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Abstract

In this work we present new weighting functions for the anisotropic Kuwahara filter. The anisotropic Kuwahara
filter is an edge-preserving filter that is especially useful for creating stylized abstractions from images or videos. It
is based on a generalization of the Kuwahara filter that is adapted to the local shape of features. For the smoothing
process, the anisotropic Kuwahara filter uses weighting functions that use convolution in their definition. For an
efficient implementation, these weighting functions are usually sampled into a texture map. By contrast, our new
weighting functions do not require convolution and can be efficiently computed directly during the filtering in
real-time. We show that our approach creates output of similar quality as the original anisotropic Kuwahara filter
and present an evaluation scheme to compute the new weighting functions efficiently by using rotational symmetries.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Picture/Image Generation]: Display algorithms

Figure 1: Left: Weighting function .�0 ? G�/ � G� based on convolution used in the definition of the anisotropic Kuwahara
filter [KKD09, PPC07]. Right: Proposed weighting function based on the polynomial Œ.x C �/ � �y2�2.

1. Introduction

Within the field of non-photorealistic rendering, a classical
area of research is the stylization and abstraction of pho-
tographs using edge-preserving smoothing and enhancement
filters. Prominent techniques in this area have in common that
they remove detail in low-contrast regions without filtering
across discontinuities and thus leave the overall structure of
the input image unaffected. Popular examples are the bilateral
filter [WOG06,KD08,KLC09] and mean shift [CM02,DS02].
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Another popular filter in this field is the Kuwahara filter
[KHEK76]. The general idea behind this filter is to divide the
filter kernel into four rectangular subregions which overlap
by one pixel. The filter response is then defined by the mean
of a subregion with minimum variance. The Kuwahara filter
produces clearly noticeable artifacts. These are due to the use
of rectangular subregions. In addition, the subregion selection
process is unstable if noise is present or subregions have the
same variance. This results in randomly chosen subregions
and corresponding artifacts. A more detailed discussion of
limitations of the Kuwahara filter can be found in [PPC07].
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Figure 2: Examples created with the anisotropic Kuwahara filter using the proposed weighting functions.
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Figure 3: The mapping SR�' maps a rotated ellipse to the
unit disc.
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Figure 4: Construction of the weighting functions of the
anisotropic Kuwahara filter: (a) Characteristic function �0.
(b) �0 ? G�. (c) K0 D .�0 ? G�/ �G� .

Several attempts have been made to address the limitations
of the Kuwahara filter. [PPC07] define a new criterion to
overcome the limitations of the unstable subregion selection
process. Instead of selecting a single subregion, the result
is defined as the weighted sum of the means of the subre-
gions. The weights are defined based on the variances of the
subregions. This results in smoother region boundaries and
fewer artifacts. To improve this further, the rectangular sub-
regions are replaced by smooth weighting functions defined
over sectors of a disc.

The anisotropic Kuwahara filter [KKD09] builds upon the
generalized Kuwahara filtering concept by [PPC07] and re-
places the weighting functions defined over sectors of a disc
by weighting functions defined over ellipses. By adapting
shape, scale and orientation of these ellipses to the local struc-
ture of the input, artifacts are avoided. Due to this adaption, di-
rectional image features are better preserved and emphasized.

This results in overall sharper edges and the enhancement of
directional image features. For a more detailed discussion of
related work and comparisons with other techniques, we refer
to [KKD09].

In this work, we present a modification of the anisotropic
Kuwahara filter. We introduce new weighting functions that
are not based on convolution. Consequently, they are ap-
plicable for calculation on the fly and can be computed at
real-time rates. In addition, the proposed weighting functions
are parameterizable. The eccentricity and expansion can be
adjusted, which allows to control the overlapping areas to
adjacent sectors.

2. Anisotropic Kuwahara Filtering

In order to adapt the filter shape to the local structure of the
image, the anisotropic Kuwahara filter requires information
about the local orientation and a measure for the anisotropy.
Both can be derived from the eigenvalues and eigenvectors
of the smoothed structure tensor [BBL�06]. The local ori-
entation is given by the argument of the minor eigenvector
and the anisotropy can be derived from the major and minor
eigenvalues [YBFU96]:

A D
�1 � �2

�1 C �2

The anisotropy A ranges from 0 to 1, where 0 corresponds to
isotropic and 1 corresponds to entirely anisotropic regions.

Let f W R2 �! R3 denote the input image, let .x0; y0/ 2
R2 be a point and let ' be the local orientation and A be the
anisotropy at .x0; y0/. To adjust the eccentricity of the filter
shape depending on the amount of anisotropy we set:

a D
˛ C A

˛
r and b D

˛

˛ C A
r :

Here r denotes the desired radius of the filter and ˛ > 0 is a
tuning parameter that is typically set to ˛ D 1. In this case,
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Figure 5: The weighting functions Ki D K0 ıR2�i=8 (top) and their pullback wi D Ki ı SR�' (bottom) for i D 1; :::8.

since A is in Œ0; 1�, it follows that we have r � a � 2r and
r=2 � b � r . Now let

S D

 
a�1 0

0 b�1

!

and let R�' be the matrix defining a rotation by �'. The
mapping SR�' then defines a linear coordinate transform
that maps a rotated ellipse to the unit disc (Figure 3). The
anisotropic Kuwahara filter now partitions this ellipse into
different sectors similar to the rectangular areas of the orig-
inal Kuwahara filter. Let N denote the number of sectors,
with typical values N D 4 or N D 8. The different sectors
must overlap. To achieve this, the anisotropic Kuwahara uses
weighting functions that define how much influence a pixel
has on a sector. To define these weighting functions over the
ellipse, the general idea is to define corresponding weighting
functions over the unit disc and then pull these back to the
ellipse.

Let �0 be the characteristic function that is 1 for all points
of R2 with argument in .��=N; �=N � and 0 otherwise. Then

K0 D .�0 ? G�/ �G�

defines smooth weighting function over the unit circle. Here
G� and G� denote Gaussian functions and ? denotes convo-
lution. The convolution smoothes the characteristic function
such that pixels from neighboring sectors are also considered
in the weighting process. The multiplication achieves a decay
with increasing radius (Figure 4). Reasonable values for �
and � are � D 0:4 and � D �=3. Weighting functions for the
other sectors can be defined by smoothing the corresponding
characteristic function or simply by rotating K0:

Ki D K0 ıR�2�i=N ; i D 0; : : : ; N � 1

Here, ı denotes composition of functions. By pulling back
Ki , we finally get weighting functions wi defined over the
ellipse (Figure 5):

wi D Ki ı SR�' D K0 ıR�2�i=NSR�'

Now let

mi D
1

k

Z
f .x/wi .x � x0/ dx (1)

(a) Homogeneous (b) Corner (c) Edge

Figure 6: The anisotropic Kuwahara filter uses weighting
functions defined over an ellipse, whose shape is based on
the local orientation and anisotropy. The filter response is
defined as a weighed sum of the local averages, where more
weight is given to averages with low standard deviation.

be the weighted local averages and

s2i D
1

k

Z
f 2.x/wi .x � x0/ dx � m2i (2)

be the squared standard deviations, where k denotes the corre-
sponding normalization factor. The output of the anisotropic
Kuwahara filter is then defined by:P

i ˛imiP
i ˛i

; ˛i D
1

1C ksik
q
:

This definition of the weighting factors ˛i ensures that more
weight is given to sectors with low standard deviation, i.e.
those that are more homogeneous (Figure 6). The parameter
q is typically set to q D 8.

3. Alternative Weighting Functions

Since the weighting functions wi are adapted to the local
image structure, they are generally different per pixel. It is
thus not possible to perform the convolutions in equation (1)
and (2) in frequency space. The calculation therefore has to
be carried out in the spatial domain. An efficient implemen-
tation hence depends on the possibility to quickly evaluate
Ki . The direct computation of Ki would be absurd, since the
computation requires convolution. In [KKD10] K0, K1, K2
and K3 are therefore sampled into a RGBA texture map. By
using this texture map, the weights can be calculated using a
single texture lookup for N D 4 and two texture lookups for
N D 8.
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Figure 7: Construction of the proposed weighting functions:
(a) Polynomial .xC �/� �y2. (b) Squared polynomial Œ.xC
�/��y2�2. (c) Qk0. (d) Normalized Qk0. (e) Weighting function
zK0.

In this work we use a different approach. Instead of dis-
cretizing or approximating theKi , we aim for replacing them
with other functions, that are simpler to compute. By construc-
tion, the sum

P
i Ki is equal to the Gaussian function G� .

The Ki therefore define a smooth partition of the Gaussian
function G� . The proposed weighting functions also have
this property and their construction is illustrated in Figure 7.
Basis for the construction is the polynomial .x C �/ � �y2

that is shown in Figure 7(a). The red parabola shows the zero-
crossing of this polynomial. By clamping negative values
to zero, we get a function that is non-zero inside and zero
outside the parabola. By taking the square, we ensure that the
transition at the zero-crossing is smooth (Figure 7(c)):

Qk0.x; y/ D

( �
.x C �/ � �y2

�2
x � �y2 � �

0 otherwise

The functions for the other sectors are defined as correspond-
ing rotations of Qk0:

Qki D Qk0 ıR�2�i=N

By normalizing Qki and multiplying with G� , we get weight-
ing functions defined over the unit disc:

zKi .x; y/ D
Qki .x; y/PN�1

jD0
Qkj .x; y/

�G� .x; y/

As desired, the sum
P
j
zKi is equal to G� by construction,

and the new weighting functions zwi are now defined as in the
previous section by:

zwi D zKi ı SR�'

The definition of Qk0 includes two parameters � and �. The
parameter � controls how much the different weighting func-
tions overlap at the filter origin. For the anisotropic Kuwahara
filter to work as expected, it is required that all weighting
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Figure 8: Zero-crossings of the polynomial .x C �/ � �y2

for � D 1
3 and � D �

�
�; �
N

�
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�
�; 3�
4N

�
(red),

� D �
�
�; 2�
N

�
(blue).

functions overlap at their boundaries, especially at the filter
origin. In the previous section, we explained that for ˛ D 1
the minor radius of the ellipse will not be smaller than half of
the radius. Hence

� D
2

r

is a reasonable definition that ensures that all sectors overlap
at the filter origin. The parameter � controls how much the
sectors overlap at their sides. Given � and �, we can look at the
zero-crossing of the polynomial .xC�/��y2 (Figure 8), and
vice versa we can define � dependent on � and the intersection
of the zero-crossing with the unit circle:

�.�; 
/ D
� C cos 


sin2 


In order for zKi to be well-defined on the unit disc, it is
necessary that the sum

P
j
zKi is non-zero for every point of

the unit disc. This can be achieved by requiring 
 � �
N

(blue
plot of Figure 8). Conversely, it is undesirable that more than
two sectors overlap on one side. An approximate bound for
this is 
 � 2�

N
(green plot of Figure 8). Hence, reasonable

choices for � are:

�min.�/ D �
�
�; 2�
N

�
� � � �

�
�; �
N

�
D �max.�/

For all examples we use r D 6, � D 1
3 and

�
�
1
3 ;

3�
2N

�
�

(
0:84 if N D 4

3:77 if N D 8
:

Listing 1 shows how the proposed weighting functions can
be implemented efficiently for N D 8. Here, it is important
to use the max function. On GPUs this function is gener-
ally available as intrinsic function and much faster, since no
branching is performed. For N D 8 the vector v has to be
rotated by �=4. Since rotation by multiple of �=2 can be per-
formed by swapping and negating coordinates, we perform
the computation in two stages. We first calculate the weights
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vec2 v = SR * vec2(x-x0, y-y0);

vec3 c = texture2D(src, vec2(x,y)).rgb;

float sum = 0;

float w[8];

float z, vxx, vyy;

vxx = zeta - eta * v.x * v.x;

vyy = zeta - eta * v.y * v.y;

z = max(0, v.y + vxx); sum += w[0] = z * z;

z = max(0, -v.x + vyy); sum += w[2] = z * z;

z = max(0, -v.y + vxx); sum += w[4] = z * z;

z = max(0, v.x + vyy); sum += w[6] = z * z;

v = sqrt(2)/2 * vec2( v.x - v.y, v.x + v.y );

vxx = zeta - eta * v.x * v.x;

vyy = zeta - eta * v.y * v.y;

z = max(0, v.y + vxx); sum += w[1] = z * z;

z = max(0, -v.x + vyy); sum += w[3] = z * z;

z = max(0, -v.y + vxx); sum += w[5] = z * z;

z = max(0, v.x + vyy); sum += w[7] = z * z;

float g = exp(-3.125 * dot(v,v)) / sum;

for (int k = 0; k < 8; ++k) {

float wk = w[k] * g;

m[k] += vec4(c * wk, wk);

s[k] += c * c * wk;

}

Listing 1: Pseudocode that shows how the proposed weight-
ing functions can be efficiently evaluated inside the inner
loop of the anisotropic Kuwahara filter for N D 8.

for 0, �=2, � and 3=2� . Then we rotate by �=4 and calculate
the weights for �=4, 3=4� , 5=4� and 7=4� .

4. Discussion

In Figure 2, images are shown that have been processed with
the anisotropic Kuwahara filter using the proposed weighting
functions. The results are visually indistinguishable from the
output of the anisotropic Kuwahara filter using the original
weighting functions. As can be seen in Figure 9(b), the pro-
posed approach creates the same feature-preserving direction-
enhancing look as the original texture-based implementation.
Minor differences (Figure 9(c)) appear in high-contrast areas.
This is not surprising, since both filters do not match exactly.
Because the primary aim of the filter is abstraction, these
minor differences are completely irrelevant. However, this
indicates that the proposed approach shares important proper-
ties of the original implementation as discussed in [KKD09].
These are for example prevention of overblurring in low-
contrast areas (Figure 10(b)) and robustness against high-
contrast noise (Figure 10(d)). We also tested application of the
proposed approach to video. The proposed approach achieves
the same outstanding temporal coherence with per-frame
filtering.

Our implementation is based on the GLSL reference im-
plementation of the anisotropic Kuwahara filter [KKD10].

Table 1: Comparison with the GLSL reference implementa-
tion of the anisotropic Kuwahara filter [KKD10]. Image size:
512x512 pixels.

GPU Texture Proposed
N D 4 N D 8 N D 4 N D 8

NVidia FX570M 119.5 ms 557.9 ms 136.6 ms -12.5% 579.6 ms -3.7%
NVidia 9800 GT 28.3 ms 98.8 ms 31.5 ms -10.2% 104.1 ms -5.1%
NVidia 8800 GTX 27.5 ms 76.3 ms 30.6 ms -10.1% 81.1 ms -5.9%
NVidia GTX 285 10.8 ms 36.0 ms 11.9 ms -9.2% 40.0 ms -10.0%
NVidia GTX 480 5.6 ms 28.3 ms 6.1 ms -8.0% 23.1 ms +22.5%
ATI Radeon 4850 44.9 ms 74.7 ms 48.3 ms -7.0% 90.8 ms -17.7%
ATI Radeon 5850 17.9 ms 41.7 ms 18.5 ms -3.2% 35.3 ms +18.1%

Table 1 compares the execution times of our approach with
the texture-based implementation. Using textures as lookup
tables to speed up computations is a common technique used
in real-time graphics. Furthermore, modern computer games
heavily rely on texture mapping. GPU hardware vendors have
optimized their hardware to support this. On modern GPUs
memory access is, however, a critical bottleneck. This is
clearly observable for next generation DirectX 11 hardware.
Here the proposed approach outperforms the texture-based
approach for N D 8, as two texture lookups are required per
kernel element and the proposed approach therefore performs
much better in that case. On the contrary, the texture-based
approach is slightly faster on DirectX 10 generation hard-
ware.

Our approach also offers new opportunities for optimized
implementations on GPUs. GPU computing APIs such as
CUDA and OpenCL offer a much finer control over the GPU
and allow usage of advanced features such as shared memory.
For Gaussian smoothing, it has been shown that a shared
memory implementation outperforms a texture-based imple-
mentation [Pod07]. We expect a similar result for a shared
memory implementation of our approach.

5. Conclusions

We have presented alternative weighting functions for the
anisotropic Kuwahara filter. The proposed weighting func-
tions do not require convolution and can be efficiently com-
puted directly during the filtering process. Our approach cre-
ates output of similar quality as the texture-based implemen-
tation of the anisotropic Kuwahara filter. Even though the
weighting functions are explicitly computed during the filter-
ing process, our approach performs better on next generation
GPUs when using eight sectors. The proposed weighting
functions also contribute to a further generalization of the
Kuwahara filter. Since the weights are calculated on the fly,
this offers new opportunities to control the smoothing process
interactively or automatically at real-time.
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Figure 9: Directional image features are preserved and enhanced [KKD09, Figure 7].

(a) Original (b) Proposed method (c) Original (d) Proposed method
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