EG UK Theory and Practice of Computer Graphics (2010)
John Collomosse, Ian Grimstead (Editors)

Interval Based Data Structure Optimization

B. Duffy! and H. Carr?

!'University College Dublin, Dublin, Ireland
2University of Leeds, Leeds, England

Abstract

Isosurface extraction is a widely exploited visualization technique for volumetric data on all manner of grid
representation. The basic technique is often used to explore and measure many properties of data sets of ever
increasing size. Therefore, data structures and algorithms that facilitate interactive exploration and fast processing
of isosurfaces of large data sets is of paramount importance. While many optimal methods have been proposed
to accelerate isosurface extraction, many of these algorithms have limitations with regards to storage costs and
data quantization. In some cases these limitations preclude their practical application. We present a very simple
clustering and volume compression technique based on observations in the span space and show that applying
this technique to existing methods can reduce their storage cost. We show results for real data validating our

technique.

Categories and Subject Descriptors (according to ACM CCS): Clustering, Span Space, Quantization

1. Introduction

Many disciplines such as engineering, science and medicine
produce large quantities of 3D volumetric data sets. In par-
ticular scalar fields of single observations of natural pro-
cesses and physical phenomena are routinely acquired from
scanning equipment and the size of these data sets increase
as storage and technology improves. Scientific visualization
continues to play an important role in understanding, explor-
ing and measuring this data and a wide variety of visual-
ization techniques have been reported for this purpose. One
specific technique that is widely exploited is isosurface ex-
traction, where surfaces of the form {x : f(x) = v} are used
for boundary extraction or direct visualization. The surfaces
extracted are intermediate geometric approximations of fea-
tures in the data and many methods have been proposed to
facilitate accelerated and even optimal extraction of isosur-
face. Some methods are limited to quantized data and some
methods are limited by their data structure.

We describe a very simple volume clustering and com-
pression technique based on observations in the span space
that can be boot-strapped to an interval based isosurface ac-
celeration technique to increase the performance of the basic
algorithm or data structure at an extra pre-processing cost.

(© The Eurographics Association 2010.

DOI: 10.2312/LocalChapterEvents/ TPCG/TPCG10/151-158

The rest of the paper is laid out as follows. Section 2 is a
review of the relevant related work in the area of isosurface
extraction. Section 3 is a review of the span space data rep-
resentation and a number of observation about span space.
Section 4 describes our technique for representing the volu-
metric data sets. Section 5 is a more in depth review of the
isosurface extraction data structures and algorithms imple-
mented for this paper. Section 6 presents results validating
our approach and Section 7 gives some conclusions.

2. Related Work

Isosurfacing is an effective technique used in scientific visu-
alization applications to explore 3D scalar fields. Observa-
tions or samples are acquired from a volume by some means
and represented digitally on a computer. A scalar field is a
discrete sampling in the domain of a continuous function f.
The sample values of a scalar field are in the range of f.
The locations of the samples form a spatial pattern in the do-
main and approximations of f can be reconstructed. In this
paper we are concerned with regularly sampled scalar fields
on rectilinear grids. An isosurface is extracted by passing
a reconstruction kernel over the cell set of the scalar field.
An isosurface can be defined as follows. Given a discretely
sampled scalar field of a function f in R? find the surface

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/LocalChapterEvents/TPCG/TPCG10/151-158

152

A . o S
R
. . :. . /
Lot
° - o! /
.. S
g * e/
[] ° /
. .//
« /
.//
/
: -
min

(a) In the span space each cell is represented by a point
(min,max). Since min < v < max iff the cell is active, all
cells inside the orthogonal dashed lines are active for iso-
value v.

B. Duffy & H. Carr / Interval Based Data Structure Optimization

*~—e
[—

= O =
min f(X) max
(b) The interval representation shows the range of the sam-
pled values f(x), which has a global minimum and maxi-
mum. Intervals are represented as a line segment with a
min and max values.

Figure 1: Two methods of visualizing cells of a 3D data set as the span space on the left or a set of intervals on the right.

that satisfies {x : f(x) = v}, where v is called and isovalue.
The extracted isosurface partitions the scalar field into sets,
values greater then v and less than v.

A simple and effective isosurfacing method is the march-
ing cubes algorithm [LC87] proposed by Lorensen and Cline
in 1987. Marching cubes uses a divide and conquer paradigm
and is implemented in two phases. The first phase is detec-
tion of cells intersected by the isosurface, also known as ac-
tive cells. A linear piecewise approximation of the surface
is constructed in each active cell in the second phase. The
algorithm has a complexity of O(N) since it is necessary to
visit each cell in the scalar field in the detection phase. When
the input data set is large visiting each cell in the field is too
costly. As a result many methods of accelerating this part of
the algorithm have been proposed.

In practice, acceleration is achieved by constructing data
structures that avoid unnecessary operations on non-active
cells, since 30-70% of processing time involves those
cells [GW94]. Many data structures and algorithms have
been proposed, which fall into three main groups geometric,
surface propagation and interval bases approaches. These
methods use a variety of strategies to optimize surface re-
construction by avoiding computation of empty cells.

Geometric approaches such as octrees [WG92] decom-
pose the cell set into a 3D hierarchy where each node is
associated with a min and max value of the set of cells
stored in the node. Surface propagation methods naturally
avoids traversal of empty cells as only neighbouring active
cells are visited. This method traces the isosurface from a
set of seed points and exploit the isosurfaces continuous na-

ture, for example extrema graphs [1K94,1K95] or contour
trees [VKvOB*97].

The final group of algorithms are interval based meth-
ods, where each cell in the set is represented as by its min
and max values. Some successful early methods were ac-
tive lists [GH90], span filtering [Gal91] and sweeping sim-
plices [S]95]. A useful method of viewing intervals is the
span space. Many methods based on span space, such as
NOISE [LS]196], ISSUE [SHLI96], interval trees [CMM*97]
and fixed buckets [WCJO05], achieved optimal or near opti-
mal search times. Interval based methods are attractive be-
cause they offer a compact representation of the data operat-
ing in the range of the function rather then the domain. This
means interval methods are applicable to a wide variety of
data sets with different cell types. For further information
a survey [NYO06] of marching cubes and derivative work is
available.

3. Span Space

The span space [L.SJ96] is a novel and compact method for
representing the cell set of 3D scalar field. For each cell el-
ement there exists an interval [a, b] representing the range of
isosurfaces that intersect the cell, where « is the cell’s min
value and b is the cell’s max value. Each cell intersects iso-
surfaces with a range or span of isovalues v, where a < v < b.
The task of identifying the active cells is reduced to a geo-
metric query of an R? value space defined by the dimen-
sions min and max. As illustrated in Figure la the cells in-
tersected by isovalue v are contained inside the orthogonal
dashed lines. Note that cells can only be mapped to the half
space above the line defined by min = max because cell’s

(© The Eurographics Association 2010.

B. Duffy & H. Carr/ Interval Based Data Structure Optimization 153

maximum values must always be greater then or equal to it’s
minimum value. An alternative representation of cell inter-
vals in Figure 1b shows v intersecting cells represented as
line segments.

In this section we present a number of observations about
the span space data representation that lead us to implement
the clustering scheme described in Section 4. We base our
observations on empirical evidence gathered from a number
of data sets from a variety of sources.

3.1. Data Sources

In many application areas much data is heavily quantized. In
general, geometric analysis and constructions assume that
coordinates are real numbers - i.e. infinite precision floating
point numbers. In practice, however, nearly all data sets have
finite precision, either in IEEE floating point representation,
or by quantization to integers. For 8-bit data (still among
the most common), only 256 unique values are possible,
256
2

possible. In a medium-sized data set of 16 million samples,
we therefore expect approximately 500 copies of each inter-
val on average, indicating massive redundancy.

and therefore only = 32640 different intervals are

In comparison, 12-bit data has approximately 2.1 x 10°
possible intervals, so we initially anticipated that savings due
to redundancy would be limited to highly quantized 8-bit
data. As we shall see this turned out not to be the case.

Our test data consisted of 92 volumetric data sets, sam-
pled at 8 and 12 bits, gathered from a number of sources
on the internet. We divided the data sets up into three ma-
jor categories, experimental (34), medical (34) and simu-
lated (24). The experimental data comes from CT and MRI
scans of mostly non-organic objects and materials. These in-
clude trees, engines, statues and a variety of other objects.
Most of these data sets have large empty cavities, i.e. homo-
geneous regions in the data. This results in low topological
variation in the data and well defined interfaces and transi-
tions between the homogeneous regions. Our medical data
is from MRI, CT and PET scans of patients. Medical data
has well defined isovalues representing different tissue types
and less well defined interfaces due to low gradient tran-
sitions between tissue types. Finally, simulated data comes
from a range of analytic functions where the exact function
is known and we know the data is clean and of course noise
is always a problem in real data.

3.2. Redundancy Analysis

‘We observed in the previous section the potential for massive
redundancy in quantized data. Redundancy with respect to
quantized data can be defined as the ratio r of the number of
unique spans U in the data set to the total number of spans
N, r= % We can define the percentage of redundancy in

(© The Eurographics Association 2010.

the scalar field as follows R = 100 (1 — r). Repeated spans
unnecessarily stored in most interval based methods we have
investigated increase the total storage cost.

We also observe that zero length spans where min = max
are never intersected by any isosurface. The percentage of
zero spans Z is computed as Z = 100(). Zero spans rep-
resent homogeneous regions in the data. An isosurface can
never intersected a zero span so the cell can never become
active. The interval base methods we have discussed so far
unnecessarily store these zero span cells inflating the size of
the data structure.

log10 frequency

0

Figure 2: Bivariate histogram of the span intervals for the
neghip data set. The vast majority of intervals have small
spans, note the similarity between span space and multi-
dimensional histograms used to define transfer functions
[KD98].

The observations in the span space are best illustrated
graphically as a bivariate histogram in Figure 2. We note
that a change of variables from (min, max) to (median, span)
approximates a plot of isovalue versus gradient as used in
transfer function design [KD98]. Due to the limited number
of quantized spans and the regular nature of the data, as the
size of the cell set increases we expect more cells stack into
each bin. We see that the spans are clumped in small value
bins and there is massive redundancy in many bins. Sutton et
al. [SHwSSO00] also used this method to view the span space.

We rapidly discovered immense redundancies due to
quantization and to demonstrate these observations further
we provide an empirical study of 92 8-bit and 26 12-bit data
sets. Table 1 shows a statistical break down of results for 92
8-bit data sets. A high rate of redundancy and large quantity
of zero intervals can be seen across the board. However, in-
dependent of the source of data, the sheer size of volumetric
data sets guarantees a high rate of redundancy and quantiza-
tion adds to this effect.

154 B. Duffy & H. Carr/ Interval Based Data Structure Optimization

.
1 N
0.8
2
g 0.6
(2]
£ 04
=
o
C g2 -
N
@< N
T
RN
. 20
bits 1 TR
32 T -1
o8 log2 res

(a) Zero Spans

! N
.
N
g
T
N T
o ¥ log2 res

(b) Redundancy

Figure 3: For a simple analytic sphere we can see how our measures are affected by increasing resolution and decreasing

quantization.
Type Redundancy Zeros
All 9% 31.4%
Experimental 9% 44.1%
Medical 9% 25.7%
Simulated 9% 25.2%

Table 1: For 94 data sets quantized to 8-bits we see high
redundancy regardless of the data source, this is guaranteed
by the size of data sets and quantization.

Having established that 8-bit data is massively redundant,
we repeated the experiment with 23 12-bit data sets and com-
pared these to the down-sampled 8-bit versions, expecting
that there would be less redundancy and fewer zero span
intervals. The results are shown in Table 2. On inspection,
most medical data sets actually have well-defined isovalue
ranges representing different tissue types, and therefore most
cells are broadly uniform in isovalue. This accounts for the
high rate of redundancy in real data such as medical and
experimental data. However, redundancy in simulated data
dropped by 24% in the 12-bit data, compared to 8-bit data.
We performed a simple experiment of how these properties
change as the number of bits used in the quantization in-
creased.Figure 3 illustrates how our measures are affected
by uniformly increasing resolution and increasing number
of bits for a simple analytic sphere.

Figure 3a shows that the percentage of zero spans in the
data set increases as the resolution increases and decreases
as the number of bits increase. This is expected as there are
a limited number of spans into which to accumulate, but the
number of spans increases as the bit representation increases
and the ratio of zero to non-zero spans increases. Figure 3b
shows massive redundancy for low bit representation and

that redundancy decreases as the number of bits increase in
the quantization. As resolution increases, therefore so does
redundancy depending on the level of quantization.

8-bit 12-bit
Type Red. Zeros | Red. Zeros

All 9% 27.66% | 94% 8.98%
Exp. 99% 14.72% | 98% 14.712%
Med. 99% 17.86% | 95% 5.57%
Sim. 9% 25.14% | 75% 4.63%

Table 2: Quantized 8-bit data averaged 98% redundancy,
while 12 bit data averaged 94% redundancy: see text.

From these experiments, we reached the following con-
clusions: there is sufficient redundancy in our sampled data
to warrant optimization for data structures based on the span
space, even for 12-bit data, and that zero intervals were much
more common than we had anticipated. Redundant informa-
tion in quantized data provides a niche for memory optimiza-
tion in interval based data structures. However we were con-
cerned about how redundancy would be affected by increas-
ing the number of bits for quantization and how it would
effect optimization schemes manipulating redundancy.

4. Volume Clustering & Compression

Given the scalar field of a function f sampled over a volume,
the set of N cells that make up the volume is known as the
cell set. The number of active cells for a given isosurface v
is K. Typically most interval based methods we have inves-
tigated sort the entire cell set into their search data structure.
This introduces a massive amount of redundant information
into the data structure that is unnecessary. Accelerated iso-
surface extraction can be achieved with a much sparser rep-

(© The Eurographics Association 2010.

B. Duffy & H. Carr/ Interval Based Data Structure Optimization 155

unique spans

|QQ’ QQ|

spatial locations

Figure 4: For the neghip data set, on the left, we see 301 oc-
currences of span [0,21]. In our clustered scheme span [0, 21]
occurs once with a list of references to all the spatial loca-
tions in the volume where it occurs. Therefore each reference
is only stored once. References may be integer coordinates
in the volume or a pointer.

resentation of the cell set created by clustering cells of the
same span.

Our optimization scheme exploits redundancy in quan-
tized volume data by clustering all cells sharing a common
span and representing them with a single span. We calls this
set of unique spans U. Further optimization is achieved by
omitting zero-spans, since the corresponding cells are never
active in any isosurface. Figure 4 shows our sparse clustered
representation of the volume. We chose to represent the clus-
tered cells as list of cells in sorted lexicographic order, mean-
ing spans are stored in ascending order first by the min and
then by the max of the span. This is the most convenient
way of representing the clusters of cells, for our purposes, as
most of the algorithms we tested take as sorted list of cells
as input.

An initial pass through our volume data collects unique
cells and sorts them in a list. This ordering is maintained
throughout the clustering step of the algorithm so a binary
search can be used to find spans. If the span has already been
collected a simple binary search is done in O(log(U)) time
to accumulate its location. If the span doesn’t exist in the list
itis inserted using a quick sort based insertion operation with
an average time complexity of O(Ulog(U)). These opera-
tions must be performed for all N cells in the set meaning the
total build time of the clustered cells is O(Nlog(U)U) where
U < N. The total build time of any interval based method
using our clustering scheme is then the sum of the cluster-
ing build time and the search data structures build time. In
this way we can trade build time for a lower storage cost of
O(U + P), where P is the total number of locations of cells.

The only other data compression technique we are aware
of is Bordoloi et al. [BS03] who used transform coding and
lossy compression to achieve one third the storage of ISSUE

(© The Eurographics Association 2010.

and interval tree data structures without impacting isosurface
extraction times. However our method is far simpler, easy
to implement and plug into any existing interval based ap-
proach. Our approach may also be extended to floating point
data by quantizing the span space in a similar fashion to the
ISSUE [SHLJ96] method.

The drawback of our method is that the natrual topologi-
cal neighbourhoods of samples implied by the sampling pat-
tern are destroyed by sorting them into our data structure. To
rectify this additional information about the six neighbour-
hood connected components of each sample would need to
be stored for each sample location.

5. Interval Data Structure Optimization

To demonstrate our clustering scheme in practice we im-
plemented a number of well established optimal isosurface
extraction algorithms based on span space and applied our
sparse representation to these data structures. Each algo-
rithms uses a different method to partition the span space
to avoid empty cells and achieve optimal search time. We
will describe and compare each algorithm and how to ap-
ply our clustering scheme. Some of the algorithms described
have parallel implementations, ISSUE [SHLJ96] for exam-
ple, however not all the algorithms describe here are easily
implemented in parallel. This means only the sequential ver-
sions of the algorithms were tested.

5.1. NOISE

A

max

/453452543541453452345 ri4j3(2131114]3/4[214/3|14

-

min
Figure 5: NOISE implements a kd-tree, left, that subdivides
the span space for each span. The corresponding binary tree,
right, shows the layout of nodes for this tree and the numbers
correspond to the levels, nodes marked red are are marked on
the span space view. The optimized array view of the kd-tree
can also be seen.

The NOISE method, a “near optimal isosurface extrac-
tion algorithm”, uses a kd-tree [Ben75], a multi-dimensional

156 B. Duffy & H. Carr/ Interval Based Data Structure Optimization

binary search tree to partition the cells based on a median
discriminator of the min or max values of the cells in alter-
nating dimensions. A cell that is intersected by the median
becomes a node in the tree and all cells less than the me-
dian are stored in the left sub-tree and all cells greater than
the median are stored in the right sub-tree and the tree is con-
structed recursively. Each node of the tree represents one cell
with a grid reference to it’s location in the volume. The mem-
ory required by the kd-tree is therefore O(N) as each cell is
only stored once with preprocessing time of O(Nlog(N)).
An optimized search algorithm, that features a pointer-less
kd-tree, is provided in [LSJ96] where the kd-tree is built in
place by recursively applying quick sorts to subsections of
the array representing the cell set. The optimized algorithm
yields O(v/N + K) search time, where K is the set of ac-
tive cells. This is the version we have implemented. Figure 5
shows the kd-tree sub division of the span space on the right.
To apply our clustering scheme to the NOISE algorithm we
simply replace the array of N cells with the clustered array
of U unique cells.

5.2. Interval Tree

A Discriminator

List sorted in
ascending min value

o List sorted in

list by the minima of the intervals and the right list by the
maxima, thereby allowing early termination once all span-
ning intervals have been determined. This identifies all K
active cells in O(log(N)) time, with full extraction costing
O(log(N) +K), but at the cost of O(Nlog(N)) memory and
O(Nlog(N)) preprocessing time. Moreover, storing each in-
terval multiple times with grid references results in an O(N)
term with a large constant, which dominates the memory
footprint in practice.

Applying the clustering scheme to the interval tree is only
slightly more complicated. Each node in the interval tree
represents multiple spans. In Figure 6, we sort a pointers
to unique spans in the interval tree to reduce the duplica-
tion problem previously that contributes to the interval trees
large storage cost.

Comparing the kd-tree and the interval tree we see a num-
ber of factors that affect their performance. The interval tree
is a much shallower tree than the kd-tree because multiple in-
tervals are stored at each node. A search of the kd-tree must
reach a leaf node before the search is terminated because
each node represents an interval. The Interval tree however
may terminate inside the tree structure without reaching a
leaf node if specific criteria are met leading to a shorter
search time.

descending max value 5.3. ISSUE
Pointer Mask |* kXK o
| | | lattice element(p,p) min=max
A 1 1
A2 ‘ \ 1
. L]
Unique Spans |OOO o A : . °
. y :' 3
)) 5 1 casel
Spatial Locations left right » P . e
1
sub-tree sub-tree le
o: e i 1 case 2
() o i
° I
x -_-..___.___'.__*
Figure 6: Optimization scheme for the interval tree. The g . v case 3
clustered spans are stored externally and an array of pointers o . y 4
to the clusters is passed to the algorithm to avoid duplication Y case
. . o
of clustered spans inside the data structure.
. case 5
. . . *
The interval tree is also a binary search tree that uses a
discriminator value (often a median value) to divide cells >

among the nodes of the tree. All intervals spanning the pivot
are stored at the root node, see Figure 1b. Intervals wholly
less than the pivot are stored in the left child, while inter-
vals wholly more are stored in the right child. Inside each
node, two lists are stored, one (left) for searches above the
discriminator value, and one (right) for searches below it.
To search for active cells at a given isovalue v in a sub-
tree, v is compared to the discriminator. If v is less than
the discriminator, all intervals in the left list (below the dis-
criminator) are examined and reported if the minimum is
below v. The algorithm then recursively searches the left
sub-tree. Further optimization is provided by sorting the left

min
do dl d2 d3 d4 d5 d6 d7 d8
Figure 7: The ISSUE method decomposes the span space
into a lattice. This yields a very fast span space search. Using
cases 1-5 set of active cells is computed quickly by avoiding
extra examination of cells that are definitely intersected by
isosurface v.

The ISSUE method, “isosurfacing in span space with ut-
most efficiency”, takes a different approach to dividing up
the search space. The algorithm decomposes the span space

(© The Eurographics Association 2010.

B. Duffy & H. Carr/ Interval Based Data Structure Optimization 157

into an LxL regular lattice where L is a user specified value.
Given L and the global minimum m and maximum M of the
data a set of dividing points {d;}5 such that dy, d; = oo,
d; < djy1 and {di}é_l € (m,M]. Given an isovalue v each
lattice element is classified into one of five cases based on
its location as in Figure 7. A lattice element is either outside
the active area (Case 1), wholly inside the active area (Case
2). The cells that map into Cases 3-5 are potentially active.
On the horizontal boundary of the active area, i.e, only the
max value of the span must be examined (Case 3), on the ver-
tical boundary of the active area, i.e, only the min value of
the span must be examined (Case 4) or on both the horizon-
tal and vertical boundaries (Case 5). There is only one lattice
element in Case 5 and both min and max values of the cells
must be examined to determine if they are active. This can be
done with a simple min-max search, as we have done in this
paper, however interval methods can be used to decompose
this sub-space further. By restricting the span space search

ISSUE will report active cells in O(K + log(%) + @) time
at a cost of O(N) storage and O(Nlog(N)) pre-processing
time. Clustering can be applied to ISSUE easily by only sup-
plying the clustered cells to the algorithm to sort into the
lattice.

ISSUE reports a faster search time complexity then
NOISE for the same cost of storage and pre-processing.
However, the choice of L has impact on the efficiency of the
algorithm. If L is too large or small the algorithm will not
perform optimally.

5.4. Fixed Buckets

Isosurface extraction using fixed sized buckets [WCJO05] is
an extremely simple and easy to implement algorithm. The
input cells are classified by their min and max values in the
span space. The cells are then sorted globally by their min
values and placed into buckets that contain up to B cells,
where B is a user specified value. Note that the last bucket
may contain less then B cells. A min-dictionary of the last
cell in each bucket is created. Then the cells of each bucket
are sorted by their max values. The resulting data structure
is a logical 2-D array. Each element is only stored once in
the array with total storage cost at O(N) and O(Nlog(N))
pre-processing time. The fixed buckets method reports a
O(K + B) search time which is comparable to the interval
tree. Clustering is easily applied to the fixed buckets method
by supplying the set of unique cells as the initial input cells.
However the same problem arises as with ISSUE, the choice
of B affects the search time.

6. Results & Discussion

Our method of clustering gives a compact representation of
the cell set of a volume. We have shown we can collect and
organize the unique cells of a volume of O(Nlog(U)U) at
a storage cost of O(U + P) which is guaranteed to be less

(© The Eurographics Association 2010.

than O(N). This means that we expect the storage cost for
clustered versions of NOISE, ISSUE and fixed buckets to be
O(U + P) and the interval tree to be O(Ulog(U)+ U + P).
The saving in storage is achieved at the expense of collect-
ing the unique clusters and constructing the data structure
O(Nlog(U)U +1og(U)U). Our method is heavily dependant
on U so for quantized data we expect to see the clustered
versions of the algorithm do better as size of the data sets in-
crease. We also expect our method to do less well for noisy
data sets but no worse then the non-clustered versions.

We validate our clustering scheme for each method on 92
8-bit data sets. Figure 8 shows that for an acceptable increase
in pre-processing time we see an overall uniform reduction
in storage cost when clustering is applied to each data struc-
ture. We also see that search time is largely unaffected by
clustering. The trend we see is consistent with our initial pre-
diction.

50 W kdtree
45 * itree
40 Y fouck
35 A issue

B ckdiree ¥
0) A
citree
cfouck

=3

search time (sec)
n
(&}

o
ol

0 20 40 60 80 100 120

data set size (MB)

Figure 9: Overall we see a negligible increase in search time
due to clustering.

7. Conclusions

We have demonstrated with span space analysis that spans
in quantized volume data are massively redundant and many
zero spans that are never intersected by any isosurface are
present in the data. We have demonstrated that this redun-
dancy depends heavily on quantization and resolution of the
data. We have also shown that we can exploit this redun-
dancy to optimize the memory requirements of range based
algorithms, for quantized data and proposed methods for
dealing with floating points data. The scale of modern data
sets guarantees this clustering scheme will work in practice
for a variety of data sets. We have also illustrated that know-
ing the data is important for both design and optimization of
data structures and algorithms.

References

[Ben75] BENTLEY J. L.: Multidimensional binary search
trees used for associative searching. Commun. ACM 18,9
(1975), 509-517. 5

158 B. Duffy & H. Carr/ Interval Based Data Structure Optimization

3000 W kdtree
¢ itree L
2500 V¥ fbuck
A issue
2000 ™ ckdtree
citree
1500 ¥ cfouck
cissue

1000

build time (sec)

0 20 40 60 80 100 120
data set size (MB)

1200
B kdtree

* itree
¥ fbuck
ao0 A issue
B ckdtree
e00 ¢ Citree
cfbuck
cissue

1000

400

storage cost (MB)

200

0] . 20 40 60 80 100 120
data set size (MB)

(a) Build time for the clustered versions of each algorithm grow at an(b) Storage cost for the clustered versions of the algorithms is greatly

acceptable rate compared to the non-clustered algorithms.

reduced compared to their non-clustered counter parts.

Figure 8: Build time and storage cost of the clustered algorithms compared to their non-clustered counter parts. We see and
overall reduction in storage cost for an acceptable increase in pre-processing time on the data set.

[BS03] BorbpoLOI U. D., SHEN H.-W.: Space efficient
fast isosurface extraction for large datasets. VIS "03: Pro-
ceedings of the 14th IEEE Visualization 2003 (VIS’03)
(2003), 27. 5

[CMM*97] CIGNONI P., MARINO P., MONTANI C.,
Puppo E., SCOPIGNO R.: Speeding up isosurface ex-
traction using interval trees. IEEE Transactions on Visu-
alization and Computer Graphics 3, 2 (1997), 158-170.
2

[Gal91] GALLAGHER R. S.: Span filtering: an optimiza-
tion scheme for volume visualization of large finite ele-
ment models. In VIS ’91: Proceedings of the 2nd con-
ference on Visualization 91 (Los Alamitos, CA, USA,
1991), IEEE Computer Society Press, pp. 68-75. 2

[GH90] GILES M., HAIMES R.: Advanced interactive vi-
sualization for CFD. Comput. Syst. Educ. 1, 1 (1990),
51-62. 2

[GW94] GELDER A. V., WILHELMS J.: Topological con-
siderations in isosurface generation. ACM Transactions
on Graphics 13 (1994), 337-375. 2

[IK94] ItoH T., KOYAMADA K.: Isosurface generation
by using extrema graphs. In VIS ’94: Proceedings of the
conference on Visualization '94 (Los Alamitos, CA, USA,
1994), IEEE Computer Society Press, pp. 77-83. 2

[IK95] ItOoH T., KOYAMADA K.: Automatic isosurface
propagation using an extrema graph and sorted boundary
cell lists. IEEE Transactions on Visualization and Com-
puter Graphics 1,4 (1995), 319-327. 2

[KD98] KINDLMANN G., DURKIN J. W.: Semi-
automatic generation of transfer functions for direct vol-
ume rendering. VVS ’98: Proceedings of the 1998 IEEE
symposium on Volume visualization (1998), 79-86. 3

[LC87] LORENSEN W. E., CLINE H. E.: Marching cubes:
A high resolution 3d surface construction algorithm. In

SIGGRAPH ’87: Proceedings of the 14th annual confer-
ence on Computer graphics and interactive techniques
(New York, NY, USA, 1987), ACM, pp. 163-169. 2

[LSJ96] LIVNAT Y., SHEN H.-W., JOHNSON C. R.: A
near optimal isosurface extraction algorithm using the
span space. I[EEE Transactions on Visualization and Com-
puter Graphics 2, 1 (1996), 73-84. 2, 6

[NY0O6] NEWMANT. S., Y1 H.: A survey of the marching
cubes algorithm. Computers And Graphics (2006), 854—
879. 2

[SHLJ96] SHEN H.-W., HANSEN C. D., LIVNAT Y.,
JOHNSON C. R.: Isosurfacing in span space with utmost
efficiency (issue). In IEEE Visualization 96 (1996), Yagel
R., Nielson G. M., (Eds.), pp. 287-294. 2, 5

[SHwSS00] SuUTTON P. M., HANSEN C. D., WEI SHEN
H., SCHIKORE D.: A case study of isosurface extraction
algorithm performance. Data Visualization 2000 (2000),
259-268. 3

[SJ95] SHEN H.-W., JOHNSON C. R.: Sweeping sim-
plices: A fast iso-surface extraction algorithm for unstruc-
tured grids. In IEEE Visualization (1995), pp. 143-150.
2

[vKvOB*97] VAN KREVELD M., VAN OOSTRUM R.,
BAJAT C., PAscuccl V., SCHIKORE D.: Contour trees
and small seed sets for isosurface traversal. SCG '97: Pro-
ceedings of the thirteenth annual symposium on Compu-
tational geometry (1997), 212-220. 2

[WCJ05] WATERS K. W.,CoC. S.,Joy K. I.: Isosurface
extraction using fixed-sized buckets. In Proceedings of
EuroVis 2005 (June 2005), Brodlie K., Duke D., Joy K. L.,
(Eds.). 2,7

[WG92] WILHELMS J., GELDER A. V.: Octrees for faster
isosurface generation. ACM Trans. Graph. 11, 3 (1992),
201-227. 2

(© The Eurographics Association 2010.

