≤t≤1 |g′(t)|. Finally, we take

n = max(nx,ny), (16)

which gives the optimum value for n.

For conics, the extreme points of f ′(t) only appear at both
ends. Therefore, the value for nx is 2max(|X2 −X1|, |X1 −
X0|). For cubics and quadrics, there should be one or two
extreme points on the curve in addition to the ending points.
Curves of higher order are used less. Table 1 shows the val-
ues of a number of iterations n obtained by different meth-
ods, while plotting two cubic Bézier curves, as shown in
Fig. 2. Both methods determine the same set of pixels.

Table 1: Comparison of the algorithms according to the
value n

Traditional Huang-Zhu Improved
algorithm algorithm algorithm

2a 849 600 480
2b 1188 840 600

Figure 2: Cubic Bézier curves.

c⃝ The Eurographics Association 2011.

35

Y.K. Liu & P.J. Wang & D.D. Zhao & D. Špelič & D. Mongus & B. Žalik / Pixel-Level Algorithms for Drawing Curves

The curves shown in Fig. 2a and b consist of 170 and 294
pixels, respectively. The resolutions of the images have been
reduced to clearly show the plotted pixels. Obviously, the
number of iterations n for plotting one pixel is the small-
est using our algorithm, which also affects the run-time. In
the continuation, the so-called double-step pixel-level algo-
rithm is proposed, which decreases the value of n further and
achieves even higher speed.

3.2. A Double-Step Algorithm for Rasterizing
Parametric Curves

In the previous subsection, the minimum value for n was
derived by satisfying the condition of n ≥ max0≤t≤1 | f ′(t)|.
If n is decreased further, discontinuous points could appear
on the curve, as the length of the step may be longer than the
pixel size. However, the basic idea of the proposed algorithm
is to increase (doubling) the step-length (i.e., decreasing n by
half). In this way, as the curve goes one step ahead, a pixel
on the curve may be passed-over, and lost. In this case, the
lost pixel is determined by interpolation. The benefit of this
approach is obvious: the number of algorithm iterations is
decreased by half, whilst the set of the plotted pixels is the
same as for the single-step algorithm.

Assume n is the value of the steps for the single-step al-
gorithm, as defined in the above paragraph. To make the al-
gorithm double-step, eq. (6) should be multiplied by 2:

| f (i+1
n/2

)− f (
i

n/2
)|= | f ′(Θ)

n/2
| ≥ 2. (17)

Eq. (17) ensures that the doubled step-length (i.e. the
value of n decreases by half) is no longer than two-pixel
lengths. In continuation, we consider how x coordinate is
determined (y coordinate is obtained analogously). Suppose
the current determined coordinate is xi. With eq.(7), the next
coordinate xi+1 should satisfy

Nxi+1 = ϕ(i+1)+ zi+1 (18)

where

ϕ(i+1) = ϕ(i)+∆ϕ(i) = Nxi − zi +∆ϕ(i) (19)

Since ϕ(i) = N f (i
n), we know from eq. (17)

|∆ϕ(i)|= N| f (i+1
n/2

)− f (
i

n/2
)| ≤ 2N (20)

while

|zi| ≤
N
2

(21)

thus

|∆ϕ(i)− zi| ≤
5
2

N. (22)

It can be seen that the possible values for xi+1 are xi − 2,
xi−1, xi, xi+1 and xi+2. According to eq. (8), the equation
for calculating is obtained as follows:

When (k − 1
2)N ≤ ∆ϕ(i)− zi < (k + 1

2)N, then xi+1 =
xi + k, where k = −2,−1,0,1,2. The value for residue zi+1
is determined as zi+1 = Nxi+1 − ϕ(i + 1) (see eq. (9)).
When xi+1 = xi + k, then zi+1 = zi − ∆ϕ(i) + kN, where
k = −2,−1,0,1,2. The recursive formula obtained in this
way is then used to determine x coordinates of the next pixel
and residue z for the next step.

When the increased or decreased amplitude of x coordi-
nate is greater than the pixel length, i.e. (xi+1 = xi + 2 or
xi+1 = xi−2), the middle passed-over pixel is determined by
the interpolation method. However, it is worth noticing that
the occurrence probability for this is small (see the result in
the next subsection). In this case, the following conditions
have to be considered:

• if y coordinates do not differ (yi+1 = yi), the middle pixel
is trivially determined (xi+1,yi);

• if y coordinate is increased by 2 (yi+1 = yi+2), the middle
pixel obviously has the coordinates (xi +1,yi +1);

• if y coordinate increases by 1 (yi+1 = yi + 1), then two
pixels are considered, i.e. (xi+1,yi) and (xi + 1,yi + 1).
The nearer pixel to the curve is selected as the middle
pixel. This pixel is determined by increasing the magni-
tude of y coordinate by half and testing whether its value
is larger than N/2. If it is, then (xi +1,yi +1) is selected,
otherwise (xi +1,yi) is accepted.

4. Results

In this subsection, pixel-level curve-plotting algorithms are
compared with other algorithms. As already shown (Table
1 in subsection 3.2), Huang-Zhu’s algorithm is better than
the traditional one, therefore only this algorithm was used
for this comparison. Two versions of Huang-Zhu’s algorithm
were used: the basic one briefly described in subsection 3.1,
and the improved one according to [HZ00]. This improved
version does not plot repetitive pixels (i.e., after the location
of the pixel is computed, the algorithm tests whether it is a
repeated point; in this case, the pixel is not plotted). The al-
gorithms were implemented in C. The results obtained when
plotting curves from Fig. 2, are summarized in Table 2. As
can be seen, the comparison was done according to three pa-
rameters:

• the number of algorithm cycles (n),
• the rate of the efficient point representing the redundancy

degree of the points on the curve [Rap91] (some points are

c⃝ The Eurographics Association 2011.

36

Y.K. Liu & P.J. Wang & D.D. Zhao & D. Špelič & D. Mongus & B. Žalik / Pixel-Level Algorithms for Drawing Curves

calculated but they are not plotted, as they are rounded to
the same pixels (these points are called inefficient points),

• spent CPU time plotting the curve 1000 times.

As seen from Table 1, the efficient point rate (EPR) of the
double-step algorithm is much higher than for Huang-Zhu’s
algorithm. Because of this, the run-time of the proposed al-
gorithm is shorter.

4.1. Implementation on GPU

Presented algorithms have also been implemented on a
Graphics Processing Unit (GPU). GPUs have been devel-
oped to paralellize visualization of geometric entities on
hardware. For this, various programming libraries and lan-
guages have been developed including CUDA [CUD11],
GLSL [GLS11], and HLSL [HLS11]. HLSL stands for the
High Level Shading Language for DirectX, and it has been
applied in our case. Using HLSL, a C-like programmable
shaders for the Direct3D pipeline can be created [HLS11].
Various versions of DirectX are available. In each version,
new hardware capabilities are supported. The current ver-
sion is 11 [GFW11]. DirectX version 10 has been applied,
in our case due to the capability of the used graphics card
(NVIDIA R⃝GeForce R⃝9800 GTX). DirectX 10 offers two
shader types: vertex shader and pixel shader from previous
versions, and it introduces a new geometry shader. The ge-
ometry shader can generate new graphics primitives such
as points, lines, and triangles, which are from primitives
sent into the graphics pipeline. GPUs are not very suitable
for interative algorithms as proposed in this paper. In addi-
tion, GPUs unroll all loops and if statements [HB05], which
would represents a bottle-neck in the total visualization time.
As the algorithm for plotting the implicite functions con-
sists of considerable number of if statemets in each iteration,
its implementation on GPU is sensless. Because of this, we
have only implemented parametric curves on GPU as fol-
lows.

The four control points of cubic Bézier curve are trans-
ferred to GPU through the vertex buffer pipeline. The points
(pixels) on the curve are calculated in the geometry shader.
Firstly, the number of pixels is determined as described in
the paper. The geometry shader calculates the pixels and
inserts them into the vertex buffer pipeline using Stream-
Output Stage [MMS11]. Finally, the content of the vertex
shader pipline is visualized. The procedure is schematically
shown in Figure 3, while the HLSL code is given in the
Appendix A. Table 2 shows the number of frames per sec-
onds while plotting the curve. It is interesting to observe that
Huang-Zhu’s algorithm is faster that our algorithm although
it plots less pixels. However, the double-step algorithm re-
mains the fastest.

5. Conclusion

This paper presents a new algorithm for rasterizing curves.
The method deals with parametrically-defined curves. The

Set control points

Geometry shader
calculations

Draw curve

Add curve
pixels

Figure 3: Geometry shader work-flow.

Table 3: Frames per seconds achieved by GPU while plot-
ting curves using different methods

Control Huang-Zhu Our Double-step
points algorithm algorithm algorithm

C1(-90,-90)
C2(100,100) 6200 6050 6890
C3(-100,100)
C4(100,-100)
C1(-90,-90)
C2(-50,100) 6180 6030 6720
C3(50,-100)
C4(100,100)

C1(-100,-100)
C2(100,-100) 6170 6020 6720
C3(100,100)
C4(-100,100)

crucial question, in this case, is how to determine the length
of the step used by an algorithm. Oversampling is the most
characteristic problem for these algorithms. In this paper, an
optimum step-length is derived at, which minimise the over-
sampling problem. In this way, less cycles are needed by the
algorithm, thus making it more efficient. However, a double-
step algorithm using only integer arithmetic is introduced in
order to further enhance the algorithm. The algorithms have
been implemented also on GPU where the double-step algo-
rithm remains the most efficient.

c⃝ The Eurographics Association 2011.

37

Y.K. Liu & P.J. Wang & D.D. Zhao & D. Špelič & D. Mongus & B. Žalik / Pixel-Level Algorithms for Drawing Curves

Table 2: Comparison of the algorithms

Huang-Zhu algorithm Double-step algorithmHuang-Zhu algorithm
without repeated points without repeated points

Figure 2a Figure 2b Figure 2a Figure 2b Figure 2a Figure 2b
Value n n 600 840 600 840 300 420
given by [HZ00] EPR 28.3% 34.9% 28.3% 34.9% 56.6% 69.8%

t(s) 2.36 3.35 0.79 1.32 0.74 1.26
The new n 480 600 480 600 240 300
value of n EPR 35.3% 48.9% 35.3% 48.9% 70.5% 97.7%

t(s) 1.98 2.56 0.77 1.29 0.69 1.21

5.1. Acknowledgements

This work was supported by the National Natural Science
Foundation of China (60675008), bilateral China-Slovene
project Study of Selected Algorithms on Computational Ge-
ometry and Shape Representation (BI-CN/07-09/012) and
Slovenian Research Agency under the grant 1000-08-31010.

References

[AP92] ANANTAKRISHNAN N., PIEGL L.: Integer de casteljau
algorithm for rastering nurbs curves. Computer Graphics Forum
11 (2) (1992), 151–162. 1

[Bre65] BRESENHAM J. E.: Algorithms of computer control of a
digital plotter. IBM System Journal 4 (1) (1965), 25–33. 1

[Bre77] BRESENHAM J. E.: A linear algorithm for incremental
digital display of circular arcs. Communications of the ACM 20
(2) (1977), 100–106. 1

[CSR89] CHANG S. L., SHANTZ M., ROCCHETTI R.: Render-
ing cubic curves and surfaces with integer adaptive forward dif-
ferencing. Computer & Graphics 23(3) (1989), 157–166. 1

[CUD11] CUDA: http://www.nvidia.com/object/what_is_cuda_new.html,
March 2011. 5

[FH93] FELLNER D. W., HELMBERG C.: Robust rendering of
general ellipses and elliptical arcs. ACM Transactions on Graph-
ics 12(3) (1993), 251–276. 1

[FH94] FELLNER D. W., HELMBERG C.: Best approximate gen-
eral ellipses on integer grids. Computers & Graphics 18(2)
(1994), 143–151. 1

[GFW11] GFW: http://www.gamesforwindows.com/en-
us/directx/, March 2011. 5

[GLS11] GLSL: http://www.opengl.org/documentation/glsl/,
March 2011. 5

[HB05] HARRIS M., BUCK I.: Gpu flow-control idioms. In
GPUGems 2 – Programming Technique for High-performance
Graphics and General-propose Computation (2005), Pharr M.,
R.Fernando, (Eds.). 5

[HLS11] HLSL: http://msdn.microsoft.com/en-
us/library/bb509561(v=vs.85).aspx, March 2011. 5

[HZ00] HUANG Y.-D., ZHU G.-Q.: A fast point-by-point gener-
ating algorithm for polynomial parametric curve. Chinese Jour-
nal of Computers 23(4) (2000), 393–397. 2, 3, 4, 6

[Kla91] KLASSEN R. V.: Integer forward differencing of cu-
bic polynomials: analysis and algorithms. ACM Transaction on
Graphics 10(2) (1991), 152–181. 1

[LB05] LOOP C., BLINN J.: Geometry on gpus: Resolution inde-
pendent curve rendering using programmable graphics hardware.
ACM Transactions on Graphics 24(3) (2005), 1000–1009. 1

[Liu93a] LIU Y.-K.: Algorithm for circle approximation and gen-
eration. Computer-Aided Design 25(3) (1993), 169–171. 1

[Liu93b] LIU Y.-K.: The generation of circular arcs on hexagonal
grids. Computer Graphics Forum 12(1) (1993), 21–26. 1

[LSP87] LIEN S. L., SHANTZ M., PRATT V.: Adaptive for-
ward differencing for rendering curves and surfaces. Computer
& Graphics 21(4) (1987), 111–118. 1

[Mcl92] MCLLROY M. D.: Getting raster ellipses right. ACM
Transactions on Graphics 11(3) (1992), 259–275. 1

[MMS11] MMS: http://msdn.microsoft.com/en-
us/library/bb205121(v=vs.85).aspx, March 2011. 5

[Pit85] PITTEWAY M. L. V.: Algorithms of conic generation, fun-
damental algorithms for computer graphics. NATO ASI Series
F-17 (1985), 219–237. 1

[Rap91] RAPPOPORT A.: Rendering curves and surfaces with hy-
brid subdivision and forward differencing. ACM Transaction on
Graphics 10(4) (1991), 323–341. 4

[RdMF08] RUEDA A. J., DE MIRAS J. R., FEITO F. R.: Gpu-
based rendering of curved polygons using simplicial coverings.
Computers & Graphics 32 (2008), 581–588. 1

c⃝ The Eurographics Association 2011.

38

Y.K. Liu & P.J. Wang & D.D. Zhao & D. Špelič & D. Mongus & B. Žalik / Pixel-Level Algorithms for Drawing Curves

Appendix A: HLSL Source Code

// structure for Vertex shader data input
struct VS_IN { float4 pos : POSITION; };

// structure for Pixel shader data input
struct PS_IN { float4 pos : SV_POSITION; };

// structure for Geometry shader data input
struct GS_IN { float4 pos : POSITION; };

// Vertex data are obtained at the input
// the position of vertex data is returned
GS_IN VS(VS_IN input) {

GS_IN output = (GS_IN)0;
output.pos = input.pos;
return output;

}

// Code for Pixel shader; each pixel is drawn in white
float4 PS(PS_IN input):SV_Target {return float4(1,1,1,1);}

// code for Geometry shader
void GSScene(line GS_IN input[2],
inout LineStream<PS_IN> OutputStream) {
// define output vertex variable

PS_IN output = (PS_IN)0;
float pX[4];
float pY[4];
int N = 0;
int i = 0;

// store control points in the array
pX[0] = input[0].pos[0];
pX[1] = input[0].pos[2];
pX[2] = input[1].pos[0];
pX[3] = input[1].pos[2];
pY[0] = input[0].pos[1];
pY[1] = input[0].pos[3];
pY[2] = input[1].pos[1];
pY[3] = input[1].pos[3];

// calculate number of pixel
float maxxn=0;
float maxyn=0;
[unroll] for(i=1; i<=3; i++) {

if(pX[i]-pX[i-1] > maxxn) maxxn=pX[i]-pX[i-1];
if(pY[i]-pY[i-1] > maxyn) maxyn=pY[i]-pY[i-1];

}
N = (max(maxxn,maxyn) * 3) / 2;
float step=1.0/N;
float t=0;

// Calculation of Bezier curves
float X_c[4];
float Y_c[4];

X_c[3]=pX[3];
X_c[3]+=-3*pX[2];
X_c[3]+=3*pX[1];
X_c[3]+=-1*pX[0];

X_c[2]=3*pX[2];
X_c[2]+=-6*pX[1];
X_c[2]+=3*pX[0];

X_c[1]=3*pX[1];
X_c[1]+=-3*pX[0];

X_c[0]=pX[0];

Y_c[3]=pY[3];
Y_c[3]+=-3*pY[2];
Y_c[3]+=3*pY[1];
Y_c[3]+=-1*pY[0];

Y_c[2]=3*pY[2];
Y_c[2]+=-6*pY[1];
Y_c[2]+=3*pY[0];

Y_c[1]=3*pY[1];
Y_c[1]+=-3*pY[0];

Y_c[0]=pY[0];

//Partial differencing
float dx[4];
float dy[4];
float step2 = step * step;
float step3 = step2 * step;

dx[0]=X_c[0];
dx[1]=X_c[1]*step+X_c[2]*step2+X_c[3]*step3;
dx[2]=2*X_c[2]*step2+6*X_c[3]*step3;
dx[3]=6*X_c[3]*step3;

dy[0]=Y_c[0];
dy[1]=Y_c[1]*step+Y_c[2]*step2+Y_c[3]*step3;
dy[2]=2*Y_c[2]*step2+6*Y_c[3]*step3;
dy[3]=6*Y_c[3]*step3;

float X[1000];
float Y[1000];
X[0]=dx[0];
Y[0]=dy[0];

// send first pixel to be drawn
output.pos = float4(X[0], Y[0], 0, 1);
OutputStream.Append(output);

[unroll] for(i=1; i < N; i++) {
// for each pixel calculate x and y
X[i]=X[i-1]+dx[1];

c⃝ The Eurographics Association 2011.

39

Y.K. Liu & P.J. Wang & D.D. Zhao & D. Špelič & D. Mongus & B. Žalik / Pixel-Level Algorithms for Drawing Curves

dx[1]+=dx[2];
dx[2]+=dx[3];

Y[i]=Y[i-1]+dy[1];
dy[1]+=dy[2];
dy[2]+=dy[3];

// send calculated position of pixel to OutputStream
output.pos = float4(X[i], Y[i], 0, 1);
OutputStream.Append(output);
t+=step;

} // Send GPU comand to draw all pixel in OutputStream
OutputStream.RestartStrip();

}

// define Render technique
technique10 Render {

pass P0 {
SetGeometryShader(CompileShader(gs_4_0, GSScene()));
SetVertexShader(CompileShader(vs_4_0, VS()));
SetPixelShader(CompileShader(ps_4_0, PS()));

}
}

c⃝ The Eurographics Association 2011.

40

