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Abstract

This paper presents a novel approach to creating 3D facial animation using a sketch-based interface where the
animation is generated by interpolating a sequence of sketched key poses. The user does not need any knowledge
of the underlying mechanism used to create different expressions or facial poses, and no animation controls or
parameters are directly manipulated. Instead, the user sketches the desired shape of a facial feature and the system
reconstructs a 3D feature which fits the sketched stroke. This is achieved using a maximum likelihood framework
where a statistical model in conjunction with Hidden Markov Models handles sketch detection, and a hierarchical
statistical mapping approach reconstructs a posed 3D mesh from a low-dimensional representation.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Sketch-Based Animation

1. Introduction

Animating a 3D face model with realistic expressions and
facial poses generally requires extensive and skillful manual
labour. The aim of facial animation research is to make it
quick and easy to accurately pose an arbitrary 3D face model
by offering high-level tools.

This paper shows how a sketching approach can be used
to pose 3D face models using simple 2D strokes that project
onto the 3D surface. We achieve this using a very small set
of prior knowledge in the form of facial expressions and
phonemes, which is used to fit a Gaussian mixture model that
maps sketched strokes to facial features and poses. This ap-
proach could be used either as a standalone system where the
sketched model is exported to professional animation soft-
ware for further processing, or as part of the professional
software in the form of a third party plug-in.

The rest of the paper is organised as follows: Section 2
presents an overview of related work. Section 3 gives an
overview of the stages of our approach which are further dis-
cussed in Sections 4. Section 5 demonstrates how the system
is used to create an animation sequence by sketching a series
of keyframes. We then conclude with Section 6.

2. Background and previous work

Facial animation has been an active research topic since the
work of Parke [Par72, Par74], where he parameterises fa-
cial expressions on a specific mesh and is able to create a
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range of expressions by varying the parameters. Since then,
parameterised methods have proved successful. In 1978, Ek-
man and Friesen [EF78] developed the Facial Action Coding
System (FACS) which has been incorporated by numerous
researchers [Wat87, KMMtT91, CBK*06].

Blendshapes is the most popular facial animation tech-
nique used today. An artist creates key poses which are used
to linearly interpolate new poses, where the blend can consist
of whole faces or regional blends [PHL*98, LCF00]. Creat-
ing the key poses, sometimes called morph targets, needs
skillful manual work unless they can be generated using
motion data from real people [CBO8]. Performance-driven
methods where an actor performs the facial actions provide
a more automatic and accurate way of generating realistic
animations, where the actor’s face is generally labelled with
a set of markers. Deng and Neumann [ZD07] provide further
information by describing a range of different facial anima-
tion techniques developed in recent years.

The combination of fusing together the performance-
driven approach into an example-based technique is a recent
trend in facial animation. Fundamentally, it gathers prior
knowledge of facial movements by appling statistical infer-
ence on the motion data to achieve accurate reconstructions
through maximum likelihood. Example-based sketch inter-
face methods build on the same idea, but introduce an in-
tuitive, high-level approach of controlling the facial poses
through sketched strokes.

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org



http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/LocalChapterEvents/TPCG/TPCG10/223-230

224 Orn Gunnarsson and Dr Steve Maddock / Sketch-Based Posing of 3D Faces for Facial Animation

Chang and Jenkins [CJ06] looks for the optimal pose in
a collection of key poses which they call articulation space.
They do this using a reference and a target curve, and search
for the optimal articulation weights which minimises the
distance between the two curves, using a downhill simplex
method. This collection can be either made up of blend-
shapes or alternatively articulation poses created using their
their own approach. This is achieved by specifying partic-
ular regions of interest and applying various types of de-
formations on the mesh based on the curves and specified
regions. This is not guaranteed to give realistic poses but
is able to create new poses without any prior knowledge.
Lau et al [LCXS07] further improve the notion of using
a reference and a target curve to find the optimal pose in
an space of pre-posed models by tackling the problem in a
probability framework. The pre-existing models are treated
as model priors used to find the posterior model which is
the best match given the input strokes based on a mixture
of factor analysers. In contrast, our method relies on pre-
defined reference curves in the form of feature points, and
asks the user only to sketch the target curves. This approach
changes the way the interface is perceived. Instead of sketch-
ing changes, the notion is what you sketch is what you get.
This simplifies the sketching process but it more limited out-
side the range of the pre-defined reference points which we
call feature points (FPs). Sucontphunt et al [SMNDO8] use
a different approach to posing a face model which aims to
take the rigging process to a more intuitive level. Instead of
manipulating the model itself in 3D, key points on a more
simplified 2D sketch-based version are moved around to de-
pict new poses which are then reconstructed in the 3D space.
A prior knowledge gathered from motion data is used in a
hierarchical Principal Components Analysis (PCA) model.
This makes sure the reconstructed faces are realistic within
the scope of the prior dataset. This method is efficient but
currently the interactive sketch is limited to the front view.
Deng and Neumann [ZDO07] offer a more detailed descrip-
tion of the range of different facial animation techniques.
Company et al [PCNO5], and Olsen et al [OSSJ09] provide
a more detailed survey on sketch-based interfaces.

3. Our approach

Our approach is made up of an offline part and an online
part. The offline part (Section 4) is where face data is col-
lected and processed to form a knowledge-base in the form
of a statistical model that can be accessed in real-time by
the online part. The online part is an interactive sketching
interface that can interact with the statistical model to pro-
vide intelligent feedback to any sketched strokes. The offline
stages of our approach are as follows:

1. Prepare facial poses - The training data contains 36
poses of a 3D face mesh, each representing a different
expression or viseme. Each pose is labelled with 46 fea-
ture points (FPs) giving two sets of corresponding poses,
’mesh poses’ and "FP poses’ (Section 4.1).

2. Construct a statistical model - The FP training set is
used to fit mixtures of probabilistic principal component
analysers using the 3D FP coordinates (X,y,z) (see Sec-
tion 4.2). The statistical model is used to analyse sketched
strokes and to generate poses from incomplete data in the
online stage.

The online stages of our approach are as follows:

1. Interpret sketched strokes from a user - The user
sketches on the 3D face model where sketched points are
mapped to the most likely FPs (Section 4.3).

2. Find best pose - A generative model uses the the FPs
identified in 2 to find the remaining, unidentified FPs in
order to make up a complete FP pose (Section 4.4).

3. Reconstruct mesh pose from FP pose - The complete
FP pose acts as a set of control points used to deform the
face mesh into the desired facial pose through a statistical
mapping (Section 4.5).

4. Statistical model
4.1. Preparing training data of facial poses

The training data will determine the range of poses the sys-
tem can produce. It is therefore important to collect a large
number of training samples in order to comfortably create a
vast range of poses consisting of any feature combination. A
common way of acquiring such data set is to record an ac-
tor perform a large range of expressions. However, we show
here that the system can produce a decent range of poses
as well as the intermediate frames required to make up an
animation sequence using only 36 poses (neutral pose and
35 different expression and visemes poses). The meshes for
these poses are generated using FaceGen T, where each mesh
shares the same vertex topology. 46 feature points (FPs) are
placed manually on the neutral pose using a subset of the
MPEG-4 facial animation standard [Pak02]. The FPs are
then mapped to the nearest vertex on the neutral mesh which
is used to automatically calculate the FP coordinates for the
remaining poses. Figure 1 shows the labelled FPs (in red) on
the neutral pose and the anger pose without the eyes, tongue
and teeth.

4.2. Gaussian mixture model

Principal Components Analysis (PCA) is a popular approach
in computer vision where high dimensional data is decor-
related and approximated using a lower dimensional space
where each dimension is orthogonal to each other to max-
imise variance. However, conventional PCA suffers from
many limitations. Importantly it is not a density model so
it cannot be used with Bayesian inference, it uses euclidean
distance for classification, it cannot handle missing data, and

T FaceGen; Singular Inversion
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Figure 1: Labelled FPs (shown in red) on the neutral pose
(left), the anger pose (right). Note: Only the skin mesh is
shown.

it cannot be extended to a mixture model which can be used
to estimate non-linear projections.

PCA can be defined in a maximum-likelihood frame-
work based on a Gaussian latent variable model to derive a
Probabilistic PCA (PPCA) [TB99]. A latent variable model
linearly maps an observed d-dimensional vector t to a g-
dimensional, Gaussian latent variable x with mean vector u
(where d > ¢) such that

t=Wx+u+e, (D

where € is a Gaussian, independent noise model € ~ N(0, ).
This means that the observed vectors t are also Gaussian
distributed, t ~ N(u,C). By using an isotropic noise model
and setting Yy = 61, and therefore the model covariance to
C = 6’1+ WWT', the columns of W span the principal sub-
space of t after fitting the model. Fitting the latent variable
model can be done either in closed form or using the EM
algorithm as described by Michael and Bishop [TB99].

Using a single PPCA model to fit a univariate Gaussian
function on the data set creates an unrealistic likelihood
function. A multi-variate approach is needed to fit a non-
linear data set. A Gaussian mixture model approximates a
non-linear model by expressing the probability density func-
tion as a linear combination of basis functions

M
p(t) =) mp(tfi), )
i=1

where p(t|i) is a single PPCA model and ; is the mixing
coefficient or prior probability for component i, T; > 0 and
Y m; = 1. tis the observed input vector, M is the number of
clusters or centres and p(t|i) is the cluster density function.
We can find the posterior probability using Bayes Theorem
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which enables us to determine what cluster a given input
sketch stroke belongs to.

The parameters for this mixture model can be determined
by maximising the data likelihood. For convenience, the
problem is converted into an equivalent form where the goal
is to minimise the negative log-likelihood which is treated
like an error function. This cannot be calculated in closed
form so the EM algorithm is employed to optimise the model
parameters. Poorly initialised parameters can result in a local
maxima problem as there are generally multiple local max-
ima of the log likelihood function. To reduce the chances
of that happening the K-medoids and K-means methods are
used to perform initial clustering [Bis07].

4.3. Finding FPs from sketched strokes

Every FP pose can be thought of as a low dimensional rep-
resentation of its equivalent mesh pose. Figure 2 shows the
FPs for every pose in the training set where points labelling
the same feature form a cluster. The clusters are plotted with
different colours to visualise the range of motion for each
facial feature.

Figure 2: Labelled FPs for every pose. Each FP cluster is
shown as a different colour.

The user sketches strokes representing the shape of facial
features, e.g. whistling lips, sad eyebrows etc. A sketched
stroke consists of a sequence of points where the assump-
tion is they map to a corresponding sequence of FPs. The
problem is finding this unknown sequence of optimal FPs
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describing the sketched feature based on an observed stroke.
Instead of assigning sketched points to individual FPs inde-
pendently, Hidden Markov Models (HMMs) are able to find
the most probable sequence of hidden states (FPs) for a given
observation sequence (stroke points).

The joint probability distribution over both the latent Z

and observed variables X is

N
P(Xm|zm7¢)7
=1

3

N
P(X,Z|8) = p(z1|n) [HZP(ZnIan,A)

m

where X = {x1,....,xy }, Z={z1,...,zy }, and 8 = {m,A, ¢}
[BisO7]. 6 contains the probability parameters where T de-
scribes the initial probabilities for each state (FP), A is the
transition matrix which expresses the probability of moving
from state to another, and ¢ is the emission probability which
measures the probability of each stroke point belonging to
each FP. In order to find the most probable sequence of la-
tent states (FPs) for a given set of observed data (strokes), the
Viterbi algorithm [Vit67] is employed which is a max-sum
algorithm whose complexity grows linearly with the length
of the HMM trellis chain. The algorithm traverses through
the HMM chain to find the optimal path through the trellis.
The stroke point density is higher than the FP density which
causes more than one point to be assigned to the same latent
state. The FP (latent state) with the highest emission proba-
bility is assigned with the stroke point coordinates.

The emission probabilities are found by defining the FP
clusters in a likelihood framework where the clusters natu-
rally extend to the soft clustering approach embedded in the
mixture model, and calculate the probability that a sketched
point belongs to a particular FP cluster. A mixture model is
fitted on 32 FPs (a subset of the labelled FPs), where each
sample is the XYZ-coordinate of a single FP. Since there are
36 poses, the total number of samples in the training set is
32+36 = 1152. (A subset is used to simplify the classifica-
tion by omitting unnecessary FPs with regards to sketching.
This includes the tongue, teeth and the FPs for the inner lip
as they are not needed in most cases to distinguish between
different lip poses.) Each group of FPs is defined as a clus-
ter which means there are a total of 32 clusters (or mixture
components), where the centre for each cluster is initialised
as the mean of the corresponding FP coordinates. When the
user sketches a stroke, the marginal likelihood p(tn) and the
posterior responsibility

Ry = M )

P(tn)
is calculated for each point in the stroke. The responsibili-
ties form a vector with 32 values, where each index repre-
sents a single cluster (see Figure 3). The values determine
the probability of a single stroke point belonging to a par-
ticular cluster, where the values range from O to 1, and the

sum of responsibilites is 1. This vector is used as the emis-
sion vector for the corresponding single stroke point in the
emission matrix ¢.

| Booio B

Figure 3: Posterior responsibility for each cluster (total of
32 clusters) calculated for each sketched point.

The initial probability matrix 7 is assigned with the prob-
ability values from ¢ which correspond to the first point on
the stroke. However, strokes containing points which do not
conform to the training set can cause problems. For instance
when sketching an upper lip, the endpoints may not lie near
a cluster likelihood range and will therefore be discarded.
The endpoints carry important information as they define
the boundaries of the desired feature. An example of this
is if the stroke defining the upper lip is too short. If as a
result the endpoints are ignored, the width of the lips will
remain unchanged, while it is fairly likely that the user in-
tended for them to become shorter. It is also possible that an
endpoint has a lower likelihood than a neighbouring point on
the stroke which maps to the same FP (lip corner). To help
overcome this, it is assumed that users tends to draw a com-
plete feature which contains the boundary points of the cor-
responding feature. For instance, a sketched upper lip will
most likely contain the lip corners. Therefore, if a stroke’s
first point maps to a boundary FP, its initial probability is set
to 1 and the initial probability for the remaining FPs are set
to 0.

The transition probability matrix A is based on a connec-
tivity matrix (32 x 32) which measures the path length 7y be-
tween every FP. This path length is found by assigning the
FPs to different facial feature groups and measuring the steps
between the FPs in each group. If we take the left eye as an
example, then the path length between the eye corners is 2,
and 1 between either corner and the top of the eye. The dis-
tance between FPs belonging to different groups is set to a
high value to discourage points on a sketched stroke to jump
between features. This is important as strokes are sometimes
ambiguous where they can be interpreted as more than one
feature. An example of this is a sketched line that can either
be an inner lower lip, or an outer lower lip. Also, a sketched
eyebrow can be classified as the upper eyelid. The transi-
tion matrix is populated by using the probability distribution

function
1 /y—1\?
p(Zi|Zj)0<eXP{_2 <UT) } (6))

where 65 = 0.3.

Other complications arise in a sketching interface that
should be considered. The strokes are sketched in 2D which
means the values along the depth axis based on the current
viewpoint are unknown. The stroke points are projected onto
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the 3D model to get an estimate for the depth values in or-
der to classify a set of FPs, but these projected values might
not represent a realistic depiction of any known pose. Figure
4 demonstrates this problem where a particular lip shape is
sketched from the front view (a) and then examined from a
different viewpoint (b), where the FPs have been identified
and assigned to stroke points. However, this particular 3D lip
shape shown in (b) and (c) does not accurately describe any
known pose. We want to be faithful to the sketched lip shape
from the sketch-viewpoint which is the front view in this
case. Therefore, we keep the coordinates on the axis plane
seen from the front view (XZ), and update the values on the
ambiguous depth axis seen from the front view (Y). The Y
values for each identified FP are removed and replaced with
the maximum likelihood values for the corresponding FP
cluster, using the XZ values as conditional data. The updated
coordinates are shown in (d) and contrasted with (c) where
it primarily affected the lip corners. The reconstructed 3D
lips are shown in (e) and (f) where the lips are now faithfully
represented by the FPs.

Figure 4: Projected depth values for sketched strokes may
not represent accurate values of the optimal pose.

4.4. Reconstructing a complete pose

At this stage the system has identified sketched points map-
ping to a number of FPs from the set of 46 FPs describing
a single facial pose. There are typically a large number of
unidentified FPs as the user is not expected to draw every
aspect of the pose. In addition to that there are 14 FPs that
cannot be sketched here (teeth, tongue and inner lips) which
means the FP pose is always incomplete. A generative prob-
ability model is needed to find the most likely pose given a
partial pose defined by the FPs that were identified from the
sketched strokes.

K mixtures are fitted on a training set consisting of n = 36
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different poses, where each pose contains 46 3-dimensional
FPs. A single training sample is therefore a vector with 463
dimensions, making up a training set of size 36 x 138. The
FPs identified from a set of sketched strokes are used as ob-
served data where the max-conditional distribution is cal-
culated over the missing points to construct a complete FP
pose. This is done by partitioning the data into observed data
(0) and missing data (m) (see Figure 5). where the observed
data consists of the classified FPs acquired in Section 4.3.

The t is the sample vector for the pose made of up the
observed and missing data which trivially form the observed
and missing partitions. The same partitiong is applied to the
mean pose u and covariance C stored in the mixture model.
The expected values for the missing data ty, are found using

| |
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Figure 5: Partitioning the FPs into observed (conditional)
and missing data: o=observed; m=missing;

the conditional distribution p(to|tm) where

t= (tm;to)

p= (tm;Ho)

A= (Amm/\mo;/\am/\oo)

Amm = (Cmm - CmoCoo_ ! Com)_1 (6)

Amo = —(Cmm - Cmocoo_lcom)_lcmocoo_l
tm = lipjo = Hm — A Amo (to — o),

and A = C 1 is known as the precision matrix. oo, om, mo,
and mm correspond to the combinations of partitioning the
observed and missing [row][column] entries in the matrices
A and C. This is done for every mixture component k = 1..K
using the corresponding mean and covariance. The complete
pose for k is found by concatenating the observed data with
the expected data, and is referred to as a reconstructed FP
pose. The probability py, is then calculated using

p(t) = (2m) 2G| P exp{— § (t — ) TC; (t— )}

Pe=p(t)*m .
@)
The reconstruction tied with max({p1,..,px}) is selected
and is used to create the mesh pose using the method in the
next section.

The following examples show how well the selected gen-
erative model estimates a complete pose based on incom-
plete input data for a particular mixture model. Figure 6
shows the reconstructed pose when using three observed FPs
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(green) describing the left eyebrow taken from the anger
pose (red x’s). The blue circles represent the reconstructed
pose which lies very close to the target pose despite the small
amount of observed data.

Figure 6: Reconstructing anger pose from incomplete data.
FPs circled in green are the observed data. Red x’s represent
the target pose. Blue circles show the expected data.

4.5. Reconstructing mesh pose from FP pose

The FPs act as control points which are used to deform
the mesh vertices in order to create a range of different fa-
cial poses. The set of FP poses are referred to as P, where
pi € Pii = 1..n is a single FP pose, and similarly the set
of mesh poses as V, where v; € V is a single mesh pose.
A statistical mapping ¥ : P — V is defined which maps a
dp-dimensional FP vector to a dy-dimensional vertex vec-
tor. Figure 7 visualises the mapping process where the left
side contains the FPs, and the right side contains the mesh
vertices where n = 36.

Because dy >> n, a dual approach to PPCA is performed
on both P (left) and V (right) where instead of marginalising
the latent variables X and optimising the parameters W via
maximum likelihood, the parameters are marginalised and
optimising with respect to the latent variables [Law05]. The
latent variables x for each pose training sample t are cal-
culated for both P and V to form n X gp and n X gy latent
matrices using

M~ =61+ W/'W,

1
®)
where ¢ is either gp or gy, A is a ¢ X g diagonal matrix con-

taining the g eigenvalues A, .., A¢, and R is an arbitrary g X ¢
orthogonal rotation matrix [TB99].
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Figure 7: Mapping FP pose to a mesh pose.

We then join the two matrices together to form a 36 X
(gp + gy ) matrix which is our mapping matrix and is learned
using a Gaussian mixture model. Given a set of FPs, the ver-
tex structure for a corresponding face mesh can be found by
calculating the latent variables for the FPs using Equation 8,
finding the missing vertex latent variables using Equation 6,
and reconstruct the full mesh n where

n=WW/ W) 'Mx+pu. ©)

To verify this method is capable of producing the correct
mesh pose structure from only 46 feature points, the 36 tar-
get mesh poses (V) are mapped from the corresponding set
of feature points (P). Figure 8 shows the reconstruction for
the anger pose, where the upper left corner shows the FPs
extracted from the target pose, and the bottom left and right
show the mesh reconstruction. The red dots represent the
original target vertices for the given pose, and the blue cir-
cles display the reconstructed vertices. A reconstruction for
a particular vertex has zero error if the red dot lies perfectly
within the centre of its corresponding circle.

The next section shows how using the statistical mapping,
a whole range of facial expressions can be generated using
only 36 target poses as a training set. The system is capable
of reconstructing every target mesh pose, as well as a gradi-
ent of poses not present in the training set.
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Figure 8: Anger pose. Reconstruction using the marked fea-
ture points for the pose. Blue circles show the reconstructed
mesh, and the red dots specify the target mesh for this pose.

5. Creating an animation using sketched keyframe
poses

As a starting point, the user is presented with the neutral
pose where he can sketch directly on the model from any
viewpoint. When the user is satisfied the system identifies
observed FPs from the sketched points using the method de-
scribed in Section 4.3. The expected values for the remaining
FPs are calculated (Section 4.4), and used to recover an up-
dated vertex structure (Section 4.5). The user can continue
sketching to make further adjustments until he is satisfied
with the pose and adds it into a sequence of keyframes. Fig-
ure 9 shows some keyframes produced with some simple
strokes starting with the neutral pose in the top left corner.
The features are not always reconstructed accurately which
could be improved by adding more training samples. This
could be in some cases due to an inaccurate mapping of
stroke points to FPs which could be improved by adding
more data in regions which have more problems (such as
the eyebrows), or by sketching more strokes to refine the
required expression. The unsketched features are correlated
as expected. Intermediate frames are rendered to make up a
complete animated sequence. This could be done by linearly
interpolating between two keyframe models, but instead the
keyframe FPs are interpolated using a cardinal spline and the
generative model is used to reconstruct the model for each
frame. This is done to prove the system can generate a gra-
dient of facial poses which are accurate enough to generate
a smooth motion for every facial feature. Figure 10 shows
two keyframes and 10 intermediate frames producing an an-
imated sequence using the interpolated FPs as input for each
frame.

6. Conclusions and future work

We have presented a new approach to creating 3D facial an-
imation through sketching. Sketching acts as a high-level
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Figure 9: Sketching keyframes.

Keyframe 1

Intermediate frames

Keyframe 2

Figure 10: Two keyframes and 10 generated intermediate
frames. An animation file for this example is available.

control to modelling where a new pose can be created by
indicating the desired outcome as opposed to applying ani-
mation targets, moving individual control points, or tweak-
ing semantic parameters. Very few sketch strokes are needed
to construct a new pose through incomplete data handling.
‘We accomplish this using a knowledge-base in the form of
a statistical model that through a maximum likelihood ap-
proach knows how poses are constructed from partial in-
put. The input is made up of FPs describing each pose in
a low-dimensional space. Modifying one aspect of the face
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automatically correlates other areas on the face to match ac-
cordingly. Facial expressions generated using this system are
therefore always complete and plausible.

Using only 36 poses as training data we are able to cre-
ate a large range of facial poses, and accurately calculate in-
termediate frames. However with a more extensive data set
the results could be further improved along with the addi-
tion of new poses and better combinations of existing poses
that fall outside the likelihood range of our current system.
The system is limited to making changes to areas that have
pre-defined FPs. However the FPs classify all the main facial
features and the correlation makes sure every area on the face
is adapted to match the desired pose. Future work involving
a more dense data set, acquired using non-photorealistic ren-
dering methods, could support a more detailed sketch-based
manipulation of a larger set of facial features. Additional fu-
ture work entails evaluating the system with experienced an-
imators in order to see how it can be adapted and improved
towards providing a flexible and intuitive commercial solu-
tion to posing face models through sketch-based techniques.
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