EG UK Theory and Practice of Computer Graphics (2010)
John Collomosse, Ian Grimstead (Editors)

Agent-based Large Scale Simulation of Pedestrians With

Adaptive Realistic Navigation Vector Fields

Twin Karmakharm , Paul Richmond and Daniela M. Romano'

! University of Sheffield Department of Computer Science,211 Portobello, Sheffield, S1 4DP

Abstract

A large scale pedestrian simulation method, implemented with an agent based modelling paradigm, is presented
within this paper. It allows rapid prototyping and real-time modifications, suitable for quick generation and testing
of the viability of pedestrian movement in urban environments. The techniques described for pedestrian simulation
make use of parallel processing through graphics card hardware allowing simulation scales to far exceed those
of serial frameworks for agent based modelling. The simulation has been evaluated through benchmarking of the
performances manipulating population size, navigation grid, and averaged simulation steps. The results demon-
strate that this is a robust and scalable method for implementing pedestrian navigation behaviour. Furthermore an
algorithm for generating smooth and realistic pedestrian navigation paths that works well in both small and large
spaces is presented. An adaptive smoothing function has been utilised to optimise the path used by pedestrian
agents to navigate around in a complex dynamic environment. Optimised and un-optimised vectors maps obtained
by applying or not such function are compared, and the results show that the optimized path generates a more
realistic flow.

Categories and Subject Descriptors (according to ACM CCS): 1.2.11 [Distributed Artificial Intelligence]: Multiagent

systems

1. Introduction

Pedestrian simulations have found increasing use in various
fields from entertainment to disaster planning [Sof10,Sim10,
TPO02] where they can be used to predict and model the ef-
fect of crowd movement under various environmental con-
ditions. As the population densities of urban areas continu-
ous to increase, it is likely that pedestrian simulations will
play a progressively more important role in ensuring safe
and optimised crowd flows within urban spaces. Simulating
groups of pedestrians is now almost exclusively performed
by considering an individual approach, where agents interact
directly to form emergent group behaviour, rather than using
a top down set of equations to attempt to model group dy-
namics. This individual emphasis, defined as either an agent
simulation or particle force simulation lends itself well to
the natural description of behaviour through sets of defined
rules. Likewise, heterogeneity can be introduced within the
simulation as each pedestrian is a unique entity, responsible
for their own actions and personal traits. In addition to simu-
lating the interaction between agents, pedestrian simulations

(© The Eurographics Association 2010.

DOI: 10.2312/LocalChapterEvents/ TPCG/TPCG10/067-074

also require an additional technique to model the flow of
pedestrians through the environment. This can be achieved
using either a global navigation technique (common to all
agents) or through individual path planning.

Whilst the individual approach to agent simulation has
many advantages it poses a significant computation prob-
lem when considering large scale simulations. Due to the
need to simulate ever increasingly large populations sizes it
has become apparent that traditional serial simulation frame-
works are therefore unable to meet the real time requirement
needed for visual exploration with such models. Paralleli-
sation offers a solution to this issue, however hardware ar-
chitectures such as the Graphics Processing Unit (GPU) are
far from easy to develop with and require specialist knowl-
edge to gain maximum performance even when taking into
account new development tools. With respect to agent nav-
igation, previous techniques tend to diverge away from the
agent based semantics meaning that navigation becomes a
separate process which in most cases remains static through-
out the simulation.

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY
diglib.eg.org

www.eg.org

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/LocalChapterEvents/TPCG/TPCG10/067-074

68 T. Karmakharm, P. Richmond & D. Romano / Agent-based pedestrians with adaptive vector fields.

This paper takes an agent based approach to modelling
pedestrian systems and navigational behaviour where both
the interaction between agents and the agent’s navigation
through the environment is facilitated through a single agent
framework. The advantage of this technique is that we are
able to integrate our model within an agent based frame-
work designed for efficient GPU simulation allowing us to
simulate large population sizes in real time. In addition the
simulations can be rendered efficiently as simulation data is
already contained within the GPU device. Within this pa-
per the navigation is based upon a set of agents arranged
within a discrete grid. The use of these agents to indicate
a vector field is described as is a novel process for avoid-
ing a common issue we identify as "diagonal convergence"
which is the result of generating vector fields using shortest
path flows throughout the environment. An evaluation is also
presented which is defined according to a real world environ-
ment and used by the simulation to test the performance and
behaviour of our system.

2. Related Work

The use of agent based modelling has been widely adopted
within the field of pedestrian simulation. An early example
of this concept was demonstrated by Reynolds on the sim-
ulation of flocking behaviour of animals [Rey87]. Operat-
ing on only three simple rules and awareness of their envi-
ronment, the agents displayed emergent complex and plau-
sible group behaviour. A model for pedestrian behaviours
was later conceived by Helbing et al [Hel91] which takes
into consideration psychological factors such as social dis-
tances from other pedestrians as well as environmental ob-
stacles. Within this particle force model, widely observed
organisational behaviours of pedestrians such as lane forma-
tion emerge from the individual pedestrian behaviours The
original model was later extended to include contact forces
which simulate aspects of emergency situations [HFV0O].
This well studied and validated model is now standard in
most evacuation models and continues to form the basis for
extended research into pedestrian behaviour e.g. Moussaid
et al takes in to account of the shapes small groups form in
order to maximise their social communication [MPG*10].

Pedestrian agent modelling technique originally used Cel-
lular Automata [BKSZO01], a discrete model where each
pedestrian occupies a single cell within a grid. The or-
der of their movements must be sequential which makes it
harder to parallelize, they are also not suitable for smooth
pedestrian flows in continuous environments. The contin-
uum crowd technique, initially proposed by Huges [Hug02],
defines crowds as a density field where pedestrians travel
to their goals by following the gradient vectors calculated by
the potential functions. This model was improved by Treuille
et al. [TCPO06] to incorporate empirically measured emergent
pedestrian behaviours such as lane formation. Since the den-
sity field takes into account of both global goals and local

obstacles including other pedestrian agents, global and local
navigation is integrated and resolved at the same time. The
most intensive calculation with this process is in resolving
the density field with every time-step of the simulation and
hence the method may not scale well for much larger envi-
ronments. The solution for the scalability was addressed by
Shopf et al. in the March of the Froblins demo [SBOTO0S]
where continuum methods were instead used as a coarse
density grid to drive global navigation and using agent based
collision detection behaviour for local obstacles.

With respect to navigation local perceptive interaction
does not provide enough information to provide long range
planning through the virtual environment. As a result either
a global or individual based navigation technique is required
to provide long range guidance. Most global navigational
techniques reduces the environment down to a set of discrete
grid cells [TLCC] [STO5]. Information about obstacles occu-
pying the cell, terrain height, and other arbitrary information
can be encoded within each cell where pedestrian agents can
then use to navigate within the virtual environment. Most
commonly the discrete cells can be used to hold a direc-
tional force which when combined with neighbouring cells
represents a vector field (also known as force fields or flow
fields). This technique is very effective when combined with
good local collision avoidance and computationally very ef-
ficient as each agent avoids having to perform a path plan-
ning exercise. The authoring of the vector fields can either be
done manually using a software that allows a user to ’paint’
the field directions, alternatively they can be automatically
generated using algorithms such as wavefront propagation
where the origins of the waves represent the destination(s) of
the pedestrians [LaV06]. Multiple fields can be used for each
group(s) of pedestrians to represent differing goals and intro-
duce complex flows. The drawback with this method is the
fact that the method often uses more memory, growing ex-
ponentially with the size of the grid and can then also place
limits on the number of goals or fields that can be used. The
flow tiles concept introduced by Chenney [Che04] makes the
process more scalable by re-using tiles of pre-defined vector
fields to save on repetitious regions of flow that are likely to
occur within the environment. Work by Jin et al. [JXW*08]
presents the uses of continuous vector fields constructed us-
ing radial basis functions. Anchor points are used in order
to define directional flows of pedestrian agents and can be
placed dynamically on the scene making crowd control in-
teractive. Since the field is continuous, performance is de-
pendent on the number of anchor points rather than the size
of the environment and has been shown to degrade well with
increasing pedestrian sizes. The author does not however,
discuss how it well it would apply to more complex environ-
ments and goal based situations.

The alternative to global navigation is the use of individ-
ual path planning. Whilst simple ray query technique can be
used to find paths around obstacles it would be too compu-
tationally expensive to apply it to global navigation in real-

(© The Eurographics Association 2010.

T. Karmakharm, P. Richmond & D. Romano / Agent-based pedestrians with adaptive vector fields. 69

time. To avoid this problem, the inter-connecting areas can
be reduced to a set of graphs where each node represents an
area and edges represent walkable paths [Sha05]. The prob-
lem then changes to a graph traversal problem which can be
solved by common path-finding algorithms such as A* or
Dijkstra’s. Pettre et al. [PLT0S5] shows alternative approach
to the graph based navigation where medial axis sampling
was performed on the environment enabling it to be concep-
tualized as a series of interconnected circles. In this case the
radius of each circle is its maximum clearance from static
obstacles and the radical lines from intersecting circles are
used to represent corridors of safe walkable paths. While
graph based methods allows highly individualised goal des-
tinations, they require more time during the simulation to
calculate routes dynamically.

3. Our Pedestrian Simulation System
3.1. The Agent Modelling Framework

In order to implement our pedestrian simulation as an agent
model on the GPU we have decided to use the Flexible
Large-scale Agent Modelling Environment framework for
the GPU (FLAME GPU) [RCR09]. As well as the Com-
pute Unified Device Architecture (CUDA) [Nvi09] enabled
GPU version of the framework used within this paper there
are a number of simulation backends for hardware architec-
ture including a single core CPU and a number of common
High Performance Computing (HPC) grid architectures. The
framework is incredibly robust and has been used in a wide
range of agent modelling areas that range from the biological
science [RWCR10] through to modelling of the European
economy [DVDOS8]. This framework itself uses a formal
model of agents, which is based upon a parallel communi-
cating state machine with internal memory more commonly
known as a communicating stream X-Machine [CSHO6].
Models are described using both a simple XML model def-
inition and a corresponding set of scripted agent functions
which defines agent behaviour. An XML model file briefly
comprises of the following information:

1. A set of environment, or constant variables, which may
be set between simulation steps - These are useful in con-
trolling aspects of the model within a real time simula-
tion.

2. A set of X-Machine agents - As with the formal defini-
tion of an X-Machine [Eil74] each agent definition con-
sists of a description of the agents internal memory (the
agent variables), a set of internal states (which may add
a degree of diversity to an agent population) and a set of
function definitions (which define the transition between
any two states including any agent or message input or
output). Each agent may be either discrete (in which case
it is non mobile and part of a cellular automaton) or con-
tinuous in which case it may be spatially distributed or
represent a more abstract non spatial entity.

3. A set of messages - Each message definition has a set of

(© The Eurographics Association 2010.

Pedestrian Agent Message Pool Navigation Agent
Functions Functions

2 generate-
N

pedestrians

output-force-

pedestrian
cell-message

location
messages

output-pedestrian-
message

Time

apply-avoidance- force cell
and-steering-force / messages

apply-collision-
and-navigation-
force

N
AN/ | move-pedestrians

Figure 1: Sequence diagram for function call of both agents
and their utilization of the message pool.

communicated information (or variables) which may be
input or output from within the agent function scripts al-
lowing indirect communication between agents. A mes-
sage definition also defines any restriction on message
range or the type of agent which may use it (discrete or
continuous). This ensures the back end simulation uses
the most efficient communication algorithm for message
iteration within the agent functions.

4. A set of function layers - This describes the sequential
stepwise order of execution of the agent functions within
a single simulation step. A single layer may execute more
than one agent function in parallel if they share no de-
pendencies i.e. do not share any common message input
or output. In the case of the GPU these are executed se-
quentially regardless due to the Single Program Multiple
Data(SPMD) architecture.

Model descriptions are processed within FLAME GPU
through a template engine which translates the model file
into CUDA source code. This process abstracts the writing
of GPU code from the modeller allowing fast prototyping
of models without explicit knowledge of the GPUs data par-
allel architecture. Common agent based functionality such
as birth and death allocation, communication and efficient
data storage are automatically generated by the template en-
gine and which combined with the agent function scripts
can be compiled to produce GPU enabled agent simulations.
The processes can be easily extended and in the case of our
pedestrian simulation a visualisation template is used as a
starting point to allow more advanced pedestrian simulation
which includes a parallel LOD rendering technique [RRO8],
inclusion of detailed urban models and an interactive user
interface for controlling environment variables.

In accordance with the FLAME GPU model specification
technique our pedestrian simulation is expressed using two
distinct type of agents, the pedestrian agents and the navi-

70 T. Karmakharm, P. Richmond & D. Romano / Agent-based pedestrians with adaptive vector fields.

gation agents. Figure 1 illustrates the sequence of functions
that each agent performs and how the information flow in
and out of these functions are managed.

3.2. Navigational Agents

In our work, we have opted to use a variation of the vector
field based method, force vector fields (FVFs) in order to as-
sist the pedestrian agents in their global navigation. Collision
and Navigation FVFs are the two distinct types that are em-
ployed in our simulation (abbreviated to CFVF and NFVF
respectively). CFVFs encode repulsion forces radiating from
static obstacles within the environment. The strength of the
force at any location is exponentially inversed in propor-
tion to the distance from said obstacles over a given config-
urable range. Only one CFVF is required for the simulation
as repulsion force from obstacles is continuous and static
throughout the simulation. NFVFs are then used to guide
agents to their intended goals. In our case all of the goals
are associated with an entrance/exit to the environment and
the number of NFVFs corresponds to the number of exits.
Each cell within a field is encoded with a force that points
to the shortest non-obstructed direction to the goal. Details
for CFVF and NFVF are further discussed in 3.2.1 and 3.2.2
respectively.

To represent these fields, our Navigation agents are made
to be Cellular Automaton (CA), i.e. non-mobile, discrete and
are arranged as a topologically correct grid. Each naviga-
tion agent can then be thought of representing a cell within a
grid and so holds information for all CFVF and NFVFs for
that particular location. In our current simulation, the Nav-
igation agents have two functions, generate-pedestrians and
output-force-cell-messages (Figure 1). When the generate-
pedestrian function is called, if the navigation agent is
deemed to be an exit it will randomly generate pedestrian
agents at that location at a configurable (people per minute)
rate. Newly generated pedestrian agents are then assigned a
random exit goal according to a probabilistic function. Since
all FVFs are currently generated before the start of the simu-
lation, at run-time navigation-agents need only to broadcast
information of their respective FVF cell. This is handled by
the output-force-cell-message function.

An example of a single broadcast message can be found
in Listing 1 which was taken from the initial configuration
file created before the simulation starts. The variable height
is used to encode a discrete height map of the simulated en-
vironment and is used within the visualisation to displace
pedestrian agents across differing physical levels in the sim-
ulated space. The variables collision_x and collision_y en-
codes a CFVF cell. In this case a force in the positive x
direction indicates an obstacle to the left of the navigation
agent. The variables exitO_x through to exit1_y describe 2
normalised navigation force vectors which describe force
direction leading agents towards one of 2 exits. Finally the
variable exit is used to determine if the force cell indicates

v Navigation Agents Grid

VA | |<
<>
<> |«

»lV]A |«

Collision Force Vector Field

2 E

g <

>

1 R

d EIRIRIR

S Destination/Exit
2> | (|| > .

gv > > 4 4 A . Static Obstacle
féf‘ ‘ -‘ A A Collision Force Vector
é‘ A > > ‘ A A Navigation Force Vector
‘> vie(d]A

Figure 2: An example of a simplistic 6x6 environment with
2 exits and obstacles. Navigation agents are arranged in a
grid as shown (top right) and position of the agent relates to
a particular cell of the force vector fields.

the presence of an actual exit position within the simulation.
Exit positions play two important roles within the simula-
tion. The first is the previously described generation of new
pedestrian agents. The second is ensuring pedestrian agents
can identify (through message communication of the cell in-
formation) that they have successfully reached their destina-
tion point.

Listing 1: XML Specification of navigation agents

<xagent>
<name>force_cell</name>
<x>1</x>

<y>2</y>

<height>0.1</height>
<collision_x>1.0</collision_x>
<collision_y>0.0</collision_y>
<exitO0_x>0.8</exit0_x>
<exit0_y>0.6</exit0_y>
<exitl_x>0.8</exitl_x>
<exitl_y>—0.6</exitl_y>
<exit>0</exit>

</xagent>

(© The Eurographics Association 2010.

T. Karmakharm, P. Richmond & D. Romano / Agent-based pedestrians with adaptive vector fields. 71

. Obstacle

Search
origin

Visible from
origin

Not visible
from origin

Figure 3: Visibility rules for the wave propagation. Starting
from origin (yellow), the green areas will be included while
the red area is not due to it being blocked off by obstacles.

3.2.1. Collision Force Vector Fields

After the environment has be discretized, each cell is either
determined to be a walkable area or an obstacle. A wave-
front propagation algorithm ([LaV06] p.378) is then used
with the origin of the propagation being the list of cells that
has been marked as an obstacle. The algorithm proceeds to
collect all adjacent cells that are not already in the list. Hav-
ing now obtained a list of valid and not already visited ad-
jacent cells, for each of these cells the final collision vector
is the normalized sum of the vectors pointing away from its
neighbouring cells that was visited last iteration (so for the
first iteration, it would be the vectors pointing away from ob-
stacle cells). The normalized vector is then multiplied by the
scalar force that depends on the distance (number of itera-
tions). Force used in this simulation decreases exponentially
with distance. The adjacent cells list is used as the origin for
the next iteration and also added to a list of all visited cells.
The process repeats until there are no more cells to visit or
by reaching a fixed maximum number of iterations (the force
influence distance). An example of a calculated CFVF map
can be found in Figure 2 (top left) where force influence dis-
tance is set to be 1.

3.2.2. Navigation Force Vector Fields

The NFVF map for each destination is generated in a sim-
ilar way to the CFVF with the difference that the origins
of propagation are pre-defined exit points rather than obsta-
cles and the vector points towards the cells of previous iter-
ations. Propagation also follow a visibility rule (Figure 3) so
that it does not go through walls or obstacles. Although this
method will guarantee to find the shortest path to the desti-
nation from anywhere in the environment, a straightforward
implementation of the algorithm results in a common issue
which we describe as a "diagonal convergence" of vectors
(Figure 4, top right). This is a result of the diagonal lines
which propagate from corners representing the shortest path
with surrounding flow point attempting to converge towards
them. This becomes even more apparent as the grid reso-
lution is increased around larger areas of open space and re-
sults in squashed and unnatural pedestrian flows when within
a simulation (Figure 5, left).

(© The Eurographics Association 2010.

Figure 4: Comparison of the generated force vector fields.
Top left shows the CFVF with force influence distance of 2.
The rest shows NFVFs with simple propagation (top right),
with backflow propagation but no limit (bottom left) and the
result of the full algorithm (bottom right).

In order to tackle the problem of "diagonal convergence",
it is necessary to smooth out the vector flows. We have
found that a process of backflow smoothing creates a natural
looking navigation flow for pedestrian agents, successfully
avoiding convergence issues. Although simple neighbour-
hood averaging of vectors can be used, the progressive na-
ture of the backflow smoothing results in an even smoother
field especially in large open areas. It works by propagat-
ing a flow in the reverse direction for each cell of the cur-
rent iteration and the navigation vector is generated by sum-
ming up the vectors pointing from the current cell to the
cells in the reverse flow. This reverse propagation also fol-
lows the same visibility rules of the main wave propagation
and flows around obstacles. Influence of reverse flow vectors
is decreased in proportion to the increase in distance of the
backflow. The final navigation vector is then normalised af-
ter the backflow reaches its maximum iteration distance. As
the resolution of the grid increases it then becomes neces-
sary to increase the number of iterations to generate smooth
flow especially if there are large open areas in the scene. Us-
ing more iterations however, can cause problems in the rest

72 T. Karmakharm, P. Richmond & D. Romano / Agent-based pedestrians with adaptive vector fields.

S
N

S N
S, \;&‘\\\Q‘\:‘
AN

11~
1
N

e

z AR
%X A
:&' S
TAT
S i e
pe
=2
E: /l k“\ \ \\ \\ \\ \\\ i
s p
S22 LU LR SR NN

Figure 5: Comparison of the simulation using un-optimized
(left) and with backflow smoothed (right) navigation vector
fields.

of the scene especially around tight corners where vectors
run into obstacles (Figure 4, bottom left). A contextual limit
is placed on the backflow where the iterations stop when an
obstacle is encountered. The final algorithm generates a vec-
tor field that is both smooth in open areas but is also cor-
rect around corners and narrow corridors (Figure 4, bottom
right). The effect of this algorithm can be seen in Figure 5
(right) where pedestrians (in blue) can spread out to take up
more space and making the simulation look more natural.

3.3. Pedestrian Agents

Pedestrian agents are continuous spaced mobile agents, each
one representing a single embodied pedestrian entity within
the simulation. Within a single simulation step they first
communicate their locality and velocity (through a message
output, shown in Figure 1). Pedestrian agents then perform
an iteration of the pedestrian locations messages as well
as the navigation cell message information which can be
used with any number of agent based steering techniques
[Rey99, Hel91]. Within our simulation we combine a mix-
ture of Reynolds individually perceptive steering forces and
Helbing’s social forces model to determine forced based
steering behaviour between pedestrians. As in [HFV00],
large contact forces are applied between pedestrians when
they are touching each other and helps to more accurately
simulate areas of higher congestion. A weighted collision
and navigation force is also determined from the pedestrian’s
position in the FVF and is then applied to the steering ve-
locity. The agent finally updates its position by using a nu-
merical integration to move in the direction of the resolved
force vector. This integration step is typically very small (in
hundredths of a second) and is adapted depending on per-
formance to provide real time pedestrian movement speeds.
The exact agent functions are described in Figure 1.

3.4. Environment Editor

The FVF maps (both collision and navigation) are currently
pre-generated through a tool created in order to facilitate
rapid generation of different environments. The tool allows
the user to sketch or trace over a plan of an area and mark-
ing it as an obstacle or exit. The program automatically
generates a CFVF and individual NFVFs for each destina-
tion according to user-specified parameters. The parame-
ters are force influence distance, minimum force and max-
imum force for CFVF generation and maximum backflow
iterations for NFVFs generation (refer to Section 3.2.1 and
3.2.2). Finally an XML file is generated in the format com-
patible with the navigation agent definition for the FLAME
GPU simulation framework.

4. Simulation & Results
4.1. Simulation Performance Benchmarking

The benchmarking was done on a 64-bit Windows 7 machine
using AMD Athlon 4800+, NVIDIA GeForce 9800GX2
with one core used for visualization and one used for CUDA.
The simulation’s performance was measured against four
square grid sizes of 64, 128, 256 and 512 widths. The varia-
tion of pedestrian population began from 1024 and increased
by multiples of 4 up to 262144 pedestrians. The pedestrians
were randomly generated and placed in a walkable space
within the environment. Pedestrian density is always kept
the same as the environment scales up with increasing pedes-
trian population. The graph in Figure 6 (top) shows the result
of this testing. The result shows that the navigation grid size
becomes less important as the number of pedestrian agent
increases. This is due to the fact that pedestrian behaviour
is the most time consuming part of the simulation. It proves
that the use of navigation maps is very scalable and larger
grid sizes can be used to represent higher environment detail
or a larger area. Currently navigation maps beyond the size
of 512x512 cannot be run on larger pedestrian counts (more
than 262144 pedestrians) due to the lack of GPU memory as
the list of pedestrian agents are double or triple buffered in
order to allow reallocation for agent births and deaths. An-
other factor that contributed to the lack of memory is the fact
that as pedestrian population gets larger, in order to keep the
same density the number of space partitions (defined by the
communication radius of agents [RCR09,LGO08]) gets larger
and hence requiring a lot more memory.

4.2. Simulation Based on a Real Urban Environment

The test environment was modelled after a busy pedestri-
anised area in London. It contains 7 destinations/exits with
one being an access to the underground station (Figure 7).
Pedestrians are generated at each exit location according to
a specified emission rate (measured as people generated per
minute) and each have a specific exit location to navigate to
based on a pre-determined probability. All exits can be in the

(© The Eurographics Association 2010.

T. Karmakharm, P. Richmond & D. Romano / Agent-based pedestrians with adaptive vector fields. 73

@—Grid Size: 64x64

em—Grid Size: 128x128
Grid Size: 2561256

@—Grid Size: 512x512

8

100steps)

150

100

ion Steps per Second (.

1024 4096 16384 65536 262144
Pedestrian Population Size

B generate_pedestrians()
B output_navmap_messages() & output_pedestrian_messages()
50 ' apply_avoidance_and_steering_forces()

= apply_collision_and_navigation_forces()

® move_pedestrians()

Total Simulation Time (milliseconds)

o 1000 2000 3000 4000 5000 6000 7000 8000
Simulation Steps

Figure 6: Simulation benchmarks. Performance benchmark-
ing for environments of different sizes (top). Time utilization
by different agent functions with increasing pedestrian agent
density (bottom).

state of either open or closed. When a pedestrian reaches a
closed exit, it will randomly choose a different exit and start
navigating to the alternate destination. All FVFs are pre-
generated according to Section 3.2 with the whole environ-
ment being represented as a 128x128 grid although walkable
space occupies less than 70% of the total area. The purpose
of the simulation is to show the effects of areas that have
been flooded with pedestrian possibly as a result of an evac-
uation or a large public event. Result of the simulation is also
expected to highlight dangerous conditions which can result
from closing exits. Testing of the model will then follow the
following sequence.

Firstly the simulation starts unpopulated and pedestrians
are continually generated until they reach a steady state. The
model will then be flooded with pedestrians while an exit is
closed. Inability of pedestrians to leave the environment in
a timely fashion results in heavy congestion and potentially
dangerous conditions. Figure 6 (bottom) shows a breakdown
of simulation time (in ms) during a real time simulation of

(© The Eurographics Association 2010.

Figure 7: Screenshots of the final pedestrian simulation. On
the street level (top left). Running with 10,000 pedestrians
(top right), red lines signify locations of exit.

the London model. More specifically it shows the timings
(stacked) for individual or combination of agent function
calls (Figure 1). Timings have been obtained by averaging
the simulation time of each function call over the period of
200 simulation steps to avoid any small fluctuations.

Over the simulation of roughly 9000 simulation steps the
graph shows three distinct phases. The first occurs between
step O and 800 and shows relative stability in simulation
times. During this phase the emission rate for each exit in
the model is constant and the total number of pedestrians
remains at roughly 3000.The sharp rise in simulation perfor-
mance after this phase is a result of increasing the emission
rate of all the exits. The second phase of relative stability oc-
curs between steps 1400 and 4400. During this phase of the
simulation the large increase in emission rates has reached a
stable population of roughly 11,000 pedestrian agents. The
final phase of the simulation shows the effect of closing one
of the 7 major exits. Any agent which reaches a closed exit
is forced unable to leave the simulation at the exit point and
must navigate to a new exit position. The effect of this is
that first the population increases relatively slowly as a re-
sult of pedestrians failing to leave through their preferential
exit (steps 4400 to 5600). After this the area around the exit
becomes very congested and the number of pedestrians con-
tinues to rises very sharply to over 2000 agents. The effect of
closing the exit congests the model to the extent that a stable
number of pedestrians cannot be reached. It can be clearly
seen that under these conditions dangerous crush conditions
occur around the exit.

5. Conclusion

The paper described the details of an implementation of a
high performance, large scale pedestrian simulation. Pedes-
trians within the simulation were shown to have the ability
to navigate within complex environments, through force vec-
tor field maps which are automatically generated using a fast
environment prototyping tool. Evaluation of our work shows
that our implementation of the force vector field generation
algorithm produces configurable smooth flows of pedestri-

74 T. Karmakharm, P. Richmond & D. Romano / Agent-based pedestrians with adaptive vector fields.

ans. The use of discrete agents to host navigation informa-
tion has been tested to be an efficient and scales effectively
with large numbers of pedestrians. The use of real time in-
teraction and control of the simulation model within a real
urban environment was used to simulate the effect of flood-
ing the model with pedestrians which resulted in dangerous
congestion.

As we have abstracted both the agent and navigation plan-
ning behaviour to an agent based problem we are also free
to interchange the navigation technique without having to
change the rules of our final forced based behaviour. We are
already experimenting with an agent based implementation
of dynamic navigation graphs which avoid the memory over-
head of using fine discrete partitions.

References

[BKSZ01] BURSTEDDE C., KLAUCK K., SCHADSCHNEIDER
A., ZITTARTZ J.: Simulation of pedestrian dynamics using a
two-dimensional cellular automaton. Physica A 295, 3-4 (June
2001), 507-525. 2

[Che04] CHENNEY S.: Flow tiles. In SCA ’04: Proceedings of
the 2004 ACM SIGGRAPH/Eurographics symposium on Com-
puter animation (Aire-la-Ville, Switzerland, Switzerland, 2004),
Eurographics Association, pp. 233-242. 2

[CSHO6] COAKLEY S., SMALLWOOD R., HOLCOMBE M.: Us-
ing x-machines as a formal basis for describing agents in agent-
based modelling. In Proceedings of 2006 Spring Simulation Mul-
ticonference (April 2006), pp. 33-40. 3

[DVDO08] DEISSENBERG C., VANDERHOOG S., DAWID H.: Eu-
race: A massively parallel agent-based model of the european
economy. Applied Mathematics and Computation 204, 2 (Oc-
tober 2008), 541-552. 3

[Eil74] EILENBERG S.: Automata, Languages, and Machines.
Academic Press, Inc., Orlando, FL, USA, 1974. 3

[Hel91] HELBING D.: A mathematical model for the behavior of
pedestrians. Behavioral Science 36, 4 (October 1991), 298-310.
2,6

[HFV00] HELBING D., FARKAS 1., VICSEK T.: Simulating dy-
namical features of escape panic. Nature 407, 6803 (September
2000), 487-490. 2, 6

[Hug02] HUGHES R.: A continuum theory for the flow of pedes-
trians. Transportation Research Part B: Methodological 36, 6
(July 2002), 507-535. 2

[IXW*08] JIN X., XU J., WANG C. C. L., HUANG S., ZHANG
J.: Interactive control of large-crowd navigation in virtual en-
vironments using vector fields. [EEE Computer Graphics and
Applications 28, 6 (November 2008), 37-46. 2

[LaV06] LAVALLE S. M.: Planning Algorithms. Cambridge Uni-
versity Press, May 2006. 2, 5

[LGO8] LE GRAND S.: Broad-phase collision detection with
cuda. GPU Gems 3 (2008), 697-721. 6

[MPG*10] MOUSSAID M., PEROZO N., GARNIER S., HELBING
D., THERAULAZ G.: The walking behaviour of pedestrian social
groups and its impact on crowd dynamics. PLoS ONE 5, 4 (April
2010), e10047+. 2

[Nvi09] NVIDIA: Nvidia cuda programming guide (v 2.3), 2009.
3

[PLTOS] PETTRE J., LAUMOND J., THALMANN D.: A naviga-
tion graph for real-time crowd animation on multilayered and un-
even terrain. 3

[RCR0O9] RICHMOND P., COAKLEY S., ROMANO D.: A high
performance agent based modelling framework on graphics card
hardware with cuda. Proceedings of The Eighth International
Conference on Autonomous Agents and Multiagent Systems
(2009). 3,6

[Rey87] REYNOLDS C. W.: Flocks, herds and schools: A dis-
tributed behavioral model. In SIGGRAPH ’87: Proceedings of
the 14th annual conference on Computer graphics and interac-
tive techniques (New York, NY, USA, July 1987), vol. 21, ACM,
pp. 25-34. 2

[Rey99] REYNOLDS C.: Steering behaviors for autonomous char-
acters. In Game Developers Conference 1999 (1999). 6

[RRO8] RICHMOND P., ROMANO D.: A high performance frame-
work for agent based pedestrian dynamics on gpu hardware. Eu-
ropean Simulation and Modelling (2008). 3

[RWCR10] RICHMOND P., WALKER D., COAKLEY S., RO-
MANO D.: High performance cellular level agent-based simu-
lation with flame for the gpu. Briefings in Bioinformatics (2010).
3

[SBOTO08] SHOPF J., BARCZAK J., OAT C., TATARCHUK N.:
March of the froblins: simulation and rendering massive crowds
of intelligent and detailed creatures on gpu. In SIGGRAPH ’08:
ACM SIGGRAPH 2008 classes (New York, NY, USA, 2008),
ACM, pp. 52-101. 2

[Sha05] SHAO W.: Environmental modeling for autonomous vir-
tual pedestrians, 2005. 3

[Sim10] SIMWAL K.: http://fseg.gre.ac.uk/exodus/ [last accessed
jan 2010]. 1

[Sof10] SOFTWARE M.: http://www.massivesoftware.com/ [last
accessed jan 2010]. 1

[STO5] SHAO W., TERZOPOULOS D.: Autonomous pedestrians.
In SCA ’05: Proceedings of the 2005 ACM SIGGRAPH/Euro-
graphics symposium on Computer animation (New York, NY,
USA, 2005), ACM Press, pp. 19-28. 2

[TCP0O6] TREUILLE A., COOPER S., POPOVIC Z.: Continuum
crowds. In SIGGRAPH ’06: ACM SIGGRAPH 2006 Papers
(New York, NY, USA, 2006), ACM, pp. 1160-1168. 2

[TLCC] TEeccHIA F., Loscos C., CONRY R., CHRYSANTHOU
Y.: Agent behaviour simulator (abs): A platform for urban be-
haviour development. 2

[TPO2] TURNER A., PENN A.: Encoding natural movement as
an agent-based system: an investigation into human pedestrian
behaviour in the built environment. Environment and Planning
B: Planning and Design, 29 (2002), 473-490. 1

(© The Eurographics Association 2010.

