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Abstract
Many graphs modelling real-world systems are characterised by a high edge density and the small world prop-
erties of a low diameter and a high clustering coefficient. In the "small world" class of graphs, the connectivity
of nodes follows a power-law distribution with some nodes of high degree acting as hubs. While current layout
algorithms are capable of displaying two dimensional node-link visualisations of large data sets, the results for
dense small world graphs can be aesthetically unpleasant and difficult to read. In order to make the graph more
understandable, we suggest dividing it into clusters built around nodes of interest to the user. This paper describes
a graph clustering using the average clustering coefficient as a heuristic for determining which node a vertex
should be assigned to. We propose that the use of clustering coefficient as a heuristic aids in the formation of
high quality clusters that consist of nodes that are conceptually related to each other. We evaluate the impact of
using the clustering coefficient heuristic against other approaches. Once the clustering is performed we lay out
the graph using a force directed approach for each clustering individually.

Categories and Subject Descriptors (according to ACM CCS): G.2.2 [Graph Theory]: Graph AlgorithmsI.5.3 [Clus-
tering]: AlgorithmsF.2.2 [ Nonnumerical Algorithms and Problems]: Routing and layout

1. Introduction

Many real-world networks across different fields have simi-
lar characteristics and can be classified as small world graphs
[WS98,CF09,ACJM03,vHW08]. Small world networks are
characterised by two properties. The first is the average of
the shortest path between each pair of vertices for the en-
tire graph. The second property is the average local cluster-
ing coefficient of the graph, which is defined as the average
of the clustering coefficients for each vertex. The clustering
coefficient for a vertex is defined as the ratio of edges con-
necting the neighbours of a vertex to the number of possible
edges between neighbours of the vertex. The clustering co-
efficient c for a vertex in a directed graph is given by

c =
|E|

K(K−1)

where E is the set of edges connecting neighbours of the ver-
tex (both inbound and outbound edges) and K is the neigh-
bourhood size of the vertex, i.e. the number of vertices the

target vertex is connected to. From the above it can be seen
that a vertex needs at least two neighbours to have a valid
clustering coefficient value. To determine if a graph can be
considered a small world graph, it is compared to a randomly
generated graph with the same number of vertices and edges.
A small world graph has approximately the same average
path length, but a considerably higher (by orders of magni-
tude) clustering coefficient.

1.1. Motivation

Our motivation is to make graphs more comprehensible. We
are looking at small world graphs specifically due to the
presence of groups of highly connected nodes and the strong
relationship they have with clustering coefficients. The pur-
pose of our clustering is to allow a user to divide the graph
into more manageable sets of conceptually related nodes.
Our ultimate goal is enable a user to generate different per-
spectives of the data by selecting different sets of nodes as
super-nodes. Clustering also has the benefit of reducing the
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computation required for a force directed layout, due to the
fact that nodes are only laid out relative to other nodes within
their cluster.

2. Related work

Milgram [Mil67] first described small world graphs in his
work focused on social networks. The concept was more re-
cently revived by Watts and Strogatz [WS98] and has been
shown to hold true for a variety of networks, such as the
relationships between actors and films [ACJM03] as well
as computer systems [CF09], models of biological networks
[WS98] and citation networks [vH04].

2.1. Clustering

Eades and Feng [EF97] describe a clustered graph as a graph
with recursive clustering structure over the vertices. In their
example the clustering structure is an attribute of the graphs
and vertices, however in many cases if a graph is to be clus-
tered there may be no intrinsic attribute or parameter which
describes the clustering hierarchy. There are many different
approaches to generating an optimum clustering as it is a
difficult problem that is NP-complete [NG04].

There are two main approaches to graph clustering (or
partitioning as it is often referred to), geometric and non
geometric. The aim of geometric clustering is to have ver-
tices that are geometrically close to each other share a clus-
ter and vertices that are distant from each other appear in
separate clusters. An example of such a clustering is given
by Quigley and Eades’ FADE algorithm [QE01] in which a
quad tree is used alongside a modified force directed algo-
rithm. There are many different methods of non-geometric
clustering. Some methods such as Markov Clustering (MCL)
[vD00] and spectral partitioning [FT07] use an algebraic
approach, working on a mathematical representation of the
graph. Other methods such as edge betweenness centrality
clustering [NG04] use a graph based approach, calculating
graph theory characteristics of vertices or edges that are then
used to partition the graph into clusters. An in-depth review
of clustering methods is available from [Sch07].

2.2. Layout

Force directed layout algorithms are one of the most com-
mon approaches to graph layout. These algorithms use a
physically based model to lay out nodes within the graph
space. The algorithms work iteratively, repositioning nodes
based on forces until the energy within the system is
minimal. Early examples include Eade’s spring embedder
[Ead84], Kamada and Kawai [KK89] and Fruchterman and
Reingold’s algorithm [FR91]. More recent force directed al-
gorithms [HK01, GK01, HJ05] aim at drawing larger graphs
and use a multilevel approach. Multi-level approaches gen-
erate coarse versions of graphs and use these for the layout

of more refined versions. Force directed algorithms are of-
ten highly parallelisable and Frishman and Tal [FT07] have
demonstrated the benefits of using the parallel processing ca-
pabilities of the GPU to aid in graph layout. Further graph
layout approaches include algebraic algorithms [HK02] and
topology based [AMA07] algorithms. Algebraic algorithms
apply algebraic operations to a matrix form of the graphs,
such as the adjacency matrix. Topological algorithms con-
sider the graph structure for features such as cliques or trees
to aid in layout.

3. Proposed approach

3.1. Cluster Building

To determine which cluster a node conceptually belongs to,
we use the average clustering coefficient of a cluster as a
metric. Each cluster initially only contains a super-node, se-
lected by the user. For each super-node a single neighbour is
added as the calculation of a clustering coefficient requires
a node to have more than one neighbour. The node added
to the cluster is the neighbour of the super-node, with the
largest neighbourhood size. This results in each cluster con-
taining two connected nodes. The set of all nodes of the
graph that have a neighbourhood size larger than one and
have not already been assigned to clusters is then stored in
an ordered node list, built by traversing the graph from each
of the super-nodes using a breadth first search. Nodes are
stored primarily in order of their increasing graph distances
from a super-node and secondarily by the size of the node’s
neighbourhood from largest to smallest. For the purposes
of clustering, edge direction is ignored in the breadth first
search, as nodes can still be conceptually related regardless
of the direction of the edge between them. The clustering al-
gorithm is not impacted by whether the graph is directed or
unidrected.

Nodes that are connected to only one other node, are not
added to the list, as a node which only has one neighbour is
guaranteed to have a negative impact on the local clustering
coefficient value of a cluster and can only ever be added to
the cluster that it is connected to. Therefore these nodes are
added to the cluster that their only neighbour is assigned to
once all other nodes are assigned.

The motivation for ordering the list secondarily by neigh-
bourhood size is to allow nodes of a lower neighbourhood
size to be added to a node where as many as possible of
their neighbours have already been added. If nodes of a large
neighbourhood size already are processed, then any future
node added is more likely to find several of its neighbour
nodes already assigned to a cluster. Furthermore, this order-
ing results in more balanced cluster sizes, as it will prevent
the clusters which are initially based on more highly con-
nected nodes from taking all the nodes with a small neigh-
bourhood size.

In the next stage of the algorithm, the ordered list is iter-
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ated through adding each node temporarily to a cluster. The
average clustering coefficient of the cluster is then recalcu-
lated to determine the impact of addition of the node. The
node is then permanently assigned to the cluster which has
the highest resulting coefficient.

Finally, once all other nodes have been assigned to a clus-
ter, the single neighbour nodes are then assigned to the clus-
ter of their neighbour. In summary:

1. Specify the super-nodes used as a basis for clusters.
2. Add one neighbour node to each super-node to form a

basic cluster.
3. Build a list of remaining nodes, sorted by distance from

a super-node and node neighbourhood size.
4. Add each node to the cluster that has the highest cluster-

ing coefficient if the new node is included.
5. Assign the single neighbour nodes to the clusters of their

neighbours.

The calculation of the clustering coefficient for a large set of
nodes is a time consuming task, however the clustering co-
efficient for each node in a cluster can be calculated in paral-
lel. Therefore we compute the new clustering coefficient of
each node within a cluster on the GPU (The descirbed algo-
rithm 1 executes in parallel on multiple nodes). The result
is averaged by the CPU to determine the average clustering
coefficient for the nodes within a cluster.

Algorithm 1 GPU Shader Program algorithm for calculating
the clustering coefficient of a node within a cluster C.

v ∈Vc
for all u ∈Vc do

if {u,v} ∈ Ec then
v.neighbourhoodSize := v.neighbourhoodSize+1
for all w ∈Vc do

if u 6= w∧{u,w} ∈ Ec ∧ ({w,v} ∈ Ec ∨{v,w} ∈
Ec) then

v.neighbourhoodEdgeCount :=
v.neighbourhoodEdgeCount +1
{As w is also a neighbour of v}

end if
end for

end if
end for
if v.neighbourhoodSize > 1 then

v.clusteringCoe f f icient :=
v.neighbourhoodEdgeCount/v.neighbourhoodSize ∗
(v.neighbourhoodSize−1)

else
v.clusteringCoe f f icient = 0

end if

In order to process our graph data on the GPU we load the
graph data into textures, which are then uploaded onto the
graphics card for processing.The input textures required for
the clustering store the nodes within the cluster, and the edge

map for the graph. The calculations are done using a frag-
ment shader written using GLSL and the results are passed
back to the CPU using a frame-buffer object. GLSL is cho-
sen as it is relatively straight-forward to process the graph
adjacency matrix as a texture.

3.2. Layout

To lay out the nodes contained in each of the individual
clusters we have implemented Fruchterman and Reingold’s
[FR91] force directed algorithm on the GPU. The clusters
themselves are distributed evenly across the graph spaces by
applying this algorithm to the set of super-nodes and treat-
ing this set as a fully connected graph. Once the super-nodes
are in place, their position is locked, and during layout of
the clusters, the distance between a node and its super node
is constrained. Our clustering approach improves layout per-
formances for large graphs. It results in fewer computations
of forces between nodes, as forces are only calculated for
nodes within the same cluster.To reduce the clutter resulting
oorm edges between clusters we draw inter-cluster edges as
bundled splines in an approach similar to Holten [Hol06].

4. Evaluation

4.1. Evaluation approach

In order to evaluate the effectiveness of the clustering we
compare our algorithm to variations where cluster coeffi-
cient impact was not taken into account. For the round robin
clustering nodes are initially sorted in the same manner as
before, but assigned to each cluster in a sequential fashion.
Nodes are only assigned to clusters which they are connected
to. A more thoroughly random approach was also taken, by
assigning nodes to a cluster chosen entirely at random, from
a list of all clusters that neighbours of the node have already
been assigned to. Furthermore we have also analysed using
the change (delta) of the clustering coefficient and assigning
the node to the least negatively impacted cluster, instead of
assigning the node to the cluster with the highest clustering
coefficient.

4.2. Evaluation metrics

Newman and Girvan [NG04] define a measure of the quality
of a division of a network graph, referred to as modularity.
This metric is based upon the number of edges that start and
end in the same cluster (referred to as communities in New-
man and Girvan’s paper). The modularity, Q, is calculated
as

Q = ∑
i
(eii−a2

i )

Where eii is the fraction of all edges that start and end
in cluster i and ai is the fraction of all edges that terminate
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in cluster i. Modularity depends solely on the relationships
between nodes.

Where contextual meta-data about the node is available
we use this to determine if the node conceptually fits in with
the cluster it is assigned to.

4.3. Evaluation Graphs

We evaluate our algorithm using a wide variety of graphs.
For an evaluation using real world data, we have generated a
set of four graphs based on connectivity between Wikipedia
articles. We evaluate these graphs using Newman and Gir-
van’s modularity metric.

We also randomly generate small world graphs which are
clustered using our approach, as well as the round robin and
random approaches. We use Watts and Strogatz’s approach
for creating small world graphs [WS98]. This approach be-
gins by creating a lattice like structure with edges uniformly
across vertices. Each edge is rewired to a random target ver-
tex with a probability P. For a low value of P the resulting
graph exhibits small world properties, as P approaches 1 the
graph becomes more like a completely randomly connected
graph. At P equal to one, the graph can be considered a com-
pletely randomly generated graph. These randomly gener-
ated graphs contain 60 nodes which vary in edge density.
They are evaluated based on the modularity of the resulting
clustering.

In order to analyse how effective the use of the average lo-
cal clustering coefficient of a cluster is in building conceptu-
ally related clusters, we have created an artificial social net-
work data set modelling activities at a sports club. Our model
contains 100 nodes each representing a member of the club.
Each member is assigned a level of interest in six activities,
between 0 and 1.0. The sum of a member’s interest across all
activities is equal to 1. In order to generate the graph we cal-
culate the euclidean distance between each member’s 6 lev-
els of interest. If the euclidean distance is less than a thresh-
old value of 0.5 we assume that due to the common amount
of activities the members are socially connected. Therefore
we add an edge to the graph connecting the nodes represent-
ing the members. The resulting graph contains 803 edges.
Using this graph to evaluate our clustering we can see ex-
actly the ratings for each node for each activity and hence
determine if they have been placed in a conceptually correct
cluster. The super-node selected for each cluster is a person
who undertakes only one activity with the maximum level of
interest. This means that each cluster member should have
some level of interest in the activity of the super-node.

Finally we use our algorithm to cluster and layout a real-
world social network data set. We chose the genealogy of
influence data set [Lov10],which contains prominent figures
in the field of art, science and entertainment and relates them
using "influenced by" relationship. The generated graph con-
tains 1929 nodes and 4364 edges.

Figure 1: Wikipedia graph with 91 vertices and 567 edges
laid out using a simple force directed algorithm.

Figure 2: Graph from Figure 1 using our approach.

5. Results

5.1. Wikipedia Data Set

The clustering coefficient based, round robin and random al-
gorithms were each run on the Wikipedia test graphs, where
the four nodes with the highest degree were selected for clus-
tering. The random clustering was run three times for each
graph and averaged, as it resulted in a different clustering
each time. The resulting modularity of each graph is dis-
played in Table 1.The use of clustering coefficient as a met-
ric produces a significantly higher level of modularity than a
round robin or random assignment of nodes to clusters.

|V | |E| Clustering
Coefficient

Round
Robin

Random
Average

91 567 0.1279 0.049 0.0561
358 3729 0.0931 0.038 0.0424
506 3962 0.1545 0.0692 0.0645

1000 28534 0.0251 0.0038 0.005

Table 1: Modularity values for Wikipedia based graph using
different approaches to clustering.
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Figure 3: The modularity of graphs containing 60 nodes
and increasing in density, using the described clustering ap-
proaches for building 4 clusters.

Figure 4: Modularity for building 5 clusters.

5.2. Randomly Generated Small World Graphs

For the randomly generated small world graphs, we com-
pare the change in modularity over graphs of various sizes
and increasing density of edges relative to nodes with four
different approaches. We use the clustering coefficient ap-
proach, round robin assignment and a random assignment as
well as the delta of the clustering coefficient in determining
the assignment of nodes to clusters. In each case, the use
of clustering coefficient as a heuristic showed an improve-
ment. Figure 3 shows the improvement in using clustering
coefficient over the round robin and random method for cre-
ating 4 clusters for a graph with 60 nodes and edge den-
sity increasing from 120 to 660 edges. On average use of
the maximum average clustering as opposed the the delta of
the average clustering coefficient resulted in a more modu-
lar clustering but the difference is not as distinct as with the
other approaches. Similar results can be seen for forming 5
or 6 clusters (see Figures 4 and 5).

We also analysed the effect of altering clustering coeffi-
cient for a graph of a given size and density. We generated
20 graphs of the same size, with an increasing probability of
rewiring , resulting in a set of graphs with a decreasing clus-
tering coefficient but the same number of nodes and edges.
As can be seen from figure 6 the impact of changing the
clustering coefficient is not consistent, but use of the abso-
lute clustering coefficient still improves modularity even as
the graph becomes less small world like. The fluctuation in

Figure 5: Modularity for building 6 clusters.

Figure 6: The modularity of graphs containing 60 nodes and
240 edges increasing in clustering coefficient, when clus-
tered using 4 super-nodes.

modularity is a result of the randomness in generating the
graphs and the most well connected nodes are automatically
selected as super-nodes, which can change significantly for
each random graph. It can can be seen in Figure 7 that a
similar result was achieved for 5 clusters.

5.3. Sports Club Data Set

We generated 6 clusters for the sports club data set and com-
pared the use of the clustering coefficient approach to the
round robin approach. For each cluster we calculated the
sum of each activity for each person in the group and nor-
malised this value by dividing it by the number of people

Figure 7: The modularity of graphs increasing in clustering
coefficient, when clustered using 5 super-nodes.
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Figure 8: Sports club graph with 100 vertices and 803 edges
laid out using a simple force directed algorithm.

Figure 9: Graph from figure 8 using our approach.

in the group. In Table 2 we display the scores for the spe-
cific activity associated with the cluster. It can be seen that
for every activity, apart from tennis, use of clustering co-
efficient results in a better score for the cluster. The lower
value for tennis using the round robin approach results from
a larger number of members being interested in tennis, but
not as their primary activity. Examining the number of mem-
bers assigned to clusters that they have no interest in reveals
a clear result. Using the clustering coefficient approach, this

Clustering Coefficient Round Robin
Soccer 0.9 0.9

Swimming 0.6038 0.5877
Tennis 0.4208 0.5563
Gym 0.565 0.441304

Running 0.9 0.4088
Cycling 0.925 0.010265

Table 2: Level of interest in the sport of the super-node by
cluster.

Figure 10: Genealogy of Influence graph with 100 vertices
and 803 edges laid out using a simple force directed algo-
rithm

Figure 11: Graph from figure 10 using our approach.

only happened for four members. Using the round robin ap-
proach 17 members are assigned to clusters where the super-
node represents a sport that they have no interest in.

5.4. Influence Data Set

For our analysis of the influence data set each node repre-
senting a person has been labelled with a primary profession
(as also done by van Ham and Wattenberg [vHW08]). Each
node has been classified by the person’s primary profession,
from each of the following professions: Actor (including
comedians, 321 nodes), artist (209 nodes), mathematician
(170 nodes), musician (159 nodes), philosopher (586 nodes)
and scientist (484 nodes). The previous described cluster-
ing and layout approach has been applied to this data set,
with the super nodes being manually selected as one promi-
nent individual from each set. Respectively these individ-
uals were George Carlin, Vincent van Gogh, Carl Gustav
Jakob Jacobi, Ludvig Van Beethoven, Friedrich Nietzsche,
and Albert Einstein. A completely accurate assignment of
nodes to clusters based on profession is not expected as there
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Clustering Coefficient Round Robin Delta C.C.
Correct Incorrect Correct Incorrect Correct Incorrect

Actor 286 37 282 41 286 37
Artist 54 154 104 104 59 149
Mathematician 23 147 60 110 47 123
Musician 44 115 68 91 27 132
Philosopher 520 66 183 403 393 191
Scientist 133 350 151 331 40 443
Total 1060 869 848 1081 854 1075
Total % 54.9508 45.0493 43.9606 56.034 44.27164 55.72836

Table 3: Correct assignments of nodes by profession to super-nodes using each approach.

Figure 12: Chart indicating the number of correctly clus-
tered nodes averaged over 20 different input sets. The error
bars indicate the standard deviation.

are many other characteristics which affect relationships be-
tween nodes, such as indistinct boundaries between profes-
sions (particularly for mathematicians, philosophers and sci-
entists) and also the era in which the person chosen as a
super-node lived impacts relationships and influence.The se-
lected super-nodes were chosen as people who were strong
examples of each field, the nodes representing them were
well connected, and their professions were more clearly de-
fined. However, choice of super-node does have a large im-
pact on the data set. For example if a more contemporary
musician such as Miles Davis is marked as a super node,
many of the classical musicians end up being associated with
the Philosophers cluster.

The breakdown of the correctness of resulting clustering
categorised by profession can be seen in Table 3. We per-
formed a comparison using the round robin approach and
clustering coefficient delta approaches of assigning nodes to
clusters. It can be seen from the above tables that using clus-
tering coefficient as a heuristic resulted in nodes being as-
signed to clusters that they were more conceptually related to
in terms of profession. It is also clear that assigning nodes to
the cluster with the largest resulting average clustering coef-
ficient categorized the nodes more effectively than using the
average local clustering coefficient delta or round robin ap-
proach. To verify this we also ran our algorithm over 20 dif-
ferent selection sets built using popular nodes for each pro-
fession. On average the clustering coefficient approach was
correct 46.9% of the time, the round robin approach 42.5%

of the time and the average cluster coefficient delta 23.9%
of the time (see figure 12). The delta approach fared poorly
as there were many cases where a disproportionately large
number of nodes ended up in a small number of clusters.
The clustering coefficient approach outperformed the round
robin approach in 17 out of the 20 cases. In the worst of these
3 cases the round robin approach scored 1.71% higher than
the clustering coefficient approach. In the best case over-
all the clustering coefficient approach scored 11.15% higher
than the round robin approach.

5.5. Conclusions

We have presented a novel clustering algorithm to aid in the
visualisation of small worlds graphs and have applied it to
various different graphs. By taking into account the impact
of the addition of a node on the local clustering coefficient
of a cluster, we achieve a more modular layout of nodes. In
our analysis of randomly generated graphs there was only a
slight benefit to using the delta of the coefficient as a heuris-
tic, but it can be seen in our influence graph example that
assigning the node to the maximum clustering coefficient is
more effective.

We have also shown, using the artificial sports club data
set and the genealogy of influence data set that using cluster-
ing coefficient as a heuristic result in clusters that are more
conceptually alike.

5.6. Future Work

We intend to perform comparisons with cluster building
methods such as those by Newman and Girvan [NG04],
which use edge betweenness centrality as a metric to deter-
mine how to build clusters within a graph based purely on the
underlying structure and not on specifying a node to build
the cluster around. It may be useful to see if edge between-
ness centrality can be used in deciding whether or not a node
should be added to a cluster built around a target super-node.
Determining an automatic selection of super-nodes that is
more robust than selecting nodes of large neighbourhood
size for cases where the user is not sure would also be of
benefit and may also allow multiple levels to be added to the
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layout algorithm.It may also be possible to adopt the clus-
tering specified here as a node group selection technique,
without clustering the entire graph, which may be of benefit
for graph analysis tasks.

We use edge bundling to reduce the visual cluster of the
graph, however there is still some interference, between the
inter-cluster edges and the edges which start and end within
the one cluster. Further work is needed to reduce this, per-
haps taking into account the inter-cluster edges during the
force directed layout, or using a more perceptual approach
such as specific colouring or translucency of the longer inter-
cluster edges, in a manner similar to Holten [Hol06]. Some
perceptual research similar to the work done by Ware and
Purchase [WPCM02] is also required on how to best render
the inter-cluster edges as bundles, while allowing paths to
be traced between nodes easily. Another option worth inves-
tigating would be the impact of the clustering functionality
on laying out a graph in three dimensional space. Previous
work by Ware and Mitchell [WM08] has shown that three di-
mensional graphs (using stereoscopic displays), can improve
user performance.

This work has been made possible by the kind sponsorhip
of the IRCSET (the Irish Research Council for Science, En-
gineering & Technology) and Intel.
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