EG UK Theory and Practice of Computer Graphics (2010)
John Collomosse, lan Grimstead (Editors)

Computer Graphics Education and the understanding of
pixel plotting algorithms using Growth Aggregation models

Jonathan C. Roberts

School of Computer Science, Bangor University, UK

Abstract

It is sometimes difficult to teach fundamental aspects of computer graphics, especially pixel plotting techniques,
as some students fail to engage with the material. In this paper we describe a constructionist approach to help
students learn about fundamental computer graphics techniques. By getting the students to develop code that
performs a growth aggregation model, principally using Diffusion Limited Aggregation techniques, reflect upon
that code and make a critical analysis of their own work in a report we hope the students will learn the material.
An evaluation of two years of students’ work, their results and various indicators suggest that this approach has
been successful and the students engaged with the material better.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Picture/Image Generation

— Viewing algorithms

1. Introduction

Engaging with students to help them learn about various
fundamental graphics principles such as rasterization, scan
conversion, pixel filling (flood-filling) algorithms and other
pixel based algorithms can be difficult. Often in a computer
graphics class the students have a wide range of skills, abil-
ities and interests. While some students implicitly engage
with the material and some are merely keen to learn, oth-
ers disengage with the course because they come with pre-
conceived ideas such as they want the course to teach them
how to re-create high level complex graphics scenes found
in games and misunderstand the reason and usefulness of
studying the fundamental aspects, or merely they may be put
off by the mathematics of computer graphics.

We deliver a course on the “Fundamentals of Computer
Graphics”, which is compulsory for our second year Com-
puter Science students. The course covers the fundamen-
tal concepts of plotting pixels. The course includes Bresen-
ham’s line drawing algorithm, scan conversion, anti-aliasing,
pixel filling algorithms, shading models and basic rendering
(where the principles of ray-tracing and z-buffer are cov-
ered). The students then take, in their third year, an Ad-
vanced Computer Graphics module.

Over the past two years we have being using a construc-

(© The Eurographics Association 2010.

DOI: 10.2312/LocalChapterEvents/ TPCG/TPCG10/115-122

tionist approach, by getting the students to develop a Diffu-
sion Limited Aggregation simulation. We have several ob-
jectives for this approach.

e The students gain a deep understanding of the material
by actively constructing an artifact (the DLA program).
The students learn about the challenges of plotting pixels
through a process of designing, making and reflecting.

e The students engage better with the course and also de-
velop a deeper understanding of the material through
making an exciting artifact.

e They will gain a broad understanding of some gen-
eral computer science principles, such as coherence,
speed/size and complexity of calculations.

This paper describes our approach. We briefly explain the
background to the course and then describe the simple ag-
gregation models that are explained to the students and some
related work (section 2). Several different aggregation mod-
els are used in various fields of science and art, and we make
reference to some of these related fields in this section. Sec-
tion 3 presents the tasks that the students are asked to per-
form. In section 4 we present their results and explain what
models they implemented, and describe what they wrote
about in their report (and what they included in their critical
evaluation). Finally, we discuss our analysis of their perfor-

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/LocalChapterEvents/TPCG/TPCG10/115-122

116 Jonathan C. Roberts / Computer Graphics Education using DLA

mance and some learning indicators (section 5) and make
our conclusions (section 6).

2. Background & Related Work

Our second year computer graphics course includes four
main areas of computer graphics: (1) graphics libraries, (2)
rasterization, scan conversion, and pixel plotting algorithms
(3) transformations and (4) surfaces and materials. OpenGL
through JOGL is taught to the students, which they use to
perform the aggregation model assessment. In this computer
graphics module the students also complete another assess-
ment, which is to develop a graph paper application that dis-
plays lines (pixelated by a rasterization algorithm, such as
Bresenham’s line drawing algorithm) and sine, cosine and
tangent curves.

It is for the pixel plotting algorithms (flood and scan-line
filling algorithms), rasterization and scan conversion part of
the course that we specifically employ a constructionism ap-
proach. We follow the learning-by-making idea of Papert
and Harel [PH91]. Such that by giving the students a task
to perform, where they generate interesting pictures, they
are enthused to do the assessment and learn some appropri-
ate computer graphics principles on the way. For instance,
by developing and thinking about aggregation models they
should consider aggregation, neighbourhood, proximity and
digitization issues, and general computer science concerns
of space versus time along with speed and performance is-
sues.

Structures in nature may (such as trees or lichens) on
a first glance seem complex to model. However, there are
several simple algorithms that can be used to simulate
these complex forms and generate intricate results. In na-
ture branches or leaves grow in order to to maximize the
surface area and minimize the distance from the branches.
This process thus balances the need of food production with
the distance that the food travels [Her86]. In computer mod-
elling many of these techniques use the principal of aggre-
gation by sticky pixels [RobO1]. One or more seed pixels
are placed in the environment. Subsequent pixels are in-
troduced to the environment and move around the space;
when they touch another pixel they stick together to form
a larger cluster and an aggregation is formed. The pixels are
said to be sticky as they stick to a pixel that is adjacent to
them. The word pixel is used here as commonly the particles
are pixels, but they could be larger than a pixel, and their
size could change over time. An alternative way is to use
grammar-based (L-grammar) models such as demonstrated
by the trees of Briggs [JB98] or the plants by Méch and
Prusinkiewicz [MP96]. But we focused on the point based
aggregation models for our computer graphics course.

Various parameters of the model can be changed, which
adapt the form of the aggregation. These include: (1) the be-
havior of the particles. How they enter the environment and

move around. Whether the particles attract or repel other par-
ticles. (2) The container size, shape and area, and whether
there is anything else in the container, such as liquid, other
seed points. (3) Any external feature that may affect the par-
ticles. Such as heat, movement of the environment or gravity.

By changing several of these parameters scientists and
artists have created different models that simulate dif-
ferent natural phenomena. These models are often intri-
cate and self repeating (fractal patterns). Such techniques
have generated images of plants [MP96], trees [PHL*09],
leaves [RFL*05], lightening [EJMO00], lichen [DGA04] and
ice formation [KHLO04]. Sanchez et al. investigate how close
branching patterns in nature are to various aggregation sim-
ulations [SZC*03]. A few researchers have applied the con-
cepts to non-natural structures. For instance, Chen and Lobo
use structure of DLA to layout co-citation data [CLO3].
Halsey writes “Recent insights from this well-studied model
have led to many new applications from river networks
to oil recovery, and from electrodeposition to string the-
ory” [Hal00].

In our computer graphics class we explained three princi-
pal aggregation models (Eden, DLA and Ballistic) and also
taught information about pixel adjacency and arrangement,
which we briefly explain below.

2.1. Eden’s model

Eden’s model was published in 1961 [Ede61] and is thus
one of the earliest computer growth models to be pub-
lished [Her86]. In this model a seed point is started in the
center of the grid with subsequent pixels being added ran-
domly to bounding points. The cluster is compact and solid.

2.2. Diffusion Limited Aggregation

The traditional Diffusion Limited Aggregation model was
originally developed by Witten and Sander [WS81]. The
concept of diffusion is found in many chemical processes.
Diffusion occurs as the particles in a solution move around
before they aggregate together into a structure. The models
are said to be ‘diffusion-limited” because the position of the
seed pixel is fixed to the center of the grid, it cannot move
and the pixels stick together one at a time. First, a seed is set
in the center of the lattice then the next particle is introduced
far from the origin of the aggregation at a random point. This
new particle moves at random (Brownian motion) and stops
when it touches the initial seed or the aggregation.

It can take a long time for the point to randomly walk
to the aggregate, and it is possible that the point may never
stick to the aggregate. Consequently, a killing circle is of-
ten used to remove particles that are wandering away from
the main aggregation. Alternatively, it is possible to allow
the particle to move larger distances when it is further away
from the main aggregate, and shorter distances when closer

(© The Eurographics Association 2010.

Jonathan C. Roberts / Computer Graphics Education using DLA 117

Random movemerit .
of particle])
~ New particle

CD* launch position

}ad;us O -
maxradius - --
*-.. Killing radius-""

3 * maxradius

Figure 1: Diffusion Limited Aggregation, after Witten and
Sander [WS81]. Particles are added to the experiment far
away and randomly move until they are adjacent to the cur-
rent seed or aggregate.

to the aggregation. The speed of these models is something
the students were asked to think about — especially in rela-
tion to the lattice, the movement of the pixels, the decision
function that decides whether a particle sticks to a current
position, and also storage of the aggregation.

Numerous adaptations can be made to this traditional al-
gorithm that change the form of the aggregate. Methods
include: having multiple starting points (a line of points
generates a diffusion limited deposition model [Mea83]),
changing the stickiness of the particle (i.e., the probability
that a particle will aggregate), some particles may stimu-
late growth while others could destroy or infect part of the
cluster, or trails could be left behind as the particle moves.
Other variants of the algorithm include cluster-cluster meth-
ods where hundreds of particles start in a suspension, as they
diffuse they form clusters when they collide, and subsequent
clusters move and then form larger aggregates. Other mod-
els add repulsive or attractive energy such that their kinetics,
mass and mass distribution are utilized [LLW*89].

2.3. Ballistic Aggregation

With ballistic aggregation the particles travel along straight
lines. They are added to the aggregate whenever they
touch the particle in the cluster. In 2001 we intro-
duced a variant named Random Drop Ballistic Aggregation
(RDBA) [Rob01] where the particles are dropped randomly
and stick to the closest point in the current aggregate. This
produces aggregation models that have longer thinner ten-
drils. Various dropping strategies could be used, such as
dropping over a circle, making the subsequent pixels be bi-
ased by a random offset from the previous, or dropping using
a mask to effect where the pixel is placed [Rob0O1].

2.4. Arrangement, Adjacency and Calculations

One important aspect of these models is to consider how
they are arranged on the grid, and importantly to decide how

(© The Eurographics Association 2010.

Cﬂallistic

movement
of particle

Figure 2: Randrom Drop Ballistic Aggregation (RDBA), a
ballistic aggregation approach that fires the new elements
into the scene.

they are considered connected. This was very relevant for the
students of our class, because similar concepts of arrange-
ment and adjacency are required in order to understand scan
conversion, pixel filling (flood-filling) algorithms and other
pixel based algorithms.

The Arrangement of how the data is stored on a grid is
significant because by using different lattices the structure
of the result can be altered. Commonly a square homoge-
neous lattice arrangement is used to hold the pixels. Thus
the data may be readily stored and quickly accessed from an
array structure. This also matches well with the other pixel
algorithms in computer graphics that store the pixels in a reg-
ular lattice — such as a frame buffer. However, a regular grid
creates an anisotropic result of the DLA structure [Bog02].
Other lattices may be hexagonal or triangular [Mea86] or
unusual lattices such as the Penrose Lattice [LLT*94].

Adjacency is another fundamental part of the aggregation
models, which is also important for the students to under-
stand in this computer graphics module. In fact, defining
what is considered to be connected as a neighborhood af-
fects the formed structure. In two dimensions, four connec-
tivity allows the edges of the squares to be adjacent, whereas
8-connectivity (a Moore neighborhood) adds the diagonals.
Adjacency is obviously associated with the lattice arrange-
ment, for instance 6-connectivity is possible on an hexagonal
lattice and equally valid (but differently applied) on a three
dimensional cube. In three dimensions 6-connected repre-
sents faces, 18-connected adds adjacency along edges, with
26-connected cubes include the corners.

In two dimensions, given a pixel p and a point (x,y) the
4-connected adjacency neighborhood is given by

N4(p) = {(x+ lvy)v(xf lvy)v(x7y+ 1)7(x7y7 1)}

The 8-connected neighborhood is given by

Ng(p) =Nay(p) U {(x+1Ly+1),(x—1,y—1),
(x—1,y+1),(x+1,y—1)}

When a series of pixels are each adjacent and 4-connected

118 Jonathan C. Roberts / Computer Graphics Education using DLA

Figure 3: By changing the adjacency criteria different ag-
gregation forms can occur. Growth aggregation using Eden’s
model. Left, using 4-connectivity adjacency rule; Right, us-
ing 8-connectivity. Below, colourmap for the visualization,
showing bands of white, grey and black.

together they form a path from one to the other. Not only
does connectedness affect the pixel form of growth aggre-
gation models (as shown in Figure 3) but it is significant in
pixel plotting algorithms such as flood-filling methods. For
instance, the two dark regions (a) and (b) of pixels in Fig-
ure 4 are not 4-connected but are 8-connected. Thus depend-
ing on the connectivity of the boundary defined region the
areas may be connected together or considered to be sepa-
rate.

When considering connectedness and adjacency it is suit-
able to also consider the probability in which a particle will
stick. Furthermore, by changing from 4-connect to 8-connect
we are changing the state of the grid that defines whether a
particle sticks in its current position or does not. Thus for
example, cellular automaton can be used to change the out-
come from step to step or a sticking coefficient could be used
to determine the probability of that particle aggregating.

Finally, there are three different stratagies for storing and
calculating the points. Full-lattice explains that the pixels
are held and calculated on integer sized grids. Semi-lattice,
enables calculations to be done in floating-point arithmetic
and rounded into integers to be stored in an integer based
lattice, similar in idea to the scan-conversion of a line, say.
Off-lattice, both calculates the particles and stores their po-
sitions in floating point numbers.

3. The task

The task for the students was to develop a Java program that
demonstrated a Growth Aggregation model. They were to
use the Java Bindings to OpenGL to display the aggrega-
tion and suggested that they should consider their display as
a petri dish experiment. They were also encouraged to think
about pixels, their positions on a raster screen, and what con-
nectivity and adjacency means.

4-connect 8-connect (a)

t L
O F e

Figure 4: Depending on whether the pixel area on the right
is considered to be 4-connected or 8-connected the area of
dark pixels is connected or separated into two regions.

They were given the following instructions and asked to
provide the following functionality:

1. Your program will use an appropriate Java data-structure:
Your Java program should have an appropriate data-
structure to hold the points (e.g. it could be an array) and
it should be clear whether you are using 4 or 8 connec-
tivity. There are obviously different ways to implement
this model, so you should think and plan of the best way
to do it. Have a look at the papers that are placed on
the course management system, as well as the slides on
Growth Models and your notes from the lectures. Once
the program is run it will allow numerous particles to
move around and aggregate onto the (initial) seed posi-
tion and/or any subsequent aggregated points. You may
like to give the user the option of designating how many
points will be added.

2. Your program will use JOGL to display the results. It
should start off with a blank screen, with at least one seed
point in the display, and should clearly show new parti-
cles appearing and aggregating. Think how you would do
a re-draw event. Think how you may allow the window
to be resized.

3. Your program should appear colourful. You should al-
locate a colour for each of the pixels. E.g., early points
have a lighter colour, while later points are given a darker
colour. You may like to think how a user could change
the colour or appearance of the aggregated points.

4. Your program will include additional functionality (at
least two extra features): There are many different fea-
tures that could be added. Suggestions include: use of 3d,
different sized particles, killing circles, zooming features
in/out, different types of objects (e.g. circles, squares,
hexagons), load/save model or save as a bitmap image,
different attractors (circle, lines, areas etc), use of dif-
ferent connectedness (switch between 4-connection or 8-
connection), displayed statistics e.g. number of particles
currently or the centre of mass, radius of killing circle.

5. Your program will have an accompanying report The re-
port (in Word or pdf format) will detail: (i) A description
of what you have implemented and highlighting some key

(© The Eurographics Association 2010.

Jonathan C. Roberts / Computer Graphics Education using DLA 119

features to your code. (ii) A critical analysis of what you
have done/achieved. This is important, and should dis-
cuss any limitations with your code and how you could
overcome those limitations. (iii) Detail of what additional
functionality (task 4) you have added. (iv) At least, one
screen shot of your results.

4. Results of their Work

We have run this assessment for two years. In 2009 we had
21 students make submissions, while in 2010 28 students
submitted code. Each year the students get excited over see-
ing their programs develop interesting results, and some stu-
dents even say that they tinker with the program after their
submission.

Each student submitted a Java/JOGL program, with most
of them using two classes: one to hold the main application
class to initialize the program and create any buttons, and the
other class as an event-listener class that is used to perform
the drawing and re-scaling of the image. Some of the better
solutions also added a Point class to hold details of the
location and colour of each pixel.

Figure 10 includes some screen-shots from their solutions.
The students added many features, choosing between mod-
els, switching models during mid processing, changing the
size of the launching and killing circles, being able to zoom
in and out, saving the results as an image.

Most students presented reports that detailed what they
had achieved. Importantly a majority of the students pre-
sented a critical analysis of their work. They reported where
their program was not fully functional or generating erro-
neous points. They also reported their wishes, such as wish-
ing to include a zoom function but were not able to achieve
it in the time available. Some of the students discussed the
challenges of generating a zoom function that allowed each
of the points to scale appropriately, while others discussed
the nature of 4-connected over 8-connected models. Most of
the students discussed the speed of their program, and some
had obviously thought hard how to speed the program up as
they explained the data-structure that they use. Overall their
reports were comprehensive and demonstrated a very good
understanding of the problem.

5. Analysis and Learning Indicators

We base our judgment using three methods. First, we ana-
lyzed the features of their tools, keeping the same order as in
the task (section 3). Second, we looked at their reports and
their critical analysis, and finally we present some results
from a brief questionnaire that they answered.

It was encouraging to see that every student submitted a
program with a basic DLA structure Figure 5 ; most used
an array to hold the data (and many also discussed the lim-
itations of doing so in their report), some of the better an-
swers used linked lists or other dynamic container classes.

(© The Eurographics Association 2010.

In analyzing their answers for 2009 and 2010 respectively;
76% and 86% submitted a program that developed a correct
aggregation method. However, 36% and 46% submitted a
program with errors. Some of these errors were minor and
functional (such as only walking in diagonal directions that
created constrained diffusion aggregations) while other stu-
dents provided code that would not compile.

Part 2 and Part 3 of the task involved considering how the
information is updated. It is interesting that the students in
2010 created better answers to this part of the task, as seen
in Figure 6. More students provided an interactive update
where the points appear as they are calculated, other stu-
dents animated the actual particle randomly walking. There
may be several reasons for this; the students were better, we
taught the material more clearly, or they collaborated and
discussed the problem better together. It is our belief that
the 2010 cohort gelled better together and they discussed the
problem together. The laboratories that we gave were better
attended in 2010 and the students asked many more ques-
tions than in 2009. Furthermore, it is clear the that students
in 2010 incorporated many more features in their programs
than the students in 2009, Figure 7. DLA was the most popu-
lar methodology to implement, followed by EDEN’s model
and RDBA, see Figure 8. One student each year also de-
veloped a particle suspension model where several particles
move in the simulation at the same time.

A short questionnaire was given to the students.

a Explain whether you enjoyed this assessment?
b What did you learn from this exercise?

On a scale 1..5. (1) Strongly disagree; (2) Disagree, (3) Nei-
ther agree nor disagree, (4) Agree, and (5) Strongly agree.

¢ Tunderstand rasterization and pixel plotting concepts bet-
ter after this assessment.

d I wished to achieve a nice DLA design; it enthused me to
do well at this assessment.

e I would recommend this assessment to be repeated for
following years.

® Maximum
Median

® Minimum

1 T T |

¢ - Understand d- DLA motivated me e - Recommend for
concepts better nextyear

Figure 9: Analysis of the questionnaire.

In answer to the question about ‘enjoyment’ most of the

120 Jonathan C. Roberts / Computer Graphics Education using DLA

1. Appropriate code structure & Aggretation process

2009 2010

100% 100%

Setting up a data-structure Does it work? Any errors?

Figure 5: Part 1: Your program will use an appropriate
Java data-structure,

4. Additional functionality

2009 2010

. =

User chooses 4 or 8-connect User determine #points Displaying statistical information

Figure 7: Part 4: Additional functionality.

students who answered the questionnaire said that they en-
joyed the exercise. Quoting three different students: “I did
enjoy the assignment, it was a more practical application
of graphics than just rendering already defined things. In-
stead we were creating a mathematical model ourselves and
thinking about how to display the output”. “I enjoyed the
DLA assignment once I got my head round it, I found it in-
teresting researching and coding as I'd never even heard of
the term DLA or seen anything on it before.” “I quite en-
joyed this assignment it was definitely more interesting than
the average Java problems we get given, and it was also ap-
plicable to something other than the average business type
problems we have to solve in the computing lab module”.
However, not every student enjoyed the experience or saw its
relevance, one said “I unfortunately really disliked the DLA
assignment and for a number of reasons did not complete it.
I found (even though obviously there are lecture slides as-
sociated) that it was disconnected with the lectures and the
labs”.

For the question about what they ‘learned’, the students
all agreed they learned about JOGL, JOGL interaction with
GUI’s and listeners, JOGL syntax and methods and types of
aggregation. One student writes “I learned a whole bunch of
JOGL stuff not to mention graphics strategies for speeding
up a program and why mine was running slow etc.”.

The results from the quantitative part of the questionnaire
are shown in Figure 9. It demonstrates that most of the stu-
dents who replied agreed that they had learned about the

2. Use of JOGL & 3. Colourful

=2009 2010

100% 100%

52% s50%

= . >
(= I —

Use of JOGL Iterative update

Does it scale with Colourful Includes stop/start
window? controls

Figure 6: Part 2 and 3: Your program will use JOGL.

What did people implement?
W2009 ©2010
95%

78.6% 82%

61.9%

2% 18% Lo
10% 10% s
% %
| | % -
oA ROBR et

egdt® xed xed 2 wed 3
] hesf \pere \ptere” \plee”
e

Figure 8: Most students implemented one algorithm,
which was a traditional DLA model. However, some of
the better answers included several algorithms.

pixel plotting concepts through the assessment, and that the
DLA design enthused them to do better, and that they would
recommend the assessment to be repeated for the following
years.

6. Discussion & Conclusions

The idea of using a constructionist approach for learning is
not new; but it is a useful strategy to take especially for a
computer graphics course. It is very easy for academics to
think up ways to assess students, ways that are often looked
at as being serious, but it is harder to find assessments that
enable all the students (from whatever background) to en-
gage with the material. We believe our use of the aggrega-
tion simulation was successful for this course. The majority
of the students produced working code that modeled an ag-
gregation successfully, some students went further than was
required and added extra functionality, while some said that
they would continue adding to their program after they had
handed in their assessment.

It was explicit in the assessment that the students needed
to learn how to operate JOGL effectively, such that the par-
ticles could be displayed and that they could animate and
move. But it also required that the students thought about the
placement, adjacency and movement of the pixels. Most stu-
dents considered how this can be achieved on a full-lattice,
while some students used a semi-lattice. By creating an arti-
fact and then critiquing their work the students were forced
to analyze what they had done, and think further of their

(© The Eurographics Association 2010.

Jonathan C. Roberts / Computer Graphics Education using DLA 121

methodology. Even if the students had not been able to make
the code perform correctly, they could reflect on their work
and thus learn the concepts.

It is also suitable to consider that this assessment en-
couraged other good Computer Science methodologies, such
that the students followed an Agile approach to their work.
Resnick [Res03] writes about a suitable constructionist ap-
proach, the TREE strategy “Test Randomly, Evaluate, Elect
(choose which direction to move)”. We believe many of the
students were following such a strategy because — along-side
the lectures we ran a series of laboratory classes on JOGL —
during these classes the students showed us different ver-
sions of their code, and asked for advice on their code.

We acknowledge that there are weaknesses to our study.
For instance, the cohort sizes were small, not all the students
provided answers to the questionnaires and it would have
been interesting to analyze the student’s work from previous
years — who had not done this exercise. However, we have
received several positive comments from the students saying
that they had enjoyed the assessment and had learned from
the experience and that we should repeat the assessment next
year. In fact, even one of the students who was quite negative
said “I must say I find it refreshing that a lecturer is doing
this and I hope my feedback is not too harsh and helps you
with a future approach.”

We believe that we achieved our goals that (1) we have
demonstrated that the students did gain a deep understanding
of the material by actively constructing an artifact (the DLA
program) and that the students learned about the challenges
of plotting pixels through a process of designing, making and
reflecting. (2) The students did seem to be better engaged
with the course. (3) Their reports certainly demonstrated that
they had thought about other aspects of computing such as
speed and extensibility issues.

In conclusion, the constructionist approach worked well
in this instance. We encourage other academics to create ex-
citing assessments that engage the students through develop-
ing an artifact.

References

[Bog02] BOGOYAVLENSKIY V. A.: How to grow
isotropic on-lattice diffusion-limited aggregates. J.of Phys
A: Mathematical and General 35, 11 (2002), 2533.

[CLO3] CHEN C., LoBO N.: Semantically modified dif-
fusion limited aggregation for visualizing large-scale net-
works. In Proc. 7th Conf. on Info.Visualisation, IV (2003),
pp. 576-581.

[DGAO4] DESBENOIT B., GALIN E., AKKOUCHE S.:
Simulating and modeling lichen growth. Computer
Graphics Forum 23, 3 (2004), 341-350.

[Ede61] EDEN M.: A Two-dimensional Growth Process.

(© The Eurographics Association 2010.

In Proc. 4th Berk. Symp. Math. Statist. and Prob., (1961),
no. 4, pp. 223-239.

[EIM00] EVANS B., JONES H., MALLINDER H.: Light-
ning strikes: an installation. In Proc. 18th Eurographics
UK Conf. (2000), pp. 9-16.

[Hal0O] HALSEY T.: Diffusion-limited aggregation: A
model for pattern formation. Phys. Today 53, 11 (2000),
36-41.

[Her86] HERRMANN H. J.: Growth: an introduction. In
On Growth and Form: Fractal and non-fractal Patterns
inPhysics, Stanley H., Ostrowsky N., (Eds.). NATO ASI
Series, 1986, pp. 3-20.

[JB98] JONES H., BRIGGS P.: Modelling the growth pro-
cess of trees. In Eurographics UK Conference Proceed-
ings (March 1998), pp. 97-106.

[KHLO4] KiM T., HENSON M., LIN M. C.: A hybrid al-
gorithm for modeling ice formation. In SCA ’04: Proc.
ACM SIGGRAPH/Eurographics Symp. on Comp. anim.
(2004), pp. 305-314.

[LLT*94] Liu Z., L1u Y., TIAN D., XIA H., JIANG Q.:
Diffusion-limited aggregation on penrose lattices. Journal
of Physics: Condensed Matter 6, 22 (1994), 4037.

[LLW*89] LIN M. Y., LINDSAY H. M., WEITZ D. A.,
BALL R. C., KLEIN R., MEAKIN P.: Universality of frac-
tal aggregates as probed by lightscattering. In Fractals
in the Natural Sciences, M.Fleischmann, D.J.Tildesley,
R.C.Ball, (Eds.). Princeton Univ. Press, 1989, pp. 71-87.

[Mea83] MEAKIN P.: Diffusion-controlled deposition on
fibers and surfaces. Phys. Rev. A 27,5 (May 1983), 2616—
2623.

[Mea86] MEAKIN P.: Universality, nonuniversality, and
the effects of anisotropy on diffusion-limited aggregation.
Phys. Rev. A 33,5 (1986), 3371-3382.

[MP96] MECH R., PRUSINKIEWICZ P.: Visual models
of plants interacting with their environment. Computer
Graphics 30, Annual Conference Series (1996), 397-410.

[PH91] PAPERT S., HAREL I.: Situating Constructionism,
Chapter 1 of Constructionism. Ablex Publishing Corpo-
ration, 1991.

[PHL*09] PALUBICKI W., HOREL K., LONGAY S.,
RUNIONS A., LANE B., MECH R., PRUSINKIEWICZ P.:
Self-organizing tree models for image synthesis. ACM
Trans. Graph. 28, 3 (2009), 1-10.

[ResO3] RESNICK M.: Thinking like a tree (and other
forms of ecological thinking). International Journal of
Computers for Mathematical Learning 8 (2003), 43-62.

[RFL*05] RUNIONS A., FUHRER M., LANE B., FEDERL
P., ROLLAND-LAGAN A.-G., PRUSINKIEWICZ P.: Mod-
eling and visualization of leaf venation patterns. In SI/G-
GRAPH ’05: ACM SIGGRAPH 2005 Papers (New York,
NY, USA, 2005), ACM, pp. 702-711.

122 Jonathan C. Roberts / Computer Graphics Education using DLA

2] Diffusion Limited Aggregation

90000 100000

] Diffusion Limited Aggregation

2 Update No. Balls Start Stop

DLA model using a 4-connect
model, showing the kill circle model.
and comprehensive interface.

DLA model using an 8-connect

DLA model using an 8-connect
model and tracing multiple par-
ticles.

RDBA model with the particles
being launched from a circle.

RDBA model with 4-connect
pixels, with particles dropped

Launching Radius: 146.0

An animated RDBA model
where the particles are seen to

anywhere in the area. Statistical move.
information is also shown.

[Diffusion Limited Aggregation

red 1| greem: [2 | blue:[1 setup || Cancel

Start with Conectivity of 4 ® Start with Conectivity of 8

== (& DA =N

Aggregate size2923

An 8-connect Eden model. A simple black and white
Eden’s model implementation.

An diffusion model with multi-
ple particles moving and aggre-
gating at the same time.

Figure 10: Examples of students’ work

[Rob01] ROBERTS J. C.: Sticky pixels: Evolutionary
growth by random drop ballistic aggregation. In Proc.
of Eurographics UK 2001 (2001), pp. 149-155.

[SZC*03] SANCHEZ J. A., ZENG W., CoLucI V. R.,
SIMPSON C., LASKER H. R.: How similar are branch-
ing networks in nature? a view from the ocean: Caribbean

gorgonian corals. J. Theoretical Bio. 222, 1 (2003), 135 —
138.

[WS81] WITTEN T. A., SANDER L. M.: Diffusion-
limited aggregation, a kinetic critical phenomenon. Phys.
Rev. Lett. 47 (1981), 1400-1403.

(© The Eurographics Association 2010.

