EG UK Theory and Practice of Computer Graphics (2011)
Hamish Carr, Ian Grimstead (Editors)

Remodelling of Botanical Trees for Real-Time Simulation

D.T. Reynolds S.D. Laycock A.M. Day

School of Computing Sciences, University of East Anglia
Norwich, NR4 7TJ, UK
{daniel.reynolds|s.laycock|a.day } @uea.ac.uk

Abstract

This paper proposes a technique to use virtual trees created with an industry recognised modelling tool. Initially
the skeletal structure is extracted and processed to generate a continuous mesh suitable for high quality, real-time
rendering and simulation. Utilising the inherent hierarchical structure of botanical trees, the bone system is cal-
culated from existing, low quality geometry. Once an ordered skeleton is available, a low resolution surface is
created around the form as a single continuous mesh providing smooth, continuous connections where branches
diverge, avoiding artefacts introduced by overlaid surfaces. Creation of the vertices relative to the skeletal struc-
ture ensures no miss-classification in assigning bone influence, allowing for realistic animation and effective mesh
refinement introduced dynamically using GPU based techniques.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Computational Geometry
and Object Modelling— 1.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—

1. Introduction

Realistic simulation of virtual environments is an important
part of modern computer graphics with the expectation of
vastly increasing quality in real-time applications as hard-
ware capabilities improve. An area of this which has always
proved to be challenging is the rendering and simulation of
vegetation such as trees, due to the complexity of the models
and the complicated structures that govern their behaviour.
The field of virtual trees is split into two main areas, the
procedural generation of trees adhering to correct structure
and formation, and the rendering of tree models in real-time
and at high quality. Although they are two separate research
topics, the issue with this distinction is that advances in one
field will often be unusable to the other. Many elegant solu-
tions developed to generate accurate trees using complicated
growth models produce geometry which is ill-suited for an-
imation and high quality rendering, with little enhancement
for modern graphics technology. Also many rendering and
simulation techniques use time consuming manually mod-
elled geometry or procedural geometry which adheres to an
over-simplified, inaccurate rule set.

This paper describes a technique to use data created by
a popular piece of tree modelling software, which produces
detailed, highly realistic models. The physical geometry is

(© The Eurographics Association 2011.

DOI: 10.2312/LocalChapterEvents/TPCG/TPCG11/001-008

regenerated using the created structure to produce a virtual
tree suitable for high quality, real-time simulation and ren-
dering. The Xfrog software detailed by Deussen and Linter-
mann, [DL97] [DL99], implements an easy to use interface
to create highly realistic tree structures, however, the geom-
etry exportable from this application is unsuitable for very
high quality visualisations and important structural informa-
tion such as a usable tree skeleton is not present, making it
difficult to create or control tree movement. The techniques
described in this paper use the output from Xfrog to derive
a full skeletal structure organised appropriately to describe
the inherent hierarchy of the tree. New geometry is gener-
ated around the skeleton as a single, continuous polygonal
mesh introducing higher quality modelling of branch joins
and incorporating full bone weighting of the mesh, giving
an animatable system similar to applications of character
skinning. The model is optimised for cutting edge rendering
techniques utilising recent advancements in graphics hard-
ware, most prominently the tessellation engine which is used
to both add considerable detail procedurally and remove un-
necessary complexity providing efficient, dynamic level of
detail representation.

The paper is organised as follows: Section 2 describes pre-
vious related work. Section 3 details the contribution made

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/LocalChapterEvents/TPCG/TPCG11/001-008

2 Reynolds et al. / Remodelling of Botanical Trees for Real-Time Simulation

by this paper. Section 4 shows results and comparisons of
the work and Section 5 concludes the findings.

2. Related Work

While many artists have modelled excellent, incredibly re-
alistic virtual trees, the difficulty and required skill for this
task make graphical projects requiring trees a very time con-
suming and inefficient task to perform manually. In response
to this, a large amount of research is carried out in the field
of procedurally generating representations of vegetation and
arguably, one of the most popular approaches is Linden-
mayer Systems, or L-Systems, first put forward by Linden-
mayer, [Lin68]. In order to generate effective graphical rep-
resentations of branching structures in three-dimensions, the
original L-System theory had to be expanded giving rise to
several new variations. Prominent methods used in simula-
tion include the most simple variety, DOL-Systems (deter-
ministic context-free L-Systems), along with OL-Systems
and parametric L-Systems. To generate a three-dimensional
structure from these systems, turtle graphics can be used to
interpret parts of the rewritten string as geometrical infor-
mation, much of this process and many examples of it are
detailed by Prusinkiewicz, [Pru86], and by Prusinkiewicz
and Lindenmayer, [PL90], creating the structure of a plant
around which geometry can be formed. The applications of
plant modelling using L-Systems developed since the re-
lease of [PL90] are surveyed in depth by Prusinkiewicz et
al. [PHHM96] with particular attention to the development
of extensions of the L-System formalisation as well as new
biological uses for the rewriting mechanism. Another survey
of more recent developments is carried out in [Pru04].

Plant structures are typically too complex to model man-
ually, however, there are cases where a single plant or tree is
a main point of focus in a given simulation and more control
over its form is required than can be given by purely pro-
cedural modelling techniques. To this end, work has been
done producing solutions which take a semi-procedural ap-
proach to vegetation modelling in that a structured rule-set
it used to generate the hierarchy of elements, within a user-
friendly environment for manual creation. One such system,
Xfrog, is put forward by Deussen and Lintermann, [DL97],
where a hierarchy of user controlled structures is employed
to generate a complex tree model. The system functions by
giving the user a selection of useful elements such as branch-
ing shapes and leaf nodes, and allowing them to be con-
secutively stacked to form the basis of a botanical model.
Modifiers are available to be set as well, governing the shape
produced and the distribution of child elements. In addition,
the availability of world constraints such as gravity and light
allow for simple generation of high quality single models.
The system was substantially improved in [DL99] by adding
much more control over the individual elements. One ma-
jor advantage of Xfrog over it’s competitors is that it mod-
els every individual element including each leaf in a sim-

(a) Generated Xfrog model (b) Generated Xfrog model
with leaves without leaves

(c) Artifacts caused by modelling branch joins as a
non-continuous mesh

Figure 1: Young Japanese Maple tree generated using Xfrog

ple manner without using a technique known as billboarding
where several elements will be grouped together into one
image which is used to texture a plane as a simplified rep-
resentation. By avoiding billboarding and creating every el-
ement, the produced trees can be used with highly detailed
simulation techniques such as those put forward by Ota et
al., [OTF*04]. While the proposal can be used to create ex-
cellent tree structures which appear to be very realistic, as
shown in Figure 1(a) and Figure 1(b), there are two major
drawbacks to the geometry which is generated. One large
limitation is that only the mesh of the tree itself is accessible
when exported for inclusion outside of the software. Without
access to the structural skeleton of the tree and how this re-
lates to the physical geometry, it becomes impossible to use
the model in any sort of dynamic scene. With enhancements
in the quality of graphical applications, the expected realism
in simulations often requires animation of elements in accor-
dance with weather conditions and physical interaction. The
lack of structure to properly simulate this movement is one
of the major issues tackled in the work put forward in this pa-
per. The second drawback to the approach of the software, is
that models are created using a separate, unconnected mesh
to represent each branch. The effect of this approach is that
if the root of a child branch does not have a width match-
ing that of its parent at point of connection, unrealistic arte-
facts are caused as shown in Figure 1(c). At close range, this
inaccuracy and over-simplification of the branch junctions

(© The Eurographics Association 2011.

Reynolds et al. / Remodelling of Botanical Trees for Real-Time Simulation 3

becomes very noticeable, and drastically reduces the visual
quality once independent branch motion is introduced. The
software provides an effective and easy to use tool to create
the form and structure of a virtual tree. However the geome-
try produced is inappropriate for animated scenes where the
trees may become the visual focus, such as in recent simula-
tions performed by Habel et al. [HKW09].

The techniques of procedurally modelling the geometry
of a tree can understandably be split into two areas, mod-
elling the structure and form of a tree and modelling the ac-
tual geometry created around that structure. Given the pre-
generated structure of a maple tree, Bloomenthal details a
method of generating high quality geometry to provide a vi-
sually realistic rendering of the tree, [Blo85]. A method is
shown which maps a three-dimensional circle of points at in-
tervals around the line of a given tree branch, which are then
used as the basis to create the polygonal mesh of the limb.
At points where limbs join, complex procedures are required
and implemented to join the meshes forming a ramiform at
the junctions without intersecting or overlapping. Although
the geometry created by this proposal is of a very high vi-
sual quality and is very realistic, it is inappropriate for use in
real-time or animated applications. The costly computation
of smooth mesh curves at branch junctions is performed as
a pre-process to rendering and is too inefficient to compute
in real-time. This disadvantage makes the model completely
static as any change in the shape of the tree, especially where
a child branch connects to its parent limb, would require
re-calculation of the mesh. In addition to this problem, the
technique creates tree structures of a very high complexity
which may be appropriate if the tree itself is the main focal
point of the scene, but makes it infeasible if groups of trees
or alternative points of focus are required without drastically
reducing the mesh resolution. The complications of procedu-
rally modelling limb junctions is also tackled specifically by
Lluch et al., [LVMO04], where a pre-calculated structure us-
ing an L-System approach is taken as a skeleton upon which
to generate the geometry in a single polygonal mesh. The
idea of the research is to join different sections of the tree
together using only one continuous mesh. The proposal per-
forms this by identifying the intersection points of elements
and grafting the polygons together with a higher resolution
triangle mesh, ensuring complete continuity. While the ap-
proach rectifies the issues of unconnected surfaces whilst
maintaining the form of an original input tree, it shares the
same limitations as the previous proposal in that the mod-
els produced are created using a very high number of poly-
gons making it ineffective in many real-time simulations.
The remodelling of branch connections is based upon a static
tree. Should motion and animation be introduced to the tree
structure, connected limb junctions would need to be recal-
culated and the geometry regenerated, making the proposal
infeasible for dynamic scenes. Section 3 of this paper de-
tails a developed technique to create a tree from a simple,
low polygon connected mesh which can be animated effi-

(© The Eurographics Association 2011.

ciently whilst keeping it’s continuous surface, having detail
and higher resolution added dynamically based on visibility.

3. Remodelling Trees for Simulation

The remodelling technique detailed in this paper uses trees
created by the Xfrog software mentioned previously. This
is chosen due to both its high usability and ability to decide
how branches of a generated structure are represented. Being
a low cost solution compared to its main competitors, such
as SpeedTree, also makes it a more accessible tool to work
with in both the entertainment and academic fields. The tech-
nique will be demonstrated using a stock tree model pack-
aged with the software depicting a Young Japanese Maple
with the choice of primitive representing the branches being
the only customisation required before exporting the model
using Wavefront OBJ format. Using the exported data, the
tree skeleton is extracted and used in the creation of a contin-
uous mesh, modelling the branch structure. Automatic bone
weighting is employed to transform the mesh and add further
detail, as described fully in this section.

3.1. Generation of the Skeleton

The primitive selection process available in Xfrog simplifies
the bone extraction task, by choosing a square representa-
tion, each branch of the tree is created using square cross-
sections positioned at the point of segmentation along each
branch length. This creates an array of small planes forming
the line of the limb as shown in Figure 2(a) and Figure 2(b),
both in full and only showing the first two levels of branch
for clarity. By giving a name to each level of the structure
within Xfrog, the exported geometry is grouped within the
resulting OBJ by individual branch, each labelled with a se-
quential number pre-fixed with the name given to that level
of branch. This grouping and naming convention is used in
the processing of the data to separate the polygons represent-
ing each branch and group the collections by the level they
belong to. A polyline of bones making up the branch is then
generated by connecting the midpoint of each square to the
midpoint of the next. Already knowing which level of the
structure an individual branch belongs to, the distance be-
tween the root of the branch skeleton and the points of the
next lowest level can be checked to find the closest point and,
as such, the parent branch and point along that branch which
the current limb connects to. Using this information, the col-
lection of branches is re-ordered and combined into one hi-
erarchy of elements, storing this main trunk which contains
a list of child branches. In turn each possesses a list of child
branches until the entire tree is defined. Using this approach,
not only is the skeletal information present for bone weight-
ing and animation, but the inherent hierarchy of the tree is
fully captured giving an important and useful simulation aid
essential for animation techniques such as those put forward
by Akagi and Kitajima, [AKO6] and techniques proposed
by Weber, [Web08]. In terms of basic animation purposes

4 Reynolds et al. / Remodelling of Botanical Trees for Real-Time Simulation

it provides an efficient system to use during the real-time
generation of stacked transformations across the structure.
For physical simulation the network of branch connections
it is readily available for the calculation of force transferral
among other interactions present between parent and child.

(a) Exported Xfrog branchrep- (b) As 2(a), showing only first
resentation in full two branch levels for clarity

(c) Skeleton extracted from Xfrog representation (blue)

Figure 2: Skeleton generation from Xfrog tree

As one of the aims of the project is to implement a sys-
tem of adding detail dynamically based on the visibility of
a section of tree, it is important that the base geometry be a
simple as possible. To this end, further simplification can be
made to the skeleton itself. As curvature and smoothing of a
limb can be added dynamically, described in Section 3.3, the
level of segmentation and number of bones in a branch im-
ported directly is greatly unnecessary. By reducing the num-
ber of bones present, the number of polygons in the final
mesh is greatly lowered and to achieve this, all branches of
the lowest level of the hierarchy are left as they are to main-
tain the uneven crookedness which is desired. All branches
of higher levels are redefined by their root points plus the
roots of all child limbs. As a result of this procedure, all seg-
mentation and curvature of a branch between the roots of
its child branches is removed to be added dynamically, con-
necting the child roots with single straight bones, as shown
in Figure 2(c). The overshooting of parent branches past the
root of their last child branch, which occurs in the origi-
nal model, is also removed as upon inspection of real veg-
etation patterns, the tendency of natural branches is to ter-
minate at the beginning of a smaller branch shoot or fork

into smaller branches rather than continuing on. This pro-
cess gives a much less complex base structure to be used as
the lowest level of detail, with smooth curve detail occurring
in real-time as a result of tessellation of the final mesh in
combination with bone weighting.

3.2. Creation of the Polygonal Mesh

To solve the problem of branch roots not connecting to their
parent branches to form a continuous mesh, rather than edit-
ing the existing model to form elegant joins as detailed in
[LVMO04], the geometry of the tree was completely regen-
erated around the extracted skeleton. This process allows
a tree structure to be created specifically at a low level of
detail base which can be easily tessellated to create the de-
sired complexity. Vertices are created using the position of
the skeleton points and a function to describe the width of a
branch at any given point. This can be the original width of
the exported Xfrog tree, or optionally a more realistic curve
to add to the general form of the tree. In the case of the exam-
ple shown in this paper, the width of a branch is calculated to
simulate the curve of % for 1 < x > 4 with the starting width
at the root being the width of the parent branch at that point,
as shown in Expression 1.

1/(3xB “hL L A B “h+1)—0.2 .
/(3 X BranchLength x %névgh longBranch+1)—0.25 % RootWidth

(O]

The procedure to wrap the tree in geometry starts at the
root of a branch and iterates down the length creating ver-
tices around each bone joint and is then called recursively
on each of the current branches child shoots. At the lowest
level of detail, the tree is comprised of four sided branches
throughout to give a very low polygon count but also to fa-
cilitate clean simple joins. To generate a ring of four ver-
tices around each bone joint, first the tangent of the joint
between the two connecting bones is found at the joint and
used to align the new points. As a more efficient way of
calculating the four corners, the closest of the three global
axes to the tangent is calculated and the line is projected
into two dimensions down both of the remaining axes. By
finding the lines perpendicular to the projected tangent, the
two remaining local axes around the tangent are found. To
generate the four vertices the calculated local axes are made
into vectors with a length of half the branch width at that
point and added to the bone joint position in all four combi-
nations of the two vectors and their inverse. Once these are
calculated they are joined with the points around the previ-
ous bone joint by a ring of triangular faces and the algorithm
proceeds along the limb to the next segmentation. In the sit-
uation where a child limb joins the current section of geom-
etry, two rings of points are created parallel to each other
separated by the width of the branch, forming a knuckle on
the linear extrusion and giving the child element a simple,

(© The Eurographics Association 2011.

Reynolds et al. / Remodelling of Botanical Trees for Real-Time Simulation 5

clean join. The side of the branch closest to the direction its
sub-branch shoots from is left unconnected by faces form-
ing a hole in the mesh, the four vertices surrounding the gap
being passed to the algorithm wrapping the child branch to
be used as the initial ring of points, as shown in Figure 3(a).
There are several advantages to modelling a tree in the form
of a continuous mesh such as this, the most evident being
the vastly improved visual quality. Branch joints appear to
be more natural and consistent whilst removing problematic
and unrealistic artefacts which occur at the junction of two
unconnected surfaces. In addition to the aesthetic improve-
ments, representing connections as a consistent surface al-
lows for the proper simulation of force transferral between
the elements and the effect applied force and movement has
on the junction itself.

(a) Generation of a new model around the calculated
skeleton

(b) A single bone’s influence on the geometry

Figure 3: Procedural mesh recreation

One of the common problems encountered when ‘skin-
ning’ polygonal meshes (applying a weighting to each ver-
tex to calculate how much influence a given bone has on the
point), is the miss-classification due to complex structures of
elements being very close to each other and often closer to
an incorrect bone than the desired one. Skinning a mesh is
a very complex problem, however, as the geometry has been
generated entirely relative to the skeleton, it is implicitly
known which elements should influence any given section.

(© The Eurographics Association 2011.

When wrapping a ring of new vertices around a bone joint,
they are each given an influence from the two connected
bones of 0.5, with the exception of branch end points which
only have influence from one bone at 1.0. As the geometry
is modelled as one continuous mesh, where one branch joins
another the vertices are shared allowing the influence from
both limbs to be accumulated at the points and scaled down
to total 1.0 as an additional process after all weighting has
been assigned. Once all weighting per vertex has been cal-
culated, an algorithm iterates through the mesh to calculate
all bone influences on a per face basis. By examining each
face and compiling a list of all skeletal elements that affect
any of the three points included, a comprehensive list of all
the bone weights for any given face can be generated. In the
case where a bone influences some points of a triangle and
not others it is assigned a weighting of 0.0 to the uninflu-
enced vertices, resulting in a constant gradient of influence
across the face of the triangle. With traditional ‘skinning’
techniques it is usually necessary to generate the polygo-
nal mesh in the desired form separately from the skeleton,
which is then applied to the model using bone weighting.
Depending on the form and complexity of the model it is of-
ten impossible to procedurally assign bone influence using
a simple algorithm without misclassification of vertices due
to distance or shape being closer to the range of a nearby
but incorrect bone. As the generated tree is created to di-
rectly replicate the previously developed skeleton and dur-
ing formation of the individual points, the relevant bones are
instantly accessible, vertex grouping can be performed dur-
ing the process ensuring complete accuracy as demonstrated
in Figure 3(b). In addition to allowing the mesh to be prop-
erly deformed by skeletal animation, the bone weighting as-
signed provides a blending definition which can be used to
refine the geometry itself, as described below.

3.3. GPU Enhancements

The implementation of the tree rendering after process-
ing the data is created using OpenGL 4.1 on an NVIDIA
GeForce GTX 460. One of the major advancements of
graphics developments in recent times is the introduction of
the programmable rendering pipeline, allowing developers
to control how vertex and face calculation is performed at
the rendering stage. However, the most important and newest
breakthrough the implementation makes great use of is the
tessellation engine. Tessellation works by taking an input
face in the form of a simple triangle and subdividing it into
multiple faces before adjusting the position of newly cre-
ated vertices according to a displacement map or function.
As this is performed within the rendering pipeline, no new
data needs to be copied across to the GPU per frame allow-
ing for an efficient method of incorporating dynamic level of
detail representations without changing the initial low poly-
gon mesh. The engine includes two new shaders into the
rendering procedure, the tessellation control shader which
is executed on every face of the initial model and determines

6 Reynolds et al. / Remodelling of Botanical Trees for Real-Time Simulation

the level of subdivision to be performed, and the tessella-
tion evaluation shader which executes on every vertex of the
newly subdivided mesh to calculate appropriate point posi-
tions. Starting with the simplified, low polygon model cre-
ated by wrapping the skeleton, extra detail is added by tes-
sellating the surface based on several factors. These factors
are considered to determine the correct complexity depend-
ing on how much of the mesh can be seen. The main factor is
the distance of the tree from the viewer and a linear progres-
sion is used to increase the level of subdivision as the viewer
approaches the model. The implementation allows for cus-
tomisation of how effective the mesh refining is by allowing
the user to set the maximum desired level of tessellation and
the distance from the tree at which tessellation should begin.
In addition to distance, this is combined with the area of the
face being processed, with a larger face needing higher lev-
els of subdivision due to its greater visibility, as shown in Ex-
pression 2. Triangle area and other static per face attributes
are calculated as a preprocessing stage to avoid costly com-
putation at render time. The final factor contributing to the
calculation is what level of branch the triangle belongs to,
allowing further detail to be added only to the areas of the
tree which have the highest visual impact such as the trunk
or larger limbs. This dynamic range of tessellation which
is calculated on a per face basis gives a smooth transition
between representations, avoiding the issue of ‘popping’ oc-
curring when switching the rendered object with one of a
different level of detail by recalculating the mesh gradually.

1 ,
(1 " MaxTessellationDistance X FaceDlstance) X

(WaxFaceareq ¥ FaceArea) x MaxTessellationLevel
@3

An additional enhancement that can be made using the
tessellation control shader is the dynamic culling of faces.
By setting a tessellation level of 0.0 the face is removed
from the rendering set and travels no further through the
pipeline, allowing individual triangles to be turned off when
unnecessary. There are two ways in which the implementa-
tion utilises this ability to increase rendering efficiency, the
first being to remove small branches at such a distance where
their rendering is unnecessary for the visual appearance of
the tree. Given that the level of each branch face is already
known along with its distance from the viewer, the face can
be removed if it is too far away. This is demonstrated in Fig-
ure 4, which shows four different level of detail representa-
tions. The effect of this procedure is that at key distances the
highest visible level of branches will be completely removed
from rendering, happening per face to give a smooth grad-
ual transition between representations which is not casually
noticed with the inclusion of rendering leaves.

One of the most costly procedures during rendering is the
copying of data from memory onto the graphics hardware,
making it vital that as much as possible is transferred as a

Figure 4: Dynamic level of detail using tessellation

pre-processing step and remains unchanged. To enable as
much data to be pre-processed as possible, the implemen-
tation compiles the information into a continuous array and
loads it to the GPU in the form of a texture. This allows
the tessellation shaders to look up the relevant information
required at render time using their own inbuilt ID as an in-
dex. There are two major collections of data being gener-
ate prior to rendering, the first being per face information
accessed from the tessellation control shader. This includes
the area of each face, the level of branch it belongs to and a
list of all skeleton bones having influence on the face along
with their weighting at each individual vertex. The list of
bones included serves as an index into the second collection
of data which is information pertaining to the bones them-
selves such as their length, their position along the branch
they belong to, the branch’s minimum and maximum width
and the endpoints defining the individual bone. This data is
used within the tessellation evaluation shader to generate the
appropriate position of all new vertices and saves recomput-
ing costly calculations which would severely impede render-
ing speed.

Figure 5: Added detail and mesh smoothing applied to high
poly representation at close range

(© The Eurographics Association 2011.

Reynolds et al. / Remodelling of Botanical Trees for Real-Time Simulation 7

Shaping and adding detail to the branches is performed
on the mesh after subdivision to create an accurate form for
any given level of detail. Face information is accessible us-
ing vertex attributes for all three points of the triangle, with
newly generated vertices being defined by their barycentric
coordinates within the face. For each bone having influence
on the face the closest point on the bone to a newly gener-
ated vertex is found, the vector between these points giving
an offset direction to ensure all new points are positioned
uniformly around the skeletal structure. By using bone in-
formation such as the position of the bone along the branch
and the size of the limb, the same branch width calculation as
used for the generation of the initial mesh is used, as shown
in Expression 1. This ensures a perfectly consistent round-
ing of the new limb model when the vertex is offset to this
width along the previously calculated vector. This new po-
sition is calculated relative to each necessary bone and the
final position is averaged across all calculated ones in ac-
cordance to the bone’s weighting at the particular point, as
shown in Expression 3. This merging provides not only a
smooth realistic rounding of each limb, but a continuous,
gradual, connection at branch junctions and a steady cur-
vature along the length of the branch. Using the weights
pre-calculated at each original vertex and barycentric coor-
dinates of the new points, bone weighting is linearly inter-
polated across the surface of a triangle. However, the fall-off
rate for weighting which is present at one side of a trian-
gle can be altered. In the case of branch junctions, a more
gradual interpolation is used for the influences of bones be-
longing to a lower level of branch, causing the large branches
and trunk to have a greater effect on the form of the connec-
tions than the smaller limbs diverging. Other than shaping
the form of the tree, the main advantage of dynamic tessel-
lation is to add finer details when required which this ap-
proach allows quite easily. A displacement map in the form
of a single channel texture is included to introduce variety
in the mesh surface, which when accessed using texture co-
ordinates calculated at the stage of initial geometry produc-
tion, gives a displacement value which is simply added to
the vertex offset distance from the bone. Multiple levels of
displacement can be combined into one texture allowing the
physical modelling of large detail elements such as knots and
splits in the wood along with fine detail such as the uneven-
ness of the bark without introducing further computational
cost. With tessellation being variable, at great distances the
displacement mapping has no effect on the form of the mesh.
However, if the viewer moves very close to the tree, a wide
range of complex distortions of the surface is modelled in
high detail, providing much greater realism than other tech-
niques used to only simulate the effect such as parallax map-
ping and parallax occlusion. The culmination of these tech-
niques to provide a highly realistic tree model is shown in
Figure 5.

(© The Eurographics Association 2011.

Z?ﬁmberof Bones PostionRelativetoBone; x BoneWeight;
3

4. Results

Viewer Distance | Frame Rate Polygons

13.5 120 185000

25 255 25934

45.5 350 6776

66.5 400 1624

Table 1: Rendering frame rates achieved and generated
polygon count at given viewer distances from tree

Table 1 shows approximate frame rates achieved when
rendering the generated tree model at different levels of de-
tail with the number of polygons rendered. When compared
to that which was achieved rendering the static model ob-
tained directly from the Xfrog software, approximately 1660
fps consistently, the static model is displayed dramatically
faster than the virtual tree produced using the technique put
forward in this paper, however, rendering time alone is not a
fair comparison between the two. The proposed tree is cal-
culating considerably more at time of render. Displaying the
tree using techniques described is inherently including full
bone weighting of the mesh and skeletal deformation at ev-
ery frame ,which is necessary for a dynamic, movable scene
element. As the limitations of the static mesh were not ones
of efficiency, but rather of missing structural information and
poor visual quality, comparison must be qualitative rather
than quantitative. Although the results do show that the dy-
namic level of detail approach used without the introduc-
tion of impostors does greatly improve rendering times and
shows that the implementation can be effective for non-static
scenes where the virtual trees are not necessarily the constant
visual focus.

(a) Artefacts apparent in origi- (b) Generated model without
nal static mesh connection artefacts

Figure 6: Comparison of branch junctions

One of the major drawbacks of the Xfrog model is visual
artefacts introduced by disconnected branch geometry and
Figure 6 compares the original branch connections formed
with remodelled geometry as described, demonstrating that
generating a continuous mesh around the structure removes

8 Reynolds et al. / Remodelling of Botanical Trees for Real-Time Simulation

Figure 7: Fully tessellated tree showing curvature and
shape being a function of skeletal influence

the unrealistic effects caused by separated surfaces and in-
creases visual quality. As newly tessellated points are pro-
cedurally positioned as a function of skeletal influence, Fig-
ure 7 shows that the automatically generated bone weight-
ing, calculated at mesh creation, provides an effective so-
lution without manual interference. This is demonstrated
by introducing smooth blending between branch segments
without artefacts as well as gradual curvature along limbs
and across joins. These results can be viewed in a video at
http://tinyurl.com/TreeRemodelling.

5. Conclusions

There are software packages available such as Xfrog, which
provide an intuitive, highly interactive tool for the genera-
tion of virtual plants which require more artistic manipu-
lation than purely procedural methods can allow. However
the resulting geometry can be inappropriate for high qual-
ity rendering and lack vital structures for the animation and
control of movement. This paper presents a technique for
extracting key data from exported trees to generate a modi-
fiable skeletal structure and remodel the physical geometry
around the structure to allow high quality visualisation and
dynamic refinement using recent GPU techniques. New ge-
ometry is created to correct inaccuracies caused by uncon-
nected surfaces and to allow consistent modelling of limbs
and branch connections when motion and deformation is ap-
plied. By modelling the tree in a simplified form around the
bone system, dynamic recalculation of the base mesh based
on skeletal motion can be performed at a much lower compu-
tational cost. High resolution modelling of complex sections
such as limb connections is performed in real-time using the
tessellation engine and bone weighting is incorporated in the
smoothing of the mesh and generation of new geometry in
addition to its conventional use of the transformation of ex-
isting vertices.

The proposed procedure allows developers to create veg-

etation using an existing, industry accepted tool and to re-
format its output. This allows inclusion in dynamic, ani-
mated scenes and simulation for which it was not suitable,
without any further manual interaction. The procedure uses
novel techniques to base the geometry solely on the extracted
skeleton, creating a simple, but highly refinable continuous
mesh with automatic bone weighting avoiding many com-
mon limitations of procedural surface skinning.

5.1. Future Work

The main proposal of future work is the incorporation of an
efficient animation and simulation framework. While tradi-
tional animation processes are applicable to the developed
technique, given the presence of a fully skinned skeleton,
approaches must be explored to fully utilise the hierarchy of
the data structure created to provide the most efficient and
effective methods of simulation.

References

[AKO6] AKAGI Y., KITAJIMA K.: Computer animation of sway-
ing trees based on physical simulation. Computers & Graphics
30 (2006), 529-539.

[Blo85] BLOOMENTHAL J.: Modeling the mighty maple. SIG-
GRAPH Comput. Graph. 19 (1985), 305-311.

[DL97] DEUSSEN O., LINTERMANN B.: A modelling method
and user interface for creating plants. PROC GRAPHICS IN-
TERFACE (1997), 189-197.

[DL99] DEUSSEN O., LINTERMANN B.: Interactive modeling of
plants. IEEE Comput. Graph. Appl. 19 (1999), 56-65.

[HKWO09] HABEL R., KUSTERNIG A., WIMMER M.: Physically
guided animation of trees. In Computer Graphics Forum (2009),
vol. 28, Wiley Online Library, pp. 523-532.

[Lin68] LINDENMAYER A.: Mathematical models for cellular in-
teractions in development. parts 1 and 2. Journal of theoretical
biology 18 (1968), 300-315.

[LVMO04] LLUCHJ., VIVO R., MONSERRAT C.: Modelling tree
structures using a single polygonal mesh. Graphical Models 66,
2(2004), 89-101.

[OTF*04] OTA S., TAMURA M., FUIIMOTO T., MURAOKA K.,
CHIBA N.: A hybrid method for real-time animation of trees
swaying in wind fields. The Visual Computer 20 (2004), 613—
623.

[PHHM96] PRUSINKIEWICZ P., HAMMEL M., HANAN J.,
MECH R.: Visual models of plant development. Handbook of
formal languages 3 (1996), 535-597.

[PL90] PRUSINKIEWICZ P., LINDENMAYER A.: The Algorith-
mic Beauty Of Plants. Springer-Verlag New York, Inc., New
York, NY, USA, 1990.

[Pru86] PRUSINKIEWICZ P.: Graphical applications of 1-systems.
In Proceedings on Graphics Interface 86/Vision Interface 86
(Toronto, Ont., Canada, Canada, 1986), Canadian Information
Processing Society, pp. 247-253.

[Pru04] PRUSINKIEWICZ P.: Modeling plant growth and devel-
opment. Current opinion in plant biology 7, 1 (2004), 79-83.

[Web08] WEBER J.: Fast simulation of realistic trees. Computer
Graphics and Applications, IEEE 28 (2008), 67-75.

(© The Eurographics Association 2011.

http://tinyurl.com/TreeRemodelling

